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During the past decade, the Ratip program has been developed to calculate the electronic structure
and properties of atoms and ions. This code, which is now organized as a suite of programs, provides
a powerful platform today to generate and evaluate atomic data for open-shell atoms, including level
energies and energy shifts, transition probabilities, Auger parameters as well as a variety of excitation,
ionization and recombination amplitudes and cross sections. Although the Ratip program focus on
properties with just one electron within the continuum, recent emphasis was placed also on second-order
processes as well as on the combination of different types of transition amplitudes in order to explore
more complex spectra. Here, I present and discuss the (design of the) Ratip program and make available
a major part of the code for public use. Selected examples show a few of its possible applications, while
reference is made to a much wider range of computations as supported by the program. The Ratip

program has been developed as a scalar Fortran 90/95 code and provides a simple make feature which
help port the code to different platforms and architectures.

Program summary

Program title: Ratip

Catalogue identifier: AEMA_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEMA_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 256562
No. of bytes in distributed program, including test data, etc.: 4975979
Distribution format: tar.gz
Programming language: ANSI standard Fortran 90/95 and subsequent developments
Computer: PCs and workstations
Operating system: Suse, Debian and Ubuntu Linux
RAM: Memory requirements strongly depend on the size of the bound-state wave functions, the property
considered as well as the special features selected during the computations.
Word size: All real variables are parametrized by a selected kind parameter and, thus, can easily be
adapted to any required precision as supported by the compiler. Presently, the kind parameter is set to
double precision (two 32-bit words) in the module rabs_constant.
Classification: 2.1, 2.9
Subprograms used:

Cat Id Title Reference

ADCU_v1_0 Grasp92 CPC 94 (1996) 249
Nature of problem: Ab-initio calculations of atomic properties and data are required in science and
technology, not just within the traditional areas of astro and plasma physics but also in several recently
emerging research fields. Hereby, often quite different demands arise with regard to the accuracy of the
data, the elements of interest as well as their stage of ionization. Therefore, it is desirable to provide
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a code which is applicable to all elements of the periodic table and which can help incorporate the
dominant electron–electron correlation and relativistic effects on equal footings into the computations.
Solution method: Atomic bound-state wave functions from Grasp92 [1] for different levels and charge
states are combined with continuum orbitals to calculate many-electron transition amplitudes and
properties as derived from these amplitudes. Three major types of transition amplitudes refer to
the electron–electron interaction, based on the Dirac–Coulomb–Breit Hamiltonian, the electron–photon
interaction for the coupling of atoms to the radiation field as well as the electron–nucleus (hyperfine)
interaction due to the electric and magnetic multipole fields of the nucleus. Apart from the electric-dipole
approximation to the electron–photon interaction, this includes also other — electric and magnetic —
multipole components of the radiation field. All computations are performed within the framework
of the multiconfiguration Dirac–Fock (MCDF) method as implemented in Grasp92 [1] and its recent
successors [2].
Restrictions: Relativistic calculations of atomic properties are restricted mainly by the size of the wave
functions and the (virtual) excitations that can be taken into account with regard to a given set of
reference configurations. Further restrictions of the present implementation concern:

• Despite the relativistic formulation of atomic properties based on Dirac’s equation, all calculations are
performed within the no-pair approximation; no attempt has been made to incorporate contributions
from the negative continuum or radiative corrections beyond some simple estimate of the vacuum
polarization and the electron self-energy to the level energies.

• Continuum orbitals are always generated within a static potential (of the corresponding ionic core) and
are utilized to construct distorted waves with well-defined total angular momentum and parity. No
continuum (interchannel) interactions are taken into account in the construction of scattering states if
one (or more) electrons is in the continuum.

• As in Grasp92 [1], antisymmetric subshell states with more than two equivalent electrons are
supported only for j � 9/2.

• If wave functions are defined with regard to different configuration lists to represent, for example, the
initial and final state of a selected photo- or autoionizing transition, the same order of atomic orbitals
(and usually also the same core) has to be used for generating the atomic bound states. The program
terminates with an error message if this is not the case.

• The use of non-orthogonal orbital sets for the representation of initial, intermediate or final atomic
states is supported only by a few selected programs, while “orthogonality” is assumed otherwise for
the evaluation of the many-electron amplitudes apart from the active electrons.

Unusual features: The Ratip program is designed as a suite of programs where each of them help calculate
one or a few closely related atomic properties, and for a given set of atomic levels. To make use of these
programs, it is usually assumed that the wave functions for all bound states have been generated before

by means of the Grasp92 [1] or some equivalent code. However, a clear and simple interface is made
between the computation of the bound states and their use within the Ratip program [3] by applying
only the (standard) input and output files from Grasp92, such as the definition of nuclear parameters
(.iso), configuration lists (.csl), radial orbitals (.rwf) and mixing coefficient (.mix) files.
To specify the bound states of interest, most calculations within the Ratip program refer to the level
numbers as they (do) occur in Grasp92 for a given configuration basis. Care has been taken that this
selection and reference to the atomic levels can be handled flexibly but with some proper tests on the
atomic property under consideration. Each program component of Ratip is controlled by an interactive
dialog at the beginning of its execution and enables the user to select individual transitions as well as
the particular mode of computation. All major results are usually compiled in tables and printed to some
summary file, which is specific to each component. The units of energies, rates and cross sections in
these tabulations can be specified during the input (from a number of possible choices) if the default is
considered not to be appropriate.
Various (modern design) principles of Fortran 90/95 have been applied in developing the Ratip code [4],
including the use of modules, the definition of derived data structures, the use of logical flags and the
dynamic allocation of all important arrays. Therefore, there are no serious restrictions with regard to the
number of open shells, nor to the grid size or the number of atomic transitions that can be calculated
within a single run of some component. While some of Ratip’s code is common to all programs and
is provided by a number of core modules, each component usually refers also to some own(ed) data
structures and procedures which are specific to its application.
Running time: 20 minutes on a standard laptop for all test cases.
References:
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1. Introduction

The recent years have seen a steadily increasing demand for accurate atomic data owing, for instance, to the development of new
light sources and the remarkable progress in experimental and detector technology. Apart from the traditional research fields of astro and
plasma physics (and their ongoing international research and infrastructure projects), accurate atomic data are required today also in more
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recently emerging areas, such as atomic clocks, laser spectroscopy, quantum optics and metrology, free-electron laser research, VUV and
X-ray lithography, or even material science, to name just a few [1]. In these research fields, however, quite different demands arise with
regard to the accuracy of data, the elements of interest from the periodic table, or their stage of ionization and, more often than not,
different theoretical data need to be combined with further information about the process of interest or due to effects of the environment.

To provide such atomic data for most (or all) elements from the periodic table, the multiconfiguration Dirac–Fock (MCDF) method has
been found a very versatile tool for calculating a variety of properties [2]. When compared with other advanced many-body techniques,
such as the random-phase approximation, many-body perturbation theory or the coupled-cluster approach, the MCDF method has the
great advantage that it can be applied quite easily to excited and open-shell structures across the whole periodic table. Moreover, the
MCDF method gives rise also to many-electron amplitudes which can be readily combined with each other for studying angle- and
polarization-dependent properties and can be applied also to problems from the — time-independent or time-dependent — density matrix
theory [3,4]. These advantages, together with the increasing quest for calculating ionization and capture processes with one (or more)
electrons in the continuum, make it desirable to have a computer code available for relativistic calculations of atomic properties.

Here, I present (and provide) the Ratip program [5] for the calculation of various relativistic atomic transition, ionization and re-
combination properties within the MCDF model. This code has been designed as a suite of programs for open-shell atoms, including
level energies, transition probabilities, Auger parameters, photoionization cross sections and angular parameters, radiative and dielectronic
recombination rates, as well as various other atomic properties. The Ratip program is based on Grasp92 [6], the well-known and general-
purpose atomic structure code, which can be used to generate the atomic (or ionic) bound states. These bound-state wave functions
from Grasp92 are then combined, if appropriate, with properly constructed continuum orbitals in order to calculate the requested many-
electron transition amplitudes and properties mentioned above. The Ratip program is presently designed as a scalar Fortran 90/95 code
and utilizes a simple make feature to help port the code to different platforms and architectures.

In the next section, I shall briefly introduce the basic formulas and notations on which the Ratip program is built. Apart from a brief
account of the relativistic Hamiltonian and the MCDF method itself, this includes the definition and use of the interaction and transition
amplitudes that serve as the building blocks of the Ratip program. These amplitudes are central to most components and allow for simple
extensions of the code. The general structure and organization of the program will be described in Section 3, beginning with a brief
overview and the discussion of some guidelines which I followed in designing and implementing the code (Section 3.2). Apart from a
few notes about Fortran 90/95 in implementing the Ratip program, this subsection also outlines the use of interface files as well as the
interactive control of the program, while all main components of the code are described in Section 3.3 and the associated toolbox in
Section 3.4. For each component, which is made available by the present distribution, I shall describe the implemented amplitudes or
interactions, the interactive dialog at the beginning of the program’s execution, the results and summary of the particular component,
a few special features and reference to some recent applications. Because of the overall size of the program, however, no attempt has been
made to describe neither the implementation of the code in detail nor to list all underlying (sub-)procedures. Many further features of the
program can be understood and utilized by exploring the interactive dialogs of the various components. A few selected test examples are
displayed in Section 4 to provide the user with a quick test of the installation, and a summary and outlook is finally given in Section 5.

2. Basic notations from atomic structure theory

The relativistic atomic structure theory has been developed during the past four decades and has been presented in detail in a number
of recent text books [2,7]. Therefore, we shall restrict here ourselves to just the basic notations and expressions as they occur in the
description of the code below, and shall refer for all further information to the literature. Details on the MCDF methods can be found
in Ref. [8], and especially for its implementation within the Grasp(92) program in Refs. [6,9,10] and for the McdfGme code, a second
widely-used implementation of this method, in Ref. [11]. Atomic units are used throughout if not stated otherwise.

2.1. Relativistic Hamiltonians and interactions

As in nonrelativistic quantum theory, most relativistic structure calculations are based on a Hamiltonian which describes a fixed number
of particles, N . By making use of Dirac’s theory for the motion of each electron, one therefore arrives readily at the (so-called) Dirac–

Coulomb Hamiltonian

HDC =
N

∑

i

hD(ri) +
N

∑

i< j

1

ri j
(1)

where the one-electron Dirac operator

hD(r) = cα · p+ βc2 + Vnuc(r) (2)

describes the kinetic energy of the electron and its interaction with the (external) nuclear potential Vnuc(r), and where the second term
in expression (1) just refers to the static Coulomb repulsion between each pair of electrons. Apart from (quite) heavy elements, indeed,
the Dirac–Coulomb Hamiltonian has been found appropriate to describe the low-lying levels structure of most elements and is utilized
within the Grasp code(s) in order to define the self-consistent field (SCF) of the N bound electrons [6,10]. Let us mention here, however,
that the Hamiltonian (1) by itself is not bound from below and thus requires special care to prevent the electrons to fall into the “Dirac
sea”. This so-called Brown–Ravenhall disease has been discussed in good detail in the literature [12,13]. For Dirac Hamiltonians, however, it
has been shown in the literature that a rigorous lower bound to the upper part of the spectrum exists (and a corresponding upper bound
to the lower part of the spectrum), provided that the trial functions are taken from a properly chosen functions space; see Ref. [2], § 5.6.
In the MCDF method, a variational collapse can thus be avoided in the SCF procedure to the Hamiltonian (1) if proper boundary conditions
are imposed upon the one-electron orbital functions.

In a more rigorous quantum-electrodynamical (QED) treatment of the many-electron system, it can be shown that the pairwise inter-
action between the electrons i and j is better described by the sum
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∑

i< j

v i j =
∑

i< j

(

1

ri j
+ bi j

)

(3)

of the static Coulomb repulsion and the Breit interaction (bi j) to correct for the magnetic and retardation contributions due to the rela-
tivistic motion of the electrons. An effective operator for the Breit interaction can be derived in perturbation theory to the electron–photon
coupling (with respect to the number of virtually exchanged photons) and gives rise in Coulomb gauge to the so-called tranverse Breit
operator [13,14]

b12 = −(α1 · α2)
cos(ωr12)

r12
+ (α1 · ∇1)(α2 · ∇2)

cos(ωr12 − 1)

ω2r12
, (4)

and where ω = |ǫ1−ǫ2|
c

refers to the difference of the corresponding one-particle energies. From this expression, the frequency-independent

(and original) Breit operator [15]

bo12 = −
1

2r12

[

α1 · α2 +
(α1 · r12)(α2 · r12)

r212

]

(5)

is obtained within the long-wavelength approximation, ω → 0. This zero-frequency approximation to the full transverse interaction ne-
glects all contribution ∼ α4 Z3 (as well as in higher order in αZ ) but is well suited for most computations of many-electron atoms and
ions since the explicit frequency-dependence of expression (4) gives usually rise to (very) small corrections. It is therefore the frequency-
independent form of the Breit interaction that is implemented in most components of the Ratip program.

If the Breit interaction is taken into account in expression (1), one obtains the Dirac–Coulomb–Breit Hamiltonian

HDCB =
∑

i

hD(ri) +
∑

i< j

(

1

ri j
+ bi j

)

(6)

which is often used in first-order perturbation theory to incorporate the relativistic contributions from the electron–electron interaction.
The same form of the electron–electron interaction operator occurs in the computation of all Auger processes, the electron-impact exci-
tation (or ionization) of atoms and ions as well as at several places elsewhere. Therefore, a simple notation and implementation of the
corresponding interaction amplitudes will help to deal with further excitation and decay properties within the framework of the Ratip

program. Further details about the electron–electron interaction amplitudes will be describe in Section 2.3 below.
In practice, the decision about the particular form of the Hamiltonian operator, i.e. of applying either the operator (1) or (6) or even

some other form of the electron–electron interaction, is usually based upon physical arguments, such as the nuclear charge, the charge
state of the ion, the shell structure of the atomic states of interest as well as the property which need to be considered. Apart from the
proper choice of the Hamiltonian operator, the accuracy of most atomic calculation also depends very crucially on the many-electron basis
(set) that is included into the computations. For a given wave function expansion, however, these two influences are difficult to discuss
separately and often require a rather detailed analysis in order to monitor the convergence of some given property, if such a “monitoring”
is possible at all. The specification of a suitable many-electron basis is indeed a key issue in generating (approximate) atomic bound and
scattering states within the MCDF method and will now be described in some further detail.

2.2. The multiconfiguration Dirac–Fock method

Like in the symmetry-adapted nonrelativistic Hartree–Fock (HF) approximation, an atomic state function is written within the MCDF
model as a linear combination of configuration state functions (CSF) with well-defined parity P , total angular momentum J , and its
projection J z

ψα(P JM) =
nc

∑

r=1

cr(α)|γr P JM〉, (7)

and where γr refers to all additional quantum numbers that are needed in order to specify the (N-electron) CSF uniquely. In ansatz (7),
moreover, nc denotes the number of CSF and {cr(α)} the representation of the atomic state within the (given) CSF basis. In most standard
computations, the set {|γr P JM〉} of CSF are constructed as antisymmetrized products of a common set of orthonormal orbitals, making
use of j j-coupling and a proper seniority scheme for the classification of the (antisymmetrized) subshell states [2]. In contrast to the
HF (or Dirac–Fock approach for relativistic single-configuration calculations), however, both the radial (one-electron) functions as well as
the expansion coefficients {cr(α), r = 1, . . . ,nc} in the representation of the atomic state(s) are optimized simultaneously on the basis of
the Dirac–Coulomb Hamiltonian. Further relativistic contributions due to the Breit interaction among the electrons or the polarization of
the QED vacuum are then added perturbatively by diagonalizing the Dirac–Coulomb–Breit Hamiltonian (and vacuum polarization) matrix.
Furthermore, estimates on the self-energy of the electrons involved in the representation of some state can be added to both, the level as
well as transition energies.

While, at the first glance, ansatz (7) looks straightforward for generating the bound-state wave functions of some atom or ion, the
proper choice of a physically appropriate basis {|γr P JM〉} turns out to be less simple in practice and is often affected also by technical
limitations with regard to the size and convergence of the wave functions. Especially shell structures with (several) open shells impose
serious implications on the quality of the generated states. While the first successful structure calculations of simple atoms and ions in the
1960s and 1970s already led to surprisingly (accurate) results, in particular in view of the limited computational resources at that time,
it soon became clear how sensitive many properties behave with regard to correlation effects, i.e. the contributions beyond the (single-
configuration) Dirac–Fock approximation [16,17]. In bound-state calculations, therefore, the concept of either complete or restricted active
spaces has been employed and found useful [18,19] but difficulties arise with open-shell structures or if the electron continuum need to be
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included into the construction of atomic states. Here, I shall not discuss in detail how one can specify a proper CSF basis but assume that
a reasonable representation of the bound-state functions is obtained by using the Grasp92 program [6] or some of its successors, and that
this was done before the wave functions are to be applied within the Ratip program.

Standard MCDF calculations give rise to the energies and wave functions (Eα,ψα) for one or several selected bound states. From the
symmetry of atoms and ions with regard to a rotation or inversion of the coordinates it is clear, moreover, that the Hamiltonian matrix is
always block-diagonal in the total parity and angular momentum quantum numbers (P JM). Within the Grasp program(s), the generation
of atomic bound states is therefore carried out in a series of steps which can be summarized as follows:

• Definition of nuclear parameters and the angular structure (and extent) of the CSF basis {ψα(P JM)} that is to be used in ansatz (7);
• Algebraic evaluation and computations of the spin-angular integrals (so-called angular coefficients) based on standard techniques from

Racah’s algebra;
• Initial estimates of all radial orbital functions and self-consistent field (SCF) calculations, based on the Dirac–Coulomb Hamiltonian;
• Configuration interaction (CI) calculations in order to incorporate further relativistic contributions into the Hamiltonian matrix and/or

to enlarge the CSF basis beyond the given SCF model.

Often, these four steps are repeated at several stages by systematically enlarging the one-electron (active) orbital space.
While not much need to be said here about the explicit representation of the atomic and configuration states within the Grasp

environment (see Ref. [2] for details), it is worth to consider in more detail the Hamiltonian matrix (elements) as perhaps the most
frequently occurring interaction “amplitudes” within the Ratip program. For a given CSF basis, the representation of an atomic state in
ansatz (7), i.e. the mixing coefficients c(α) ≡ (c1(α), c2(α), . . . , cnc (α)), is obtained by solving the secular equation

det
(

H− E
(nc)
α I

)

= 0, (8)

where E
(nc)
α (P J ) denotes the eigenvalue and

H = (Hrs) =
(

〈γr P JM|H|γs P̄ J̄ M̄〉δP P̄ δ J J̄ δMM̄

)

(9)

the Hamiltonian matrix which is blockdiagonal in the total parity and angular momentum of the atom, independent of the particular
choice of the electron–electron interaction in the Hamiltonian. Moreover, since the Hamiltonian matrix is real and symmetric, all atomic
states are orthogonal for Eα �= Eβ or can be chosen in this way for Eα = Eβ . In practice, the decomposition of the many-electron matrix
elements Hrs in expression (9) in central to every implementation of the MCDF method. By performing the integration over the spin-
angular variables of all N electrons algebraically, it was shown that the matrix elements can always be written in the form [8]

Hrs =
∑

ab

urs(ab)〈a‖hD‖b〉 +
∑

L

∑

abcd

v L;rs(abcd)XL(abcd). (10)

In this expansion, urs(ab) and v L;rs(abcd) are one- and two-particle (scalar) angular coefficients, while the XL(abcd) describe the effective
interaction strengths of (formally) the four electrons a,b, c,d involved in the interaction. As usual, we here abbreviate the one-particle
quantum numbers a = (na,κa),b = (nb,κb), . . . to have a compact notation for the subshells of equivalent electrons. The reduced matrix
element in the first term of Eq. (10),

〈a‖hD‖b〉 = δκaκb

∞
∫

0

dr

[

cQ a

(

d

dr
+

κa

r

)

Pb + cPa

(

−
d

dr
+

κa

r

)

Q b − 2c2Q aQ b + Vnuc(r)(PaPb + Q aQ b)

]

, (11)

contains the kinetic and potential energy of an electron in subshell a, and can be expressed in terms of the large and small (radial) compo-
nents, Pa(r) and Q a(r), of the corresponding one-electron orbital functions. These reduced matrix elements can be considered also as the
one-particle analogue to the effective interaction strength XL(abcd) which will be further discussed in the following subsection. A similar
decomposition of the many-electron matrix elements (amplitudes) as in Eq. (10) into a sum of angular coefficient × interaction strength

can be made for every physically relevant (interaction) amplitude, independent of the particular rank of the corresponding interaction
operator. Since most atomic processes can be traced back to just a (very) few of such interaction or transition amplitudes, we made use
of them as the building blocks in the design and implementation of the Ratip program.

Of course, the generalized angular coefficients in the decomposition of the many-electron amplitudes depend on the rank and parity
of the requested interaction operator, and special programs exist within the Grasp environment to calculate these coefficients [20,21].
Typically, moreover, the (multiple) summation over all possible subshells a,b, . . . and (intermediate) ranks L in Eq. (10) is replaced by a
single index [cf. Eqs. (15) and (16)] which runs through all non-vanishing coefficients of the corresponding type. We also note that the
ranks L of the interaction strengths XL(abcd) that appears in Eq. (10) depend on the particular choice of the electron–electron interaction.

2.3. The concept of interaction and transition amplitudes

The (scalar) Hamiltonian matrix element (10) describes the interaction energy between the two CSF |γr P JM〉 and |γs P̄ J̄ M̄〉, and these
matrix elements can be readily utilized to describe the total (configuration) interaction of two given atomic states

〈ψα |H|ψβ〉 =
∑

rs

c∗
r (α)Hrscs(β). (12)

In particular, 〈ψα |H|ψα〉 = Eα is the total energy of level α. Using time-dependent perturbation theory and Fermi’s Golden rule [2],
moreover, most atomic properties can be written rather similarly in terms of (so-called) many-electron interaction amplitudes
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〈ψα|T |ψβ〉 =
∑

rs

c∗
r (α)Trscs(β), (13)

and where T is then called the transition (or interaction) operator. Furthermore, most of these transition operators can be expressed in
terms of spherical tensor operators of rank K (and magnetic projection Q ) which transform under rotations like the spherical harmonics
Y K Q (θ,φ): T =

∑

K Q a(K , Q )T K Q . Instead of the complete matrix elements, that include the magnetic projection M of the given atomic
or configuration states and tensor operators, one makes often use of the reduced matrix elements

T K Q ;rs ≡ 〈γr Pr JrMr |T K Q |γs P s J sMs〉 = 〈 JrMr, K Q | J sMs〉〈γr Pr Jr‖T K ‖γs P s J s〉 (14)

by applying the Wigner–Eckart theorem [22]. Although these reduced transition amplitudes occur quite frequently in the literature in
order to discuss and analyze atomic processes, not many codes exploit these amplitudes as the natural building blocks for describing the
level structure and properties of (open-shell) atoms and ions. More often than not, instead, a decomposition of these transition amplitudes
into various types of one- and two-particle (reduced) matrix elements or even radial integrals is made well before any implementation
or coding is considered. Indeed, the different techniques that are used in the decomposition of the many-electron amplitudes and the
large number of definitions (and notations) of angular- or radial-type integrals in the literature has hampered not only the comparison
of different codes during the last decades but made it difficult also to (re-)use these entities for calculating other properties than of
what the program developers considered originally. In the Ratip program, in contrast, we make (quite) consequent use of the many-
electron amplitudes 〈ψα |T K Q |ψβ〉 and 〈ψα‖T K ‖ψβ 〉 as the central building blocks in describing the interaction among the electrons as
well as with external particles and fields. This concept has helped simplify and maintain the code. Moreover, it (will) enables us to exploit
the many-electron interaction and transition amplitudes in second- and higher-order processes, once an appropriate (intermediate) basis
{ψν(P JM), ν = 1, . . . ,nν} has be constructed for some given process.

The reduced matrix elements of spherical tensor operators take the form

〈γr Pr Jr‖T K ‖γs P s J s〉 =
∑

t

u(atbt; K )X(atbt; K ) (15)

for one-particle operators T K =
∑

i uK (i) and

〈γr Pr Jr‖T K ‖γs P s J s〉 =
∑

t

v Lt (atbtctdt; K )XLt (atbtctdt; K ) (16)

for (symmetric) two-particle operators T K =
∑

i< j vK (i, j), and where X(atbt; K ) and XLt (atbtctdt; K ) refer again to the corresponding
one- and two-particle (effective) interaction strengths, respectively. Of course, these interaction strengths are specific to the particular
transition operator under consideration, and care has to be taken that the same phase convention applies if different interaction amplitudes
are to be combined with each other.

In practice, there are two steps in the computation of the transition amplitudes (15) and (16) that are performed separately: The
(pure) angular coefficients are usually calculated by means of the Anco component for either a pair or a whole set of CSF [21], and all the
non-vanishing coefficients are then returned in a derived list structure to the calling procedure. For these coefficients, the associated one-
or two-particle interaction strengths are evaluated and summed up to form the requested matrix element Trs of the transition matrix. To
decrease the computational effort, these (one- and two-particle) interaction strengths are also stored and re-utilized in a few components;
cf. Section 3.3 below.

To make further use of the many-electron (transition) amplitudes (15) and (16), most components of the Ratip program now provide
a so-called transition amplitude (.trn) file. Apart from the amplitudes of interest, these files contain all quantum numbers that are
required for their unique specification and can thus be utilized to exchange the physically relevant data between different program
components. In the future, moreover, we expect to see applications of the Ratip program where one starts directly from the transition
amplitudes files (calculated for either one or several elementary processes and interaction operators) and combines these amplitudes in
order to generate data for more elaborate processes. A few first steps into this direction have been performed during the last years by
studying the coherence transfer through the two-step Auger cascades of the noble gases after inner-shell excitation [23] or the dielectronic
recombination of multiple and highly charged ions [24,25]. Moreover, these many-electron amplitudes are often also the natural starting
point if atomic structure calculations are to be combined with either the — time-independent or time-dependent — density matrix theory
[3,4].

In the Ratip program, there are three (elementary) types of interaction amplitudes that are central to the code:

2.3.1. Electron–electron interaction

The interaction among the electrons is described by the scalar operator [Eq. (3)]

V = V Coulomb + V Breit =
∑

i< j

(

1

ri j
+ bi j

)

(17)

as it occurs in the Dirac–Coulomb–Breit Hamiltonian (6). This operator gives rise to the (reduced) interaction amplitudes

〈γr Pr Jr‖V ‖γs P s J s〉 = 〈γr Pr Jr‖V Coulomb‖γs P s J s〉 + 〈γr Pr Jr‖V Breit‖γs P s J s〉, (18)

and, since for scalar operators (K = Q = 0), the Clebsch–Gordan coefficient in Eq. (14) evaluates to 〈 JrMr,00| J sMs〉 = δ Jr J sδMrMs , the full
and reduced matrix elements coincide in this case with each other and need(ed) not to be distinguished in Section 2.2. The electron–
electron interaction amplitudes (18) are utilized (and calculated) in various components of the Ratip program, including the Auger, Dierec,
and Relci components, and at several places elsewhere. For a given set of initial and final (hole) states, such nondiagonal amplitudes are
written for instance to the auger.trn transition amplitude file as we shall discuss in Section 3.3.1 below.
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Since the Coulomb and Breit interaction operators are both scalar operators and contribute additively to the total electron–electron
interaction, the same (pure) angular coefficients v Lt (atbtctdt; K = 0) occur in Eq. (16) in the evaluation of the amplitudes (18), although
different angular and parity selection rules apply for the various interaction strengths. In the computation of these amplitudes, therefore,
the Breit interaction can be added rather easily to the instantaneous Coulomb repulsion [cf. Eq. (10)]

XL(abcd) = XCoulomb
L (abcd) + XBreit

L (abcd) (19)

if this is appropriate for a given process. Instead of the Breit interaction, sometimes only the first terms from the low-frequency Breit
operator is taken into account

bG12 = −
α1 · α2

2r12
, (20)

that describes the current–current interaction of the moving electrons and which is known as Gaunt interaction in the literature. For
closed-shell atoms, the Gaunt interaction yields about 90% of the total (relativistic) energy shifts to the atomic levels [26], and gives rise
to the corresponding effective interaction strength XGaunt

L (abcd).
Here, we shall not discuss how these effective interaction strength can be calculated in detail for the various interaction operators, and

by making use of the one-electron orbital functions a,b, c and d. For the Coulomb interaction, for example, the effective strength is given
by [2]

XCoulomb
L (abcd) = δ( ja, jc, L)δ( jb, jd, L)Π

e(κa,κc, L)Π
e(κb,κd, L)(−1)L〈κa‖CL‖κc〉〈κb‖CL‖κd〉R L(abcd) (21)

where R L(abcd) denotes the relativistic Slater integral,

Πe(κa,κb, L) =
{

1 if la + lb + L even,

0 otherwise
(22)

reflects the (even-parity) selection rule for the Coulomb interaction, and where the “triangular delta” δ( ja, jb, jc) ensures the proper
coupling of the one-electron angular momenta; this delta symbol is δ( ja, jb, jc) = 1 if ja, jb and jc satisfy the triangular condition,
and is zero otherwise. Similar, although more elaborate, expressions also arise for the Breit and Gaunt interactions (4) and (20) in the
decomposition of the total electron–electron interaction [2].

2.3.2. Electron–photon interaction

The (relativistic) interaction of an electron with the radiation field has been frequently discussed in the literature and is described by
the one-particle operator

Rλ(k) =
∑

i

αi ·Aλ,i(k) =
∑

i

αi · uλ,ie
ik·ri . (23)

where αi = (αi,x,αi,y,αi,z) denotes the vector of the Dirac matrices and Aλ,i(k) the vector potential of the radiation field (with polariza-
tion λ) as seen by the i-th electron. In this notation, λ denotes the helicity of the photons which are said to be right-circularly polarized
for λ = +1 and left-circularly polarized for λ = −1, respectively. The further decomposition of the operator Rλ(k) into spherical tensor
operators, i.e. the well-known electric and magnetic multipole fields, depend however on the particular choice of the quantization axis. In
the helicity representation of the photon (ez‖k), the vector potential is given by [22]

Aλ(ez‖k) =
√
2π

∑

L

iL[L]1/2
(

A
magnetic
Lλ + iλAelectric

Lλ

)

=
√
2π

∑

L

∑

π=0,1

iL[L]1/2(iλ)πAπ
Lλ (24)

where, in the second line, π = 0 refers to the magnetic and π = 1 to the electric multipoles.
For photoionization or radiative capture processes of electrons, in contrast, it is often more convenient to choose the electron momen-

tum as quantization axis and, thus, to rotate the vector potential (24) in space so that its z-axis coincides with the electron momentum.
This requires then to include the Wigner rotation matrices of rank L, D L

Mλ(k → ez), which has to be applied independently to each irre-
ducible tensor component of the field, but has the advantage that the spin-angular integration can be carry out analytically by using the
techniques from Racah’s algebra [27].

In the Ratip program, we evaluate the radiative bound–bound transition amplitudes

〈

ψα(P J )
∥

∥Hγ (π L)
∥

∥ψβ( P̄ J̄ )
〉

=
〈

ψα(P J )

∥

∥

∥

∥

∑

i

αi · Aπ
L,i(k)

∥

∥

∥

∥

ψβ( P̄ J̄ )

〉

(25)

and the bound–free amplitudes

〈

ψα( P̃ J̃ ,ǫl j; P J )
∥

∥Hγ (π L)
∥

∥ψβ( P̄ J̄ )
〉

= i−le−i�κ

〈

ψα( P̃ J̃ ,ǫl j; P J )

∥

∥

∥

∥

∑

i

αi · Aπ
L,i(k)

∥

∥

∥

∥

ψβ( P̄ J̄ )

〉

(26)

for the multipole fields (π L), and together with the proper phase for the free (outgoing or incoming) electron if we shall consider the
ionization or capture of an electron (ǫl j) due to its interaction with the radiation field. The phase �κ hereby includes both, the Coulomb
phase as well as the phase shift due to the non-Coulombic part of the corresponding bound-state potential in which the continuum orbitals
are generated. In practice, however, only phase differences are important in all computations. The reduced matrix elements (25) and (26)
are taken again as building blocks in order to represent and to discuss a large number of atomic properties. An efficient evaluation and
access to these matrix elements has been found crucial for studying different properties of few- and many-electron ions. Note that by
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using the reduced form of the transition matrix, the building blocks (26) are independent of the particular choice of the quantization
axis, i.e. the rotation matrices D L

Mλ reside within the expressions of the transition matrix or statistical tensors and can be computed
independently [28,29].

Apart from the boundary conditions, which are specific to the photoionization or radiative recombination of electrons, not much need
to be said here about the further evaluation of these reduced matrix elements. They can be decomposed like the matrix elements (15) into
(a sum of) products of angular coefficient × interaction strength, where the (pure) angular coefficients u(atbt; L) are obtained internally from
some adapted version of the Mct component of Grasp92 [6] and the reduced one-particle interaction strength X(atbt; L) were described
in Ref. [8].

2.3.3. Electron–nucleus (hyperfine) interaction

Beside of the attractive (electric) field of the nucleus with charge Ze, each atomic electron also interacts with the electric and magnetic
(multipole) fields of the nucleus if it has spin I > 0. This interaction is better known as “hyperfine interaction” in atomic physics whose
two dominant contributions arise from the nuclear magnetic-dipole field A = µ×r

r3
and the electric-quadrupole field Φ(r) =

∑

i j

rir j

2r5
Q i j ,

respectively. In these expressions, µ is the nuclear magnetic moment operator and Q i j are the Cartesian components of the nuclear
quadrupole operator. Higher magnetic and electric multipole fields may generally occur for nuclei with spin I > 1 but are typically
negligible in their contribution to the hyperfine splitting of atomic levels [30].

For many-electron systems, the relativistic hyperfine interaction Hamiltonian can be written as

Hhfs =
∑

K

M
(n)
K · T (e)

K (27)

where M
(n)
K and T

(e)
K represent the spherical tensor operators of rank K from the nucleonic and electronic sector, respectively. For the

combined system “electron + nucleus”, then, the hyperfine states can be formed as linear combination

ψ̃α(I, P ; FM F ) =
∑

r=1

c̃r(α)|I, βr P Jr; FM F 〉 (28)

of hyperfine (basis) states of the same total angular momentum F (as well as the same electronic parity P ) and where {c̃r(α)} denotes
the representation of these states in the hyperfine-coupled basis [31]

|I, β P J ; FM F 〉 =
∑

M I ,M J

|IM I 〉
∣

∣ψα(P JM J )
〉

〈IM I JM J |FM F 〉. (29)

As for the atomic state functions (7), the representation {c̃r(α)} of an atomic hyperfine state (28) is obtained by diagonalizing the Hamil-
tonian H = HDF(B) + Hhfs of the combined system “electrons + nucleus”. For this hyperfine part of this Hamiltonian, the matrix elements
can be written after some standard angular momentum algebra as

〈I, β P J ; F |Hhfs|I, β̄ P̄ J̄ , F̄ 〉 = δP P ′δF F ′(−1)I+ J+F
∑

K

{

I J F

J̄ I K

}

〈

ψβ(P J )
∥

∥T
(e)
K

∥

∥ψβ̄( P̄ J̄ )
〉〈

I
∥

∥M
(n)
K

∥

∥I
〉

, (30)

and if nuclear excitations are ignored right from the beginning.
While the reduced nuclear matrix elements are determined geometrically by

〈

I
∥

∥M
(n)
1

∥

∥I
〉

= µ

√

(I + 1)(2I + 1)

I
, (31)

〈

I
∥

∥M
(n)
2

∥

∥I
〉

=
Q

2

√

(I + 1)(2I + 1)(2I + 3)

I(2I − 1)
, (32)

the corresponding electronic amplitudes require detailed atomic structure calculation. For an N-electron atom or ion, the electronic tensor
operators are given by [32]

T
(e)
1 =

N
∑

j

−iα
(α j · l j)C1( j)

r2
j

(33)

for the interaction with the magnetic-dipole field of the nucleus and

T
(e)
2 =

N
∑

j

−
C2( j)

r3
j

, (34)

for the electric-quadrupole field, and where α is the fine-structure constant, αi the vector of Dirac matrices as well as the CK are
(normalized) spherical tensors as before.

In the Ratip program, we compute the matrix elements (30) for both the magnetic-dipole and the electric-quadrupole operators in the
electron–nucleus interaction. These matrix elements are often referred to as hyperfine amplitudes and are provided in the .trn transition
amplitude file of the Hfs component. Although this component is not (yet) distributed with the present version of the Ratip program,
these amplitudes are utilized, for example, to set-up and diagonalize the Hamiltonian matrix for H = HDC(B) + Hhfs in order to determine
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the representation {c̃r(α)} of the hyperfine states (28) in the hyperfine-coupled basis (29). They are also applied to compute hyperfine-
quenched transition amplitudes and lifetimes [31], and are presently employed to better understand hyperfine-induced processes in highly-
charged ions. For the computation of A and B hyperfine parameters for individual levels or radiative transitions, in contrast, the Hfs92

component [32] of Grasp92 is more suitable for systematically enlarged wave functions and became now part also of the Grasp2K code
[10]. Moreover, a hyperfine-coupled basis is applied also in the HfsZeeman program [33] and can there be utilized for studying atomic
transitions in an external magnetic field [34].

3. Structure of the program

3.1. Overview to the Ratip program

The Ratip program has been developed during the past 15 years in order to support the computation of different atomic properties
for atoms and ions, and (almost) independent of their particular shell structure. Based on the Dirac–Coulomb(–Breit) Hamiltonian and
the MCDF method [8], as briefly outlined above, the program help incorporate into the computations the dominant electron–electron
correlation and relativistic effects on quite equal footings. Therefore, the Ratip program has been found applicable to almost all elements
from the periodic table as well as to multiply and highly charged ions. Fig. 1 displays the overall structure of the code and those atomic
processes (properties) which are presently supported by the program. Although Ratip is tightly bound to the Grasp92 program [6], owing
to its use of the bound orbitals and the representation of atomic bound states from this code, it has been developed and maintained
independently by making use of a clear interface between these two codes as I shall explain below. This interface makes it possible also to
apply rather easily (if necessary) the bound-state wave functions from other versions of the Grasp code, although this feature is presently
not supported.

Like the Grasp92 program and as seen from Fig. 1, Ratip consists of a suite of individual programs which need to be compiled
and called separately. Each of these components serve for one or a few well-defined tasks in the calculation of atomic amplitudes and
properties. Among the main components, for example, Relci [35] supports the set-up and diagonalization of large Hamiltonian matrices,
Reos [36] the calculation of transition probabilities, Einstein coefficients and (radiative) lifetimes, Photo the evaluation of photoionization
cross sections and amplitudes, or Auger the computation of various autoionization properties, just to mention a few. Apart from these
main components (with a solid frame in Fig. 1), there are several auxiliary components (with dashed frames), such as Anco [21], Cowf

or Rcfp [37] which can be invoked separately but mainly act as backbone in order to facilitate more complex computations. Moreover,
a Toolbox to the Ratip program now supports a number of (more or less) small but frequently occurring tasks in manipulating or
printing out some intermediate data in course of the computations. All main components, that are distributed by the present version of
the program, will be explained and summarized below in Section 3.3. Other components, such as Coulex for the calculation of Coulomb
excitation rates and the alignment of ions, Dierec for dielectronic recombination rates and resonance strengths, or Schiff for the evaluation
of parity- and time-reversal violating interaction amplitudes and parameters, have been developed only recently and are not (yet) well
enough tested for distribution. These components are shown with a dashed–dotted frame in Fig. 1 and will be made available only in
some later version of the Ratip program.

While there exist already a long write-up for a few components within the Computer Physics Communication library [35–37], various
changes have been made to this code over the years to correct for bugs and to keep it overall consistent. Similar as in the Grasp

environment, the data exchange between the components is realized by a number of — input and output — files for which a short
description of their the purpose and name convention is given below in Section 3.2. For a program of Ratip’s size, however, it is obvious
that not all (technical) details can be discussed in this write-up and that not always the same standard in the design of the program can
be ensured for all components simultaneously. At present, the whole Ratip program is based on about 60 modules which contain the
source code and which comprise in total about 800 (sub-)procedures and 110,000 lines of code from which approximately 60% is made
public here to the user. In the next section, we shall first outline some of the general guidelines in designing and implementing the code
which I have tried to follow over the years.

3.2. Guidelines for the design and implementation of the code

Since the mid 1990s, the Ratip program [5,38] has been designed as an open environment for analyzing atomic structures and proper-
ties. From the early days on, our intention was that new components and features can be added to the program rather easily and without
the need for large changes to the existing code. Moreover, in order to make use of modern design principles, Ratip has been implemented
within the framework of Fortran 90/95 and its descendants. Indeed, the use of Fortran 90/95 helped adapt the code to different compilers
and platforms, although not much effort was spent in the past to port Ratip to other environments than those which became locally
available (and necessary) over the years. By taking advantage of the Fortran 90/95 language standard, modern concepts were applied, such
as modules, derived data types, data hiding, dynamic allocation and deallocation of memory, the specification of the numerical precision
by proper kind parameters as well as several others. Below, I shall explain several of these design principles in more detail and especially
in view of the Ratip program. Today, one of our major concerns is the life-cycle of the code as well as improvements on the object-oriented

design in order to make Ratip ready also for future applications.
A key principle for the implementation of the Ratip program has been the explicit use of many-electron transition amplitudes, wherever

this appears reasonable. In several applications, the consequent use of these amplitudes helped implement new and efficient concepts
into atomic structure theory. For example, these amplitudes are now exploited for studying the angular and polarization dependence of
photon and/or electron emission processes, if combined with atomic density matrix theory (see [29] for references). A simple access to
the many-electron amplitudes within either the time-independent or time-dependent density matrix theory might bring Ratip also to the
frontier with regard to (photon-induced) short-pulse excitation, ionization and decay processes in many-electron atoms and ions.

3.2.1. Making use of the Fortran 90/95 standard

If compared with previous standards, Fortran 90/95 can be considered as rather a new language that has benefited from Fortran’s
long tradition and from the recent experience in designing programming languages [39]. Two important features of Fortran 90/95 (among
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Fig. 1. Main structure of the Ratip program which is divided into individual program components. Apart from those components that are described below (solid frame),
we also distribute some auxiliary components (dashed frame) in the present version that facilitate the evaluation of transition and interaction amplitudes. Several other
components (dashed–dotted frame) are still under development or require further tests before they are considered for publication.

many others) have made this persistent language up-to-date with more recent language alternatives and concepts. They refer to the use
of modules for generating protected and re-usable code and to derived data types that enables one to define flexible and well-adapted data
structures for the research topic of interest. In the design of Ratip, we made elaborate use of these two and other features of Fortran
90/95 to move towards are more object-oriented access of the central entities in atomic structure theory.

Use of modules: This enables the user to include functionality from previous developments into new parts of the code without that the
name space and the argument lists (of all subsequent calls) need to be understood in full detail. Modules also provide a simple structure
for comprising and distributing code since they empower one to keep together the definition of closely related (global) variables and data,
derived types as well as operations associated to these data structures. Within the Ratip program, modules are used in particular in two
ways: (i) in order to establish and maintain a pool of subprocedures which deal with a number of frequently occurring tasks (and which
form the backbone for all or, at least, many components), and (ii) to comprise all functionality that is specific for some given component.
The use of a common backbone of code ensures a consistent treatment of data structures and elementary computational tasks within the
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different program components; it also facilitates the combination of data in order to derive new data types. Here, we do not intent to
list and explain all modules of the Ratip code separately but restrict ourselves to a few important ones. The following seven modules are
central to almost all program components.

rabs_constant: contains the parametrization of all elementary data types by choosing proper kind parameters as well as the def-
inition of a few important and sufficiently general data types. This module is therefore used by all other modules. The kind
parameter dp for the parametrization of real variables in these data types is typically set to double precision on a standard 32-bit
architecture in the module rabs_constant but can easily be re-defined to single precision for 64-bit processors.

rabs_csl: defines all major data types to deal with single CSF, sets of CSF and their use for representing atomic state functions (ASF).
It contains also procedures to read in, copy or print out a configuration basis as a whole and to construct new basis sets.

rabs_dirac_orbital: contains variables and procedures that are related to the relativistic Dirac orbitals and their use in dealing with
one-particle symmetry blocks.

rabs_function_math: comprises all procedures for the evaluation of elementary math functions and polynomials, such as the Bessel,
(incomplete) Beta and Gamma functions or the Legendre polynomials as well as many others. It also contains functions for the
transformation of coordinates, etc.

rabs_function_string: contains procedures for string manipulations together with the necessary data; string manipulation is uti-
lized rather extensively in the code to support, for example, a simple input and output of angular momenta, multipoles, or
sequences of level numbers during the execution of the program.

rabs_grasp92: contains several procedures from Grasp92 [6] that have been adapted or re-written to the internal use of the data
structures and definitions. In Grasp92, these procedures were originally often part of the lib92 library.

rabs_nucleus: stores all information about the nucleus and nuclear potential, and how this can be accesses during the computations.

Inside of each module, we defined a common style for the layout of the code: Following a short summary of the module and the list
of use statements at the very beginning, the specification part of the module briefly describes all (module) procedures in alphabetic order.
It also defines the data structure and logical flags that are specific to the module. Further details about the individual procedures can be
found in the contains part in the header of each subprocedure; in this part, again, all functions and subroutines always occur in alphabetic
order. In order to easily recognize the module in which a particular procedure is defined, the names of many module procedures begin
with a string that just refers to the particular module; for example, the name of (almost) all procedures in rabs_auger also start with
the prefix auger_..., and a similar convention is followed in many of the other components.

Dynamic storage allocation & use of pointers: While pointers and some dynamical allocation are used already in Grasp92 (as well as
a number of previous Fortran dialects), the dynamic allocation of storage and arrays is now supported much more consistently in For-
tran 90/95. This feature, combined with a careful use of derived data types, helps us to write code that is independent of the shell
structure and size of the problem, i.e. independent of the number of atomic or configuration state functions, the parameters and size
of the radial grid, or the number of transitions for some process under consideration. Almost all arrays are now allocated dynamically
during run time and, hence, there are virtually no other limitations on the size or dimensions of the problem than given by the resources
themselves.

Use of derived data types: This feature is essential for any object-oriented approach in the design and implementation of computer codes,
and its importance cannot be overrated. A careful definition of such derived data types often decides how easily one can read and
modify the code and, therefore, how modestly it can be adopted to some different task. While derived data types can be declared like
structured variables on their own, they can be combined also to define derived types at some higher level of complexity. The definition
and specification of properly derived types therefore affects the life-cycle of the program as a whole.

In Ratip, derived data types are utilized at three different levels (though there is some overlap between these levels):

(a) Basic data structures: are utilized to refer to basic notations from (relativistic) atomic structure theory. Examples are type(nkappa)
and type(nkappam) to simply define the “tupels” of quantum numbers (n,κ) and (n,κ,m j) for atomic orbitals, or type(orbital
_function) to comprise all information about the quantum numbers and the large and small (radial) components of an one-electron
orbital function.

(b) Basis functions and basis sets: Derived data types are employed here to keep all information together about the (symmetry-adapted)
many-electron basis functions as well as about some finite set of such basis functions, either in symmetry-adapted form (CSF basis)
or as set of determinants (determinant basis). Any of these basis sets can be combined also with the representation of one or several
atomic states to form a (so-called) ASF basis. For example, a single CSF is internally defined as:

type, public :: cs_function
integer(kind=i1b) :: totalJ
character(len=1) :: parity
integer(kind=i1b), dimension(:), pointer :: occupation
integer(kind=i1b), dimension(:), pointer :: seniority
integer(kind=i1b), dimension(:), pointer :: subshellJ
integer(kind=i1b), dimension(:), pointer :: subshellX

end type cs_function

where the total angular momentum and parity is given by totalJ and parity, respectively, but where all further quantum numbers
with regard to the occupation and coupling of the subshells are described by pointer arrays. The dimension of these arrays is specified
only during execution due to the given shell structure of the atom or ion. A finite number (nocsf) of CSF are then combined into a
CSF basis by:
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type, public :: csf_basis
integer :: nocsf ! Number of CSF in the basis.
integer :: nwshells ! Number of (relativistic) subshells.
integer :: nwcore ! Number of (closed) core subshells.
integer :: number_of_electrons
type(nkappa), dimension(:), pointer :: subshell
type(cs_function), dimension(:), pointer :: csf

end type csf_basis

which includes the number and specification (as well as the order) of the subshells and the number of electrons to which this basis

applies. This derived type structure together with the definition of a single ASF in the structure type(as_function), in turn, is

utilized to define an ASF basis by:

type, public :: asf_basis
integer :: noasf ! Number of considered ASF.
real(kind=dp) :: average_energy ! Averaged energy of this set of ASF.
type(as_function), dimension(:), pointer :: asf
type(csf_basis) :: csf_set

end type asf_basis

Apart from the radial orbital functions, such an ASF basis contains all information as obtained from a standard Grasp92 run. Moreover,

by using the specification

type(asf_basis) :: bound

and a proper (prior) allocation of storage for all the pointer arrays in these structures, the number of CSF or the orbital quantum

numbers (n1,κ1) of the first subshell is accessed simply by typing bound%csf_set%nocsf, bound%csf_set%subshell(1)%n

and bound%csf_set%subshell(1)%kappa, respectively. Similar type definitions are made to define a determinant basis or the

representation of a (hyperfine structure) |I J F 〉-coupled atomic basis (29).

(c) Derived types specific to some application: are defined, in addition, in most program components. These type definitions help to

deal more efficiently with the data that are given to or generated by the module procedures of the component. In the module

rabs_photo, for example, the following derived type definitions are made:

type :: photo_channel
integer :: kappa, totalJ
character(len=1) :: parity
character(len=2) :: multipole
character(len=9) :: gauge
real(kind=dp) :: phase, amplitude_re
complex(kind=dp) :: amplitude

end type photo_channel
!
type :: photo_line

integer :: asfi, asff, level_i, level_f, totalJ_i, totalJ_f
integer :: No_channels
character(len=1) :: parity_i, parity_f
real(kind=dp) :: p_energy, e_energy, cs_coulomb, cs_babushkin
complex(kind=dp) :: beta_b, beta_c, xi_b, xi_c, eta_b, eta_c, &

zeta_b, zeta_c, alignment_b, alignment_c
real(kind=dp), dimension(:), pointer :: bessel0, bessel1, bessel2, &

bessel3, bessel4, bessel5
type(photo_channel), dimension(:), pointer :: channel

end type photo_line

to comprise all information about a particular line. Apart from the level numbers and the total angular momenta and parities of the

initial and final states, this derived data structure enables one to specify a number of photoionization channels during the execution of

the program, and which are characterized by the overall symmetry of the scattering state “photoion + electron” as well as the gauge

and multipolarity due to the coupling of the radiation field. We will not explain here all the details for this derived data structure

above but display these examples in order to provide the user with some basic flavor of how the Ratip code is organized internally.

While the data structure of these derived types is completely specified, storage is allocated to it only according to the (interactively)

selected numbers of photo lines, multipoles and gauge forms. Some of the information in these derived type definitions, such as the

total angular momenta and parities of the atomic levels, is redundant in some cases (in the sense that the same data are usually

stored also elsewhere in the program) but it simplifies the internal use of the underlying data if the relevant data are kept within the

same derived type. Together with the specification

type(photo_line), dimension(:), pointer :: line
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Table 1

Common file extensions used by the Ratip program. Apart from a short description of the file content, we here list the program components of the distributed version in
which they are generated or utilized.

Extension Content of file Components

.csl, .inp Configuration symmetry list file as usually generated by Grasp92; however, the Toolbox

of the Ratip program also provides various features for merging and manipulating such
CSF lists.

All main components & Toolbox.

.iso Isodata file for information about the nuclear parameters and potential. Almost all main components & Toolbox.

.mix Mixing coefficient file that provides the representation of one or several atomic states; it
has the same structure as in Grasp92 but is usually handled within Ratip in a formatted

(Ascii) file format.

Auger, Cesd, Einstein, Photo, Rec, Relci,
Reos, Toolbox.

.rwf Radial wave function file as usually generated by Grasp92; both, a unformatted and
formatted version of this file are supported (automatically) by Ratip.

All main components & Toolbox.

.sum Summary file that comprises the main results of the computations; it usually contains a
copy of the interactive input, a short summary about the atomic levels involved as well
as all (main) results and tabulations of the corresponding component.

Almost all components apart from
Toolbox.

.trn Transition amplitude file that provides all transition amplitudes for later use. Auger, Einstein, Photo, Rec, Reos.

.xpn The Cesd expansion file provides a complete expansion of one or several selected ASF in
a determinant basis.

Cesd, Reos.

an argument line(k) to some module procedure of rabs_photo then enables one to access (and to keep) all necessary infor-
mation about the k-th photo transition that is considered within the current run of the Photo component. Similarly complex type
definitions occur also in other components of the Ratip program.

It is obvious from this brief discussion that a proper “set” of derived data types facilitates the (data) exchange between the different
program components of Ratip. A consistent application of this and similar derived types has been found one of the cornerstone that
helped prepare Ratip for forthcoming years and applications.

Logical flags: have been found useful to increase the readability and maintenance of the program. Such flags are defined in many modules
of the Ratip code to make default or user-defined (boolean) variables available to the procedures of a given module or to all other modules
which use it; these flags can often be modified interactively during input. We make usually use of rather long and self-explaining names
to increase the readability of the code so that further explanations are not needed. For example, a branch of the code

if (logical_flag) then
...

end if

is executed only if the current value of this flag is .true. and is not entered otherwise (i.e. for logical_flag = .false.). Examples
for such logical flags are hamiltonian_XL_coulomb hamiltonian_XL_gaunt, hamiltonian_XL_breit0, . . . to specify the
interactions that are to be included into the computation of the Hamiltonian matrix (in the Relci component). A careful use of these and
further logical flags makes the source code more easily understandable and also helps in testing the program.

Internal termination points within the code: Despite of a careful handling of the input data, there (may) arise situations in which the
code is executed with data for which it was not developed originally. This problem occurs indeed rather frequently if a procedure was
written for a certain range of parameters but is later utilized by other components for which similar restrictions on the parameters do
not apply. Since an detailed analysis of all input data in each individual procedure is quite cumbersome to code and maintain in the long
term, we perform internally instead in the Ratip program only some “consistency checks” during the execution of a subprocedure in order
to test for the (received) value of some input parameter or variable. These tests are usually made by means of an if-else-end if structures
and are combined with a

stop "procedure_name(): program stop A."

statement to terminate the program, if a “mismatch” between the expected and obtained (range of) values is found. Such a simple stop
statement provides the user with the name of the procedure and the exact location of this stop (numbered by A, B, ...) but leaves
it otherwise to the developer (user) to handle this situation properly. We have found these internal termination points very helpful to
recognize possible bugs already quite early during execution, often long before they cause some futile results or subsequent “hard failures”
of the code.

3.2.2. Interface and output files

Each component of the Ratip program has to be invoked separately to perform one or several selected computations; it requires some
specific input and usually provides output to the default list (usually the screen), a summary file (.sum) as well as, if appropriate, to
further output files of the program component.

Before calling the main components of the Ratip program, it is supposed usually that all required bound-state wave functions were
generated by means of Grasp92 [6]. For a given set of atomic levels (ASF), whose representation was generated in a single run of Grasp92,
these bound-state wave functions are provided in terms of a configuration symmetry list file (.csl), a radial wave function file (.rwf)
as well as a mixing coefficient file (.mix); cf. Table 1. Further information about the nuclear potential is taken from the isotope data
file (.iso). These four files from Grasp92 contain all information about a desired set of (commonly optimized) atomic states. In many
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components of Ratip, however, several sets of such wave function files (but typically with just one .iso file) are required to define the
initial and final bound states of some particular process and, in a few but not yet distributed components, even some set(s) of intermediate
states become necessary. These (files of) bound-state wave functions may refer also to a different number of electrons in the initial and
final states as it is characteristic for the considered process.

Since Ratip was developed to support quite different applications, it is not surprising perhaps that different file formats are needed
to communicate and handle the data. Here, we shall not explain these file formats in all detail; some further information about these
files will be provided in Section 3.4 together with the short description of the individual program components. For a short overview
about the interface files of the Ratip program, however, Table 1 lists the file (name) extensions, although a common extension does not
imply automatically that all the corresponding files will have exactly the same format. For example, the transition amplitude (.trn) and
summary files (.sum) usually depend on the atomic process and properties to be considered. Here, the same file extension only shows
that they have a similar structure, and most of them are now handled in Ascii format to facilitate the use, file transfer and further
developments on the code.

The results and some additional information about the current computations are written to the standard output (screen) but all major
results are printed also to a (.sum) summary file of the corresponding component. These summary files also contain the date and time
of execution (provided that the corresponding calls to the operating system are executed properly), a copy of the — interactively given —
input as well as a short summary about the atomic levels and orbital functions from the prior Grasp92 calculations that are utilized by
the present run of the program. A few typical input and summary files are distributed together with the program in the corresponding
test-component directory. For a few components, such as Photo or Relci, the summary file also displays a short statistics about
the computation concerning, for example, the number and specification of ionizations channels, the number of calculated and/or re-used

integrals, or about the internal storage management.
It has been appreciated by the users (and collaborators) in many applications of the Ratip code, that the main results of each com-

ponent are provided in rather elaborate and carefully arranged tabulations. In these tables, the atomic levels and transitions are usually
specified in terms of their level numbers as they occurred and were generated before within the Grasp92 program. Although these level
numbers are generally not unique from a physics viewpoint, especially if highly-excited or inner-shell hole states are considered, they are
very helpful to select individual levels and transitions and to simplify the data communication between different components of the Ratip

program. Apart from the level number, however, these tabulations also provide the total angular momenta and parities of the atomic levels
under consideration in a well readable form. For the printout of the tables, moreover, the user can often select between various orders
and units in which the transition data are displayed by the program.

3.2.3. Interactive control of execution

The execution of all components of the Ratip program is controlled by some interactive dialog just at the beginning of the run; this
“dialog” requests and collects all information which are necessary to specify the computation uniquely. Of course, the answers to this
dialog can be compiled also within an ASCII file and given to the program as “standard” input when it is executed. Apart from the
choice of units for the energies, cross sections or rates as well as the file names of all additional input and output files, this interactive
dialog defines (or overwrites) all relevant logical flags, level number of the atomic states to be involved in the computations, or further
restrictions upon the given problem or execution of the program. For the main (and distributed) components of the Ratip program, these
“dialogs” will be displayed and explained below in Section 3.3, together with a short summary about their purpose, the implemented
amplitudes and properties, special features and a few references to their previous application.

Apart from certain mandatory input data, many components also provide some optional control of the execution by which individual
transitions from a larger transition array or specific interactions can be selected, or which help overwrite the standard computational
mode and/or logical flags of the program. All levels and transitions between atomic bound states are handled during the input as well as
internally by means of their level numbers as obtained before by the Grasp92 code. Again, this optional input control will be displayed
in Section 3.3 for each program component to be distributed; this optional part of the input dialog is executed only if a question like
‘Modify the default set-up and printout of the program ?’ occurs and is answered with y(es). Alternatively, the
default execution of the components can be changed by modifying the boolean initialization of the logical flags in the corresponding
modules before they are compiled; these variables are then re-initialized always at the beginning of the execution.

3.2.4. Test suites

For several components of the Ratip program, and especially for those discussed in Section 4, we also provide some test suites in the
corresponding sub-directories test-component. For example, the directory test-photo in the ratip root directory comprises all
input and output files that were generated prior to the computations by means of the Grasp92 program as well as the Photo component
for the example discussed in Section 4.1. These test directories are provided for some first “getting started” with the program and for
some quick check of the current installation of the program.

3.3. Main components of the code

In this section, I shall briefly explain and summarize all those (main) components that are distributed in the present version of the
Ratip program. These components enable the user to study photo excitation and decay properties as well as various photoionization, Auger
and recombination processes. In addition, they support an efficient set-up and diagonalization of the Dirac–Coulomb–Breit Hamiltonian
matrix (similar to the Rci92 component from Grasp92) as well as the (complete) expansion of atomic or configurations states functions
into a determinant basis. However, no attempt will be made here to compile or describe further theoretical and computational details
behind the implementation other than provided already in Sections 2 and 3.

3.3.1. Auger

The Auger component supports the computation of nonradiative (electron emission) rates, relative Auger intensities and angular dis-
tribution parameters. It requires a representation of the atomic bound-state functions from Grasp92 for the initial and final-ionic states
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(levels) of the autoionization process, while the continuum orbitals of the outgoing electron(s) and the final scattering states for the “pho-
toion + electron” are constructed internally by this component. The continuum orbitals are usually generated within an optimized level

potential of the final state and are kept orthogonal to the bound-state orbitals of the final ion [40]. Standard Racah algebra techniques [8]
are applied for the evaluation of the many-electron amplitudes (36), independent of how the radial orbitals of the initial and final bound
states were generated before by means of the Grasp92 program. Apart from the Coulomb repulsion among the electrons, the Auger

component allows to incorporate also the (frequency-independent) Breit interaction into the Auger amplitudes.

(i) Input files: element.iso, initial-csl.inp, initial-scf.rwf, initial-relci.mix, final-csl.inp, final-
scf.rwf, final-relci.mix.

(ii) Output files: auger.sum, auger.trn.

Implemented transition amplitudes: An autoionization of an (inner-shell) excited bound state occurs only if this initial level is ener-
getically embedded into the continuum of the next higher charge state. The electron emission from such an embedded resonance then
arise due to its coupling to one or several scattering states that are degenerate with the initial state and that involve a free electron. The
theoretical description of this autoionization process requires in addition to impose proper boundary conditions upon the (one-electron
continuum orbitals of the) outgoing electron and, in a more exact treatment, upon the scattering states themselves. Following Åberg and
Howat [41], the Auger transition amplitude for the autoionization of the excited bound state |ψi(P i J iMi)〉 with total angular momentum
J i,Mi and parity P i into the final scattering state |ψt〉 = |ψ(Pt JtMt)〉 is obtained as

V J f l j Jt ≡
〈

(ψ f ,ǫκ)Pt Jt
∥

∥H − E
∥

∥ψi(P i J i)
〉

δ J i , Jt δMi ,Mt δP i ,Pt , (35)

and this amplitude is independent of the projection Mi of the initial state due to the rotational invariance of free atoms and the scalar
character of the Hamiltonian. The possible final scattering states |ψt〉 arise from the coupling of the state |ψ f 〉 = |ψ(P f J f M f )〉 of the
final ion with well-defined angular momentum J f ,M f and parity P f with the partial wave of the outgoing electron with energy ǫ and
(one-electron) angular momentum

κ = ±( j + 1/2) for l = j ± 1/2.

In Auger, as in most prior computations of autoionization processes in the literature, a common set of orthonormal orbitals is supposed
for the representation of the initial |ψi〉 and final (ionic) bound states |ψ f 〉 in the evaluation of the matrix elements (35). In this case, the
transition operator (H − E) ≈ V simplifies to the electron–electron interaction operator and the Auger amplitude becomes

V J f l j Jt ≈
〈

(ψ f ,ǫκ)Pt Jt
∥

∥V
∥

∥ψi(P i J i)
〉

δ J i , Jt δMi ,Mt δP i ,Pt (36)

where, within the framework of the Dirac–Coulomb–Breit Hamiltonian, the interelectronic interaction is the sum of the Coulomb repulsion
and Breit interaction, V = V Coulomb + V Breit; cf. Section 2.1 above. While the autoionization of light and medium elements are typically
well described by including the Coulomb repulsion into the Auger amplitude (36), the Breit interaction has been found important for
electron emission and capture processes of highly-charged ions [25,42].

The Auger component calculates the (reduced) amplitudes in expression (36) for selected pairs of initial and final states and combines
them into Auger rates, angular distribution and spin-polarization parameters. Apart from — the additional incorporation of — the Breit
interaction, the user can include (or not) the exchange interaction between the free-electron and the bound-state density and has various
possibilities to affect the transition energies as well as the printout of the program.

Dialog for controlling the execution: To control the Auger component, the following questions are raised and the corresponding input
is requested from the user; these requests usually appear together with some comments of how the data need to be entered. Some
of the questions lead to subsequent requests, if answered with y(es); this is indicated by [y] below, while [y/n] means that the
corresponding question enables the user to overwrite internally some (predefined) boolean variable. For the sake of brevity, I shall not
display here the “answers” to all the input requests, although they need to be given in order to proceed with the dialog. While some of
the input data can be checked (and, if not appropriate, leads to a re-do request by the program), input data errors can cause the program
to abort.

Enter a file name for the auger.sum file:
Enter the name of the isotope data file:
Which units are to be used to enter and to print the energies of the continuum orbitals ?

A : Angstrom;
eV : electron volts;
Hartree : Hartree atomic units;
Hz : Hertz;
Kayser : [cm**(-1)];

Enter the maximal energy of the Auger transitions (in eV) to built-up the radial grid:
Modify default set-up and printout of the program ? [y]
Select individual transitions ? [y]
Enter one pair |i> - |f> of level numbers, e.g. 2 - 3; 2 - 0; 0 - 17 ...
(0 is here equivalent to all); <cr> if done.
Include exchange interactions into the generation of the continuum waves ? [y/n]
Include Breit interactions into the Auger matrix ? [y/n]
Calculate angular distribution parameters ? [y/n]
Calculate spin polarization parameters ? [y/n]
Sort transitions in ascending order of energy ? [y/n]
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Read in and apply experimental energies for the calculation of Auger rates ? [y/n]
Auger rates are printed in SI units; use Hartree atomic units instead ? [y/n]
Print all selected transitions and their energies before the computation starts ? [y/n]
Print the CSF scheme each time a new one has been built ? [y/n]
Print the results for each individual transition immediately after its computation ? [y/n]
Print the final results to a (.trn) transition amplitude file ? [y]
Enter a file name for the auger.trn file:
Enter an (overall) shift of the Auger energies for all transitions (in eV):

Use 0. or <cr> if no shift need to be applied.
Enter a minimal energy (> =0.) of the free electron (in eV):

All other transitions are neglected from the computations;
use 0. or <cr> if all possible transitions are to be taken into account.

Enter a maximal (-)kappa symmetry up to which continuum spinors are taken into account ?
2 (up to p-waves), 4(f), 6(i), 8(k), ...; 0 or <cr> to include all possible waves.

The physical speed of light in atomic units is 137.035989500000;
revise this value ? [y/n]

The default radial grid parameters for this case are:
:
revise these values ? [y/n]
...... here now follows mandatory input again

Enter the name of the initial-state GRASP92 configuration symmetry list file:
Enter the name of the final-state GRASP92 configuration symmetry list file:
Enter the name of the initial-state GRASP92 mixing coefficient file:
Enter the name of the final-state GRASP92 mixing coefficient file:
Enter the name of the initial-state Radial WaveFunction File:
Enter the name of the final-state Radial WaveFunction File:

Results and summary: Apart from a short compilation of the atomic levels involved in the computations (cf. Section 3.2.2), the
auger.sum summary file also provides a table of all selected transitions and transition amplitudes as derived from the total ener-
gies of the initial and final states as well the allowed orbital symmetries of the outgoing electron. This tabulation is made before the
computation of the many-electron Auger amplitudes actually starts. Moreover, the summary file usually lists all amplitudes (36) and rates
of the allowed partial waves, together with the total rates and angular parameters (if they were requested to be calculated in the present
run). Finally, all transitions rates are tabulated in a neat table together with a total (sum) rate over all transitions which were calculated
so far. Similar tabulations are produced also for the angular and spin-polarization parameters if they were calculated in the present run
of the program. In the auger.trn transition amplitude file, the Auger amplitudes are listed (in a separate line) for each autoionization
channel as defined by the final ionic level and the partial-wave symmetry κ of the emitted electron.

Special features: Since the number of possible Auger transitions increase rapidly if several inner-shell holes and/or valence electrons occur,
the Auger component provides additional features for reducing the complexity, apart from the selection of just some particular transitions.
Beside of an energy threshold (i.e. a minimal energy) for the free electron, the user can specify a maximal angular momentum (negative
κ number) for the partial waves to be considered in the construction of the scattering states, independent of the possible coupling of
the free-electron orbitals to the ionic bound states. This selection is in line with the common experience that partial waves with high
angular momenta does often not contribute at all (i.e. have zero amplitudes in most computational models) or are negligible. In addition,
the Auger components supports the use of an overall energy shift of all Auger transition energies or the use of experimental transition
energies which are read in by the dialog above, transition by transition, after all the other input has been processes successfully.

Selected previous applications: The Auger component has been widely used for studying electron emission processes after inner-shell ex-
citation [43] and ionization of atoms [44] as well as for analyzing the coherence transfer through Auger cascades [23]. If the fine-structure
splitting is small or comparable to the natural line widths of the levels, the angular emission of the (second-step) Auger electrons can be
described no longer by some incoherent summation over the individual decay paths from the first and second step of the autoionization
[29]. Then, the coherence transfer through all major and nearly degenerate decay channels need to be taken into account by combining,
for instance, the many-electron Auger amplitudes from the Auger component with the density matrix formalism. However, automatic
computation of Auger cascades and the associated coherence transfer is not at present supported; such calculations have previously been
carried out by means of some separately developed computer-algebra tools [45–47].

3.3.2. Cesd

The Cesd component performs a complete expansion of either the atomic or configuration state functions from Grasp92 into a deter-
minant basis. Such expansions are useful, for example, for relaxed-orbital calculations, i.e. if the rearrangement of the electron density is
to be included into the evaluation of (general) transition amplitudes by applying Löwdin’s method [48]. In many-electron atoms and ions,
the relaxation effects to the electron density are naturally incorporated into the wave functions if the initial and final states are optimized
separately. However, this independent optimization leads to different sets of one-electron orbital function that are not quite orthogonal
to each other. Within Ratip, the Cesd component is required by Reos (cf. Section 3.3.7) for the computation of relaxed-orbital oscillator
strength and transition probabilities as well as at several places elsewhere. An alternative and more elegant approach (but also elaborate
implementation) makes use of a biorthogonal transformation of the radial orbitals [49] and has been realized in Grasp2K [10].

(i) Input files: csl.inp, rci.mix or relci.mix.
(ii) Output files: cesd.sum, cesd.xpn.
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Implemented expansion: While Slater determinants are perhaps the most simplest anti-symmetric N-electron functions, they do generally
not reflect the rotational symmetry of free atoms or ions. They are eigenfunctions to the parity operator P and the projection of the total
angular momentum, J z , but not to the operator J2 . The Slater determinants therefore contribute only to reducible representations with
regard to the (SO3) rotation group. For a given electron configuration, all the associated determinants hereby just differ by the magnetic
quantum numbers {m} of the occupied orbitals.

Mathematically, the Cesd component performs a rotation of the symmetry-adapted (N-electron) basis {|γ P JM〉} in ansatz (7) into a
determinant basis

|γ P JM〉 =
∑

{m}
|U {m}〉

〈

{m}
∣

∣γ P JM
〉

, (37)

where |U {m}〉 denotes a set of determinants from the same (electron) configuration as defined by the occupation numbers of |γ P JM〉. In
this notation, {m} abbreviates a set of magnetic quantum numbers of the corresponding Dirac orbitals with

∑

i mi = M , and which here
replaces the coupling information about the subshell states in the symmetry-adapted functions. The matrix elements 〈{m}|γ P JM〉 are
generalized Clebsch–Gordon coefficients which include the coefficients of fractional parentage and which are known to form an orthogonal
transformation matrix [8]. As seen from Eq. (37), the Cesd component only concerns the representation of the atomic (or configuration)
states but does not change these functions at all.

Dialog for controlling the execution:

Enter a file name for the cesd.sum file:
Enter the name of the configuration symmetry list file:
Expand the atomic state functions (ASF) ? [y/n]
Print non-standard output on the cesd expansion ? [y/n]
Select non-standard total M values for the expansion into Slater determinants ? [y/n]
The default is to use M = +J for each individual determinant.

Enter the name of the GRASP92 mixing file:
Enter a name for the CESD eXPaNsion .xpn output File that is to be created:

Results and summary: The expansion of either some selected ASF or the given set of CSF as a whole, including the full specification of
all determinants as well as the representation of the states in this basis, is written to the cesd.xpn expansion file. This file comprises
the total numbers of determinants and orbitals, a (ordered) list of Dirac orbitals in terms of their quantum numbers (nκm) as well as
the occupation of these orbitals for each determinant of the generated basis. For each symmetry function, moreover, the total angular
momentum and parity is printed out together with its representation (eigenvectors) in the pre-defined determinant basis. The cesd.sum
summary file is short and only displays the list of orbitals and some statistics upon the expansion. The cesd.xpn expansion file may be
needed as input to other Ratip programs.

Special features: Cesd is typically applied to expand one or several atomic levels into a determinant basis but can be utilized also for
the expansion of a (whole) CSF basis. This latter option, however, may lead to sizeable output files. In the expansion of atomic levels, the
default is to set the total magnetic quantum number M = + J in order to keep the number of determinants small. This default can be
overwritten at input time. Moreover, in order to increase the efficiency of the program for large wave function expansions, the occupation
numbers (0 or 1) of the Dirac orbitals in the specification of the determinants is internally treated bitwise by using the (intrinsic) bit
manipulation procedures of Fortran 90/95. This reduces the storage requirements, both internally as well as in the cesd.xpn expansion
file, and also accelerates the expansion process itself [38]. The Cesd component supports the expansion of CSF with up to 5 open subshells
only, although this limitation could be removed with moderate effort if needed by the user.

Selected previous applications: The Cesd component has been mainly utilized together with Reos in calculations of (relaxed-orbital)
transition probabilities and lifetimes; see Section 3.3.7. It has been recently applied, moreover, in the population analysis of excited three-
electron states in carbon ions after single-electron capture in 0.5–1.1 MeV/amu C4+(1s2s3S)–He collisions [50]. In these case studies,
single-electron capture amplitudes from the two-center basis generator method were combined with MCDF wave functions in a determi-
nant representation in order to explore different decay mechanisms for the metastable C3+(1s2s2p4P ) level. Further applications of the
Cesd component refer to two-electron-one-photon transitions, a second-order photon emission process that becomes possible due to the
rearrangement of the electron density [51].

3.3.3. Einstein

The Einstein component helps calculate transition probabilities, Einstein A and B coefficients, oscillator strength as well as radiative
lifetimes. Like for the OSCL component of Grasp92, the (standard) Racah algebra techniques are employed to evaluate the transition
amplitudes, while the radial orbitals are handled independent for the initial and final states. Though the use of two orbital sets, which are
not quite orthogonal to each other, causes some inconsistency in dealing with Fermi’s Golden rule and the use of the Racah techniques,
this scheme allows a quick and simple evaluation of the transition amplitudes and to incorporate at least parts of the rearrangement
effects into the transition amplitudes and probabilities, if the initial and final states of the computations were generated separately. The
Einstein component also provides a transition amplitude file (einstein.trn) and a neat tabulation of the Einstein coefficients and
oscillator strengths analogue to the REOS component; cf. Section 3.3.7. The Einstein component can be applied both, for the absorption
and emission of photons, by just choosing the initial and final stomic bound states properly.

(i) Input files: element.iso, initial-csl.inp, initial-scf.rwf, initial-relci.mix, final-csl.inp, final-
scf.rwf, final-relci.mix.

(ii) Output files: einstein.sum, einstein.trn.
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Implemented transition amplitudes: All properties concerning the absorption and emission of photons in transitions between atomic
bound states can be traced back to the transition amplitudes (25), if calculated for selected pairs of initial and final states of an atom
or ion. While most observations are related to allowed electric-dipole (E1) transitions between atomic states with total angular momenta
� J ≡ | J i − J f | � 1, higher multipoles (M1, E2, . . .) in the electron–photon interaction can occur and affect the level population of atoms
and ions. In Einstein like in other components of the Ratip and Grasp92 programs, the transition amplitudes (25) of all selected (or
possible) multipole transitions are calculated as linear combination

〈

α f J f
∥

∥Hγ (π L)
∥

∥αi J i
〉

=
∑

r,s

c f rcis

〈

γ f P f J f

∥

∥

∥

∥

∑

p

αp · Aπ
L,p(k)

∥

∥

∥

∥

γi P i J i

〉

(38)

of the reduced matrix elements between the CSF as they appear in the expansion of the atomic states, and where the notation of the
multipoles were described in Section 2.3. The transition amplitudes (38) are then properly combined to obtain line strength, Einstein
coefficients or lifetimes. These amplitudes give rise also to the alignment of atomic states or the angular distribution and polarization
of emitted radiation, if properly combined with the amplitudes from prior (de-)excitation mechanisms of the atoms under investigation.
Further details about the photo-induced excitation and ionization of atoms and ions can be found, for example, in Ref. [29].

Dialog for controlling the execution:

Enter a file name for the einstein.sum file:
Enter the name of the isotope data file:
Enter the transition multipoles, e.g. E1 M2 ... :
Which units are to be used to enter and to print the energies of the continuum orbitals ?

A : Angstrom;
eV : electron volts;
Hartree : Hartree atomic units;
Hz : Hertz;
Kayser : [cm**(-1)];

Modify default set-up and printout of the program ? [y]
Select individual transitions ? [y]
Enter one pair |i> - |f> of level numbers, e.g. 2 - 3; 2 - 0; 0 - 17 ...
(0 is here equivalent to all); <cr> if done.

Sort transitions in ascending order of energy ? [y/n]
Read in and apply experimental energies for the calculation of transition probabilities ?
Einstein A and B coefficients are printed in SI units; use atomic units instead ? [y/n]
Print all selected transitions and their energies before the computation starts ? [y/n]
Print the results for each individual line immediatly after its computation ? [y/n]
Write out the transition energies and amplitudes to an .trn file ? [y]
Enter a file name for the einstein.trn file:
The physical speed of light in atomic units is 137.035989500; revise this value ? [y/n]
The default radial grid parameters for this case are:

:
revise these values ? [y/n]
...... here now follows mandatory input again

Enter the name of the initial-state GRASP92 configuration symmetry list file:
Enter the name of the final-state GRASP92 configuration symmetry list file:
Enter the name of the initial-state GRASP92 mixing coefficient file:
Enter the name of the final-state GRASP92 mixing coefficient file:
Enter the name of the initial-state Radial WaveFunction File:
Enter the name of the final-state Radial WaveFunction File:

Results and summary: Following the input data and the short compilation of atomic levels involved in the computations, the ein-
stein.sum summary file provides a table of the selected transitions and multipoles (printed before the actual computations start) as
well as a summary of all transition probabilities and lifetimes. This summary lists the transition data in terms of the symmetry of the
initial and final level, the transition energy, Einstein coefficients, oscillator strength and the associated decay widths. In general, the atomic
levels (and corresponding ASF) refer to different Grasp92 calculations for the initial and final states, although the same set of wave func-
tions (.csl, .rwf and .mix files) can be used in both cases. From all calculated multipole transitions with positive (transition) energy,
moreover, the lifetimes and width of the upper levels are compiled in the einstein.sum summary file. In the einstein.trn transi-
tion amplitude file, the transition amplitudes are listed, again in a separate line for each transition between two fine-structure levels, for
further applications by other Ratip components, its toolbox or elsewhere.

Special features: All electric multipole transitions are always calculated in the (so-called) Babushkin and Coulomb gauges which, within
the nonrelativistic limit, refer to the well-known length and velocity gauge form of the transition amplitudes, respectively [52]. Although
an agreement of the two gauges only provides a necessary criterion for obtaining accurate transition data, possible deviations between the
two gauge are often taken as “indicator” for the accuracy of the computations, especially if a large number of transitions were calculated
within the same computational model. As default, possible multipole transitions between initial and final atomic levels are selected “in
emission”, i.e. for photon energies h̄ω = E i − E f > 0, although absorption processes between atomic states with E i − E f < 0 can also be
investigated if individual transitions are selected explicitly by the input data.

When compared to the Reos component (Section 3.3.7), Einstein is typically faster in evaluating the transition amplitudes and, thus,
is suitable for mass production of transition probability data or if a large number of radiative transitions are involved by some property.



S. Fritzsche / Computer Physics Communications 183 (2012) 1525–1559 1543

Within the Ratip program, for example, the — central routine of the — Einstein module is invoked within the Dierec component for the
computation of dielectronic recombination strengths or for studying the properties of hyperfine-quenched transitions.

Selected previous applications: The Einstein component is frequently applied if a fast overview over some (large) transition array or the
lifetime of rather highly excited states is needed [53]. In addition, this component has been utilized for studying the low-lying resonances
in the dielectronic recombination of Si IV forming Si III ions [24] as well as the two-photon decay of highly-charged ions [54].

3.3.4. Photo

The Photo component computes and combines atomic photoionization amplitudes for generating level-dependent ionization cross
sections, alignment parameters of the photoions and angular distribution parameters for the emitted electrons. Like for most other com-
ponents, it requires a representation of the atomic bound-state functions (for example, from Grasp92) for the initial and final-ionic states
(levels) of the photoionization process, while the continuum orbitals of the emitted electron(s) and the final scattering states for the
“photoion + electron” are constructed internally by the Photo component. However, standard Racah algebra techniques [8] are applied
for the evaluation of the many-electron amplitudes (39), independent of how the radial orbitals of the initial and final bound states were
generated before by means of the Grasp92 program. In practice, Photo provides a quite simple access to the (direct) photoionization
cross sections of atoms and ions, independent of their shell structure, but does not include the resonances that (may) occur in many
photoionization properties.

(i) Input files: element.iso, initial-csl.inp, initial-scf.rwf, initial-relci.mix, final-csl.inp, final-
scf.rwf, final-relci.mix.

(ii) Output files: photo.sum, photo.trn.

Implemented transition amplitudes: The photo-induced ionization of an initial bound state |ψi(P i J i)〉 with N electrons into some final
state |ψ f (P f J f )〉 of the (N − 1 electron) photo ion requires of course photon energies h̄ω > E i(N) − E f (N − 1). The photoionization
amplitudes for such an ionization process into some final scattering state |ψt〉 = |ψ(Pt JtMt)〉 are described by

M
(π L)

J i→ J f l j Jt
≡

〈

(ψ f ,ǫκ)Pt Jt
∥

∥Hγ (π L)
∥

∥ψi(P i J i)
〉

, (39)

where Hγ (π L) refer to the electron–photon coupling operator in Eqs. (25) and (26). Again, boundary conditions need to be imposed
upon the partial waves of the outgoing electron with energy ǫ and angular momentum κ , like for autoionization processes, but by
including the proper phase (see, e.g. Ref. [41] for the discussion of these boundary conditions and possible improvements of the theory).
In the Photo component, a common set of orthonormal orbitals is supposed for the evaluation of the (spin-angular part of the) many-
electron amplitudes (39), independent of how the radial orbitals were generated. While the photoionization of atoms is clearly dominated
by electric-dipole (E1) coupling of the electrons to the radiation field, higher multipole components of the electron–photon interaction
become important at (very) high photon or in various angle-differential properties, if the E1 contribution is geometrically suppressed at
certain angles.

The Photo component calculates the (reduced) amplitudes (39) for selected multipoles (E1, M1, . . . ), photon energies and pairs of initial
and final states. It combines these amplitudes to partial and total photoionization cross sections, angular distribution and spin-polarization
parameters. Like for all components that include a free electron in the transition amplitudes, the user can select (or not) to include the
exchange interaction between the free-electron and the bound-state density as well as various restrictions upon the symmetry and energy
of the outgoing electrons.

Dialog for controlling the execution:

Enter a file name for the photo.sum file:
Enter the name of the isotope data file:
Enter the transition multipoles, e.g. E1 M2 ... :
Which units are to be used to enter and to print the energies of the continuum orbitals ?

A : Angstrom;
eV : electron volts;
Hartree : Hartree atomic units;
Hz : Hertz;
Kayser : [cm**(-1)];

Enter the maximal energy of the photo lines (in eV) to built-up the radial grid:
The photon energies can be entered either individually or by an appropriate interval and
step size. The default is a list of individual energies; revise this ? [n]
Enter an interval of photon energies and a corresponding stepsize;
E_lower E_upper delta-E:
Modify default set-up and printout of the program ? [y]
Select individual transitions ? [y]
Enter one pair |i> - |f> of level numbers, e.g. 2 - 3; 2 - 0; 0 - 17 ...
(0 is here equivalent to all); <cr> if done.
Include exchange interactions into the generation of the continuum waves ? [y/n]
Calculate angular distribution parameters ? [y/n]
Calculate spin polarization parameters ? [y/n]
Sort all photoionization lines in ascending order of energy ? [y/n]
PI cross sections are printed in SI units; use Hartree atomic units instead ? [y/n]
Print all selected photoionization lines before the computation starts ? [y/n]
Print the CSF scheme each time a new one has been built ? [y/n]
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Print the results for each individual line immediatly after its computation ? [y/n]
Print the final results to a (.trn) transition amplitude file ? [y]
Enter a file name for the photo.trn file:
Enter a shift for the transition energies which applies to all transitions (in eV):
Use 0. or <cr> if no shift need to be applied.
Enter a maximal (-)kappa symmetry up to which continuum spinors are taken into account ?
2 (up to p-waves), 4(f), 6(i), 8(k), ...; 0 or <cr> to include all possible waves.

The physical speed of light in atomic units is 137.035989500; revise this value ? [y/n]
The default radial grid parameters for this case are:

:
revise these values ? [y/n]
...... here now follows mandatory input again

Enter the name of the initial-state GRASP92 configuration symmetry list file:
Enter the name of the final-state GRASP92 configuration symmetry list file:
Enter the name of the initial-state GRASP92 mixing coefficient file:
Enter the name of the final-state GRASP92 mixing coefficient file:
Enter the name of the initial-state Radial WaveFunction File:
Enter the name of the final-state Radial WaveFunction File:

Results and summary: Following a short compilation of all bound levels involved in the computations, the photo.sum summary file
tabulates the selected photolines as given by the (pairs of) initial and final atomic levels as well as the photon energy. The calculation
of photoionization properties for the same initial and final states but for different photon energies has to be performed separately due
to the different energies of the outgoing electrons, although the close relation of the corresponding amplitudes is taken into account in
the implementation to accelerate the computations. The tabulation of the selected photolines also specifies (automatically) all possible
photoionization channels as specified by the energy and symmetry of the partial wave, the gauge and multipole operators in the electron–
photon coupling as well as the angular momentum and parity of the overall scattering states; this table is printed before the computation
of the many-electron photoionization amplitudes actually start. Moreover, the photo.sum summary file also lists (if specified during
input) all the selected photoionization amplitudes, phases and properties for each photoline immediately after its computation. Finally,
all photoionization cross sections and other selected properties (angular distribution, alignment, . . .) are printed in various tables for
either a quick overview or to follow the energy dependence of the individual properties. In the photo.trn transition amplitude file, the
photoionization amplitudes and phases are listed (in a separate line) for each photoionization channel, including all information about the
partial waves, gauge and multipoles as well as the symmetry of the final scattering state to uniquely specify the amplitudes for further
processing.

Special features: Beside the selection of the transition multipoles and individual transitions, the user can specify the photon energies
either separately, energy by energy, or in terms of some energy interval and a given step size. This allows a quite flexible access to the
photon energies and energy dependence of the photoionization cross sections and other properties. Furthermore, the maximal angular
momentum (negative κ number) for the partial waves of the outgoing photo electron (photoionization channel) and an overall shift of all
transition energies can be specified during the input time in order to keep large computations feasible.

Selected previous applications: Apart from cross section and angular distribution calculations, the Photo component has been applied for
studying the interference of direct and resonant photoionization channels in atomic argon [55] as well as the linear magnetic and align-
ment dichroism in Auger-photoelectron coincidence spectroscopy of atomic tin [56,57]. Moreover, the Photo component helped analyze
the sequential two-photon double ionization of various noble gases in intense free-electron laser (FEL) radiation [58,59]. In the Resonance

component (not published in the present version), in addition, the many-electron amplitudes from the Auger and Photo are currently
combined in order to describe the photoionization of atoms and ions across some resonant region.

3.3.5. REC

The radiative electron capture (REC) is the time-reversed process to atomic photoionization and has been explored in good detail for
multiply and highly-charged ions [60]. In this process, a free or quasi-free electron is captured by the ion under the emission of a photon
that carries away the exceeding energy. The Rec component supports the computation of total REC cross sections and angular distribution
coefficients of singly and multiply charged ions. It requires again a representation of the atomic bound-state functions for the initial-
ionic and final states (levels) of the electron capture process, while the continuum orbitals of the initially free electron(s) are constructed
internally by the Rec component. Standard Racah algebra techniques are applied for the evaluation of the many-electron amplitudes,
independent of how the radial orbitals of the initial and final bound states were generated before. Although the REC process is closely
related to the photoionization of atoms and ions (with basically the same many-electron amplitudes, cf. Eqs. (39) and (40)), the Rec

component has been developed as a separate program to compile and access the relevant properties of this capture process.

(i) Input files: element.iso, initial-csl.inp, initial-scf.rwf, initial-relci.mix, final-csl.inp, final-
scf.rwf, final-relci.mix.

(ii) Output files: rec.sum, rec.trn.

Implemented transition amplitudes: The capture of a (quasi-)free electron by an initial ion in the state |ψi(P i J i)〉 (with N − 1 electrons)
gives rise to the N-electron final bound state |ψ f (P f J f )〉 and can be described in terms of the REC amplitudes

M
(π L)

J i l j Jt→ J f
≡

〈

ψ f (P f J f )
∥

∥Hγ (π L)
∥

∥ψt(Pt Jt)
〉

, (40)

where |ψt(Pt Jt)〉 = |(ψi,ǫκ)Pt Jt〉 describes an initial scattering state with well-defined angular momentum and parity (P t Jt) and where
Hγ (π L) refers again to the electron–photon coupling operator in Eq. (26). Here, the phase (boundary condition) must describe the capture
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of an electron in line with the interchange of the initial and final states with regard to the photoionization amplitudes (39). In the REC

component, again, a common set of orthonormal orbitals is supposed for the evaluation of the (spin-angular part of the) many-electron
amplitudes (39), independent of how the bound radial orbitals were generated by means of the Grasp92 program. For multiply and highly-
charged ions, moreover, the angular and polarization properties of the emitted photons are often affected by rather high multipoles up to,
say, L ≈ 10 [28].

The Rec component calculates the (reduced) amplitudes (40) up to some given maximum multipole field (Lmax), for given kinetic
energies of the incident electrons as well as pairs of initial and final states. It combines these amplitudes to partial and total capture cross
sections and angular distribution. Moreover, this component allows to calculate the alignment of the final state of the ion after the capture
of the electron has taken place.

Dialog for controlling the execution:

Enter a file name for the rec.sum file:
Enter the name of the isotope data file:
Which units are to be used to enter and to print the energies of the continuum orbitals ?

A : Angstrom;
eV : electron volts;
Hartree : Hartree atomic units;
Hz : Hertz;
Kayser : [cm**(-1)];

Enter the maximal energy of the free electrons (in eV) to built-up the radial grid:
The electron energies can be entered either individually or by an appropriate interval
of kinetic energies and step size. At storage rings, the electron energies are
obtained from the projectile energies by:

E^(electron) [keV] = E^(projectile) [MeV/u] / 1.8228885.
The default is a list of individual electron energies; revise this ? [n]
Enter another (positive) electron energy in eV or a negative number if done.
Enter the maximal (positive) kappa value to determine the partial waves
in the expansion of the electron wave, i.e. kappa = -1, 1, -2, ..., |max_kappa|:
Modify default set-up and printout of the program ? [y]
Select individual transitions ? [y]
Enter one pair |i> - |f> of level numbers, e.g. 2 - 3; 2 - 0; 0 - 17 ...
(0 is here equivalent to all); <cr> if done.
Include exchange interactions into the generation of the continuum waves ? [y/n]
Calculate angular distribution coefficients ? [y/n]
Calculate statistical tensors for the magnetic population of the final states ? [y/n]
Sort all REC lines in ascending order of energy ? [y/n]
REC capture cross sections are printed in SI units; use Hartree atomic units instead ? [y/n]
Print all selected REC lines before the computation starts ? [y/n]
Print the CSF scheme each time a new one has been built ? [y/n]
Print the results for each individual line immediatly after its computation ? [y/n]
Print the final results to a (.trn) transition amplitude file ? [y]
Enter a file name for the rec.trn file:
Enter a shift for the transition energies which applies to all transitions (\xch{in eV}{ineV}):
Use 0. or <cr> if no shift need to be applied.
The physical speed of light in atomic units is 137.035989500; revise this value ? [y/n]
The default radial grid parameters for this case are:

:
revise these values ? [y/n]
...... here now follows mandatory input again

Enter the name of the initial-state GRASP92 configuration symmetry list file:
Enter the name of the final-state GRASP92 configuration symmetry list file:
Enter the name of the initial-state GRASP92 mixing coefficient file:
Enter the name of the final-state GRASP92 mixing coefficient file:
Enter the name of the initial-state Radial WaveFunction File:
Enter the name of the final-state Radial WaveFunction File:

Results and summary: Following the input data and the compilation of the atomic bound states from the Grasp92 calculations, the
rec.sum summary file first displays (if requested) an overview about all selected “capture lines” as determined by the (pairs of) initial
and final atomic levels as well as the kinetic energy of the free electron or the photon energy of the emitted radiation, respectively. Each
of these lines comprises usually a rather large number of capture amplitudes (40) which are specified in addition by the energy and
symmetry of the partial wave, the gauge and multipolarity of the electron–photon interaction operator as well as the parity and angular
momentum of the initial scattering states for the “ion + free electron”. This list of capture lines and amplitudes is selected and printed out
before the actual calculations start. During the computations, then, the amplitudes, phases and all other selected properties are printed —
if requested during the input — for each capture line immediately after these data have been calculated by the program. The capture cross
sections and angular parameters (up to β4 in the expansion of the angular distribution; cf. formulas (32)–(33) in Ref. [28]) are printed
again at the end of the calculation in order to facilitate the discussion and exchange of these data. In the rec.trn transition amplitude
file, moreover, the capture amplitudes and phases are listed for each capture channel in a separate line, including all information about
the partial waves, gauge and multipoles as well as the symmetry of the final scattering state to uniquely specify the amplitudes for further
data processing.
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Special features: As usual for the Ratip code, individual capture lines can be selected by pairs of levels which refer to the initial and final
bound-state computations; otherwise, all lines are taken which give formally rise to a positive energy of the emitted photons. In contrast
to the Einstein and Photo components, however, the multipole contributions in the electron–photon interaction cannot be specified
separately but are determined due to the maximum partial wave (κmax) that is to be included in the expansion of the free-electron wave.
All multipoles L and total angular momenta J t are then taken into account which fulfill the two triangular conditions δ( J f , jmax, Jt)

and δ( J i, L, Jt) in the amplitude (40), where the symbol δ(a,b, c) ≡ 1, if a + b + c is integer and a,b, c may form a triangle, and is zero

otherwise. Similar as in the Photo component, the kinetic energies of the incident electrons can be specified by the user either separately,
energy by energy, or in terms of some energy interval and step size. Apart from the angular distribution coefficients βν , moreover, the
statistical tensors of the final states can be calculated from the capture amplitudes which characterize the alignment and, hence, the
magnetic sublevel population of the recombined ion after the electron has been captured.

Selected previous applications: The Rec component has been utilized to investigate the radiative electron capture into high-Z, few-electron
ions within the framework of the density matrix [28] as well as the alignment [61] and polarization transfer following the inner-shell
photoionization of sodium-like ions [62].

3.3.6. Relci

Like Rci92 in Grasp92 [6], the Relci component generates the (level) energies and atomic state functions (7) due to the set-up and
diagonalization of some proper Dirac–Coulomb(–Breit) Hamiltonian matrix; it exploits the block-diagonal structure of the Hamiltonian
without that the underlying .csl list need to divided into blocks of the same total angular momentum and parity. A long write-up for
this component has been published previously, and only some adaptions of the code has been made since then [35]. When compared
with the Rci92 program, Relci is faster by a factor of about 3 . . .8 and also requires less memory. In addition, Relci enables one to
incorporate the dominant QED contributions into the level energies. In the future, however, this component may become obsolete in the
long term when an improved Rci becomes available within the Grasp environment, based on Fortran 90/95, and if the Ratip program is
to be adapted to such a new version.

(i) Input files: element.iso, csl.inp, scf.rwf.
(ii) Output files: relci.sum, reclci.mix.

Implemented interactions: In dealing with large wave function expansions (7), the decomposition and computation of the Hamiltonian
matrix (9) is often a very time-consuming task due to the (angular) integration over the 3N spin-angular coordinates for each matrix
element (10). In Relci, all angular coefficients are now obtained from the Anco component [21] to determine and compute the necessary
one- and two-particle effective interaction strengths. Since Anco provides pure angular coefficients, the same set of these coefficients can
be used to generate the Dirac–Coulomb, Dirac–Gaunt, or Dirac–Coulomb–Breit matrices.

The two dominant QED contributions to the level structure of free atoms and ions are known to be the vacuum polarization and
self-energy of the electrons. These two contributions roughly scale with the fourth power of the nuclear charge, Z4 , and may become
comparable in size with the Breit interaction, if inner-shell electrons are involved in some atomic process. While the vacuum polarization
gives rise to an effective one-particle interaction strength, and can thus be incorporated in the Hamiltonian matrix, much larger effort
is required in order to incorporate the self-energy (SE) consistently into the computations. In the Relci component, we follow Kim’s
suggestion [63] and estimate the SE of the electrons from the electron density within a small volume of, say 40–60 fm, around the nucleus.
Within this volume, the (effective) charge ratio between the self-consistent orbitals from the Grasp92 calculations and the hydrogenic
solution for a point-like nucleus is determined, and is multiplied with the (known and tabulated) SE of the hydrogen-like ions. For ions
with a point-like nucleus, such tabulations are given by Mohr [64] for 1s, 2s, and 2p orbitals and by Mohr and Kim [65] for ns, np, and
nd (n = 3,4,5) orbitals. For large wave function expansions, this method has been found quite stable and fast [66].

Dialog for controlling the execution:

Enter a file name for the relci.sum file:
Enter the name of the configuration symmetry list file:
Enter the name of the isotope data file:
Modify default set-up and printout of the program ? [y]
Include contributions of the frequency-independent Breit interaction ? [y/n]
Include vacuum polarization contributions to H ? [y/n]
Include specific mass shift contributions to H ? [y/n]
Estimate contributions from self-energy ? [y]
Add self-energy estimates to the total energies in the .mix output file ? [y/n]
This can be useful in the computation of transition energies.

Store the effective interaction strengths in memory ? [y/n]
This should always be true for a on--fly calculation of the Hamiltonian matrix.

Precalculate and keep Hamiltonian matrix in memory ? [y/n]
Diagonalize the full Hamiltonian matrix ? [y/n]
(I.e. independent of the parameter hamiltonian_fullmatrix.)

Which units are to be used to enter and to print the energies ?
A : Angstrom;
eV : electron volts;
Hartree : Hartree atomic units;
Hz : Hertz;
Kayser : [cm**(-1)];

The physical speed of light in atomic units is 137.035989500; revise this value ? [y/n]
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The default radial grid parameters for this case are:
:

revise these values ? [y/n]
...... here now follows mandatory input again

Enter the name of the GRASP92 Radial WaveFunction File:
Enter a file name for the relci.mix file:
Enter the serial number(s) of the level(s) to be calculated;
e.g. 1 3 4 7 - 20 48 69 - 85;

Results and summary: Basic information about the Hamiltonian matrix and its set up as well as about the eigenenergies and weights
of the leading CSF in the expansion of the atomic states are printed to the relci.sum summary file, analogue and in a rather similar
format as in the Rci92 component of Grasp92. In particular, three tables display the total level energies and the level splittings with
regard to the lowest and next-lowest level in the computations and, hence, provide the user with a quick overview about the calculated
level structure. If the SE estimates were requested to be calculated, they are displayed for each subshell, in addition, and the (three) tables
from above are repeated once more with the SE estimates included into the level energies. Moreover, the energies, overall symmetries
and eigenvector decomposition of the atomic states, chosen by the user, are listed in the relci.mix mixing coefficient file for further
application by other components.

Special features: While the supported interactions to the Hamiltonian are the same as in the Rci92 component [6], Relci supports in
addition a number of computational models with regard to the storage and time management. As default, a full diagonalization of the
Hamiltonian matrix by means of some Lapack library routine is made if the block-size of the Hamiltonian matrix is not larger than the
(global integer) parameter hamiltonian_fullmatrix (which is set to 500 in the present distribution). In all other cases, the Davidson
algorithm is utilized for the levels of interest, using the Fortran 77 implementation by Stathopoulos and Froese Fischer [67]. Another
default is to use only RAM memory, and this is well suitable for all matrices with dimension n� 100,000 at most present-day computers.
Apart from this default setting, however, a disc mode can be selected in which the Hamiltonian matrix elements are written sequentially
on disc during the generation and are later retained from there for diagonalization without keeping the full matrix at any time in the
internal storage. In practice, this disc mode has rarely been utilized by us and might be removed in some forthcoming version of the Relci

component.
The self-energy estimates are not automatically incorporated into the mixing coefficient file, although this can be specified during input.

Moreover, the relci.mix mixing coefficient file is now printed as default in a formatted file format; these and some other defaults can
be easily changed by setting some logical flags within the Relci module.

Selected previous applications: Relci has been applied indeed in a wide range of applications as it provides the necessary mixing coef-
ficient files for most other components of the Ratip program [68]. In addition, it has been utilized also (in a slightly modified form) to
study hyperfine-induced electric and magnetic multipole transitions or the isotope shift parameters of a few medium and heavy elements
[69,70]

3.3.7. Reos

The Reos program was implemented as (one of) the first components of Ratip to facilitate the computation of relaxed-orbital oscillator
strength, transition amplitudes and lifetimes. This component exploits Löwdin’s expression [48] for the evaluation of the transition ampli-
tudes and is based on Slater determinants that are constructed from two sets of not quite orthogonal orbitals. Within the framework of
Ratip, therefore, a prior expansion of all atomic states of interest into a determinant basis is required and can be performed by means of
the Cesd component, before the Reos program can be applied. A long write-up of Reos was given in Refs. [36] and not much has been
changed in its implementation since then. Like in the Einstein program, Reos can be applied both, to the absorption or emission of pho-
tons in dependence of how the initial and final atomic states are chosen, but by including all contributions to the transition amplitudes
that arise from the non-orthogonality of the radial orbital functions in the representation of these states. In addition, the Reos component
also provides a transition amplitude file (reos.trn) for further applications of these (reduced) matrix elements.

(i) Input files: element.iso, initial-cesd.xpn, initial-scf.rwf, final-cesd.xpn, final-scf.rwf.
(ii) Output files: reos.sum, reos.trn.

Implemented transition amplitudes: Like the Einstein component in Section 3.3.2, Reos evaluates the same (reduced multipole) transition
amplitudes

〈

α f J f
∥

∥Hγ (π L)
∥

∥αi J i
〉

=
∑

r,s

c f rcis

〈

γ f P f J f

∥

∥

∥

∥

∑

p

αp · Aπ
L,p(k)

∥

∥

∥

∥

γi P i J i

〉

, (41)

for bound-state transitions |ψi〉 → |ψ f 〉 but for the case that the initial and final ASF are expressed as linear combination of Slater
determinants. These relaxed-orbital amplitudes (41) are combined then in order to obtain line strength, Einstein A and B coefficients or
radiative or lifetimes. See Ref. [36] for all further details about the implementation of the Reos component.

Dialog for controlling the execution:

Enter a file name for the reos.sum file:
Restart a previously aborted calculation ? [n]
Enter the name of the isotope data file:
Enter the transition multipoles, e.g. E1 M2 ... :
Which units are to be used to enter and to print the energies ?
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A : Angstrom;
eV : electron volts;
Hartree : Hartree atomic units;
Hz : Hertz;
Kayser : [cm**(-1)];

Modify default set-up and printout of the program ? [y/n]
Select individual transitions ? [y]
Enter one pair |i> - |f> of level numbers, e.g. 2 - 3; 2 - 0; 0 - 17 ...
(0 is here equivalent to all); <cr> if done.

Assume orthogonality between the orbital sets of the initial and final atomic states ? [y/n]
This feature accelerates the computations but also neglects all relaxation effects.

Calculate all radial integrals only once at the beginning of the computation ? [y/n]
This feature accelerates the computations but may requires considerable more memory.

Enable the restart of the calculation if the run cannot be completed successfully ? [y/n]
This feature dumps all necessary information to a restart file.

Sort transitions in ascending order of energy ? [y/n]
Read in and apply experimental energies in the calculation ? [y/n]
Einstein A and B coefficients are printed in SI units; use atomic units instead ? [y/n]
Print all selected transitions and their energies before the computation starts ? [y/n]
Write out the transition energies and amplitudes to an .trn file ? [y/n]
Enter a file name for the reos.trn file:
Fix a cutoff criterium other than ’10e-8’ to neglect small admixtures to the
computation of transition probabilities ? [n]

The physical speed of light in atomic units is 137.035989500; revise this value ? [y/n]
The default radial grid parameters for this case are:

:
revise these values ? [y/n]
...... here now follows mandatory input again

Enter the name of the initial-state CESD .xpn expansion file
Enter the name of the final-state CESD .xpn expansion file
Enter the name of the initial-state Radial WaveFunction File:
Enter the name of the final-state Radial WaveFunction File:

Results and summary: The .sum summary files of the Reos and Einstein components have a very similar format and provide especially
a neat table of all transition energies, Einstein coefficients, oscillator strength and the associated decay widths at the end of the compu-
tations. As before, the atomic levels (and corresponding ASF) refer typically to two different Grasp92 calculations and (subsequent) Cesd

expansions of the initial and final states into a determinant basis, although the same set of wave functions (here .xpn and .rwf files) can
be utilized if both, the initial and final states were described before by the same run of Grasp92. From all the calculated multipole tran-
sitions with positive (transition) energy, moreover, the lifetimes and width of the upper levels are compiled in the reos.sum summary
file, while the amplitudes are listed in the reos.trn file for further use in other components or within the toolbox of Ratip.

Special features: As in the Einstein component, all electric-multipole transitions (E1, E2, . . .) are always calculated within the Babushkin
and Coulomb gauge, and which are better known as length and velocity gauge from the nonrelativistic theory. If no individual tran-
sitions are selected, i.e. special pairs of initial and final level numbers from prior Grasp92 calculations, all multipole transitions with
positive (transition) energy are chosen automatically. Moreover, “experimental” transition energies can be specified explicitly by the user,
an option that has been found helpful if the calculated fine-structure of the atomic levels is not accurate. A further “restart” option became
quite obsolete during recent years and might be removed from the code in the future.

Selected previous applications: The Reos component has been applied earlier in a number of medium-to-large scale calculations of
transition probabilities and lifetimes [71,72], and especially for multiply charged ions from the iron group [73–75]. More recently, Reos
was utilized for studying two-electron-one-photon transitions [76], two-photon excitation [77] and decay cross section [78] as well as in
dielectronic recombination studies.

3.4. The Toolbox of Ratip

With the increasing number and variety of applications of the Ratip program, several small tasks need to be performed more or less
frequently with regard to the (de-)composition and manipulation of data. Most of these tasks do not justify an independent component
(subprogram) but are included more conveniently within the (so-called) Toolbox of the Ratip program; these tools extent some develop-
ment to which we referred as “utilities” before [79]. In most of these tasks, files from Grasp92 and/or Ratip components are handled, and
all manipulations are controlled interactively. Since further tasks are added to the Toolbox from time to time, here I shall explain only the
basic structure of these tools and leave it otherwise to the user to explore further features. Although various “new” files can be created by
means of the Toolbox, most tasks print their results directly to screen.

The various tasks, that are supported by the Toolbox, can be selected from a (two-level) menu and are further controlled by some
(interactive) “dialog”.

3.4.1. Main menu

The main menu of the Toolbox distinguishes between certain groups of (more or less) related tasks and is displayed immediately after
this component has been invoked:
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Select from the menu:

A - Level energies, notations and weights.
C - Manipulation of GRASP92 .csl lists and .mix files.
D - Format or unformat a GRASP92 file.
E - Properties of atomic orbitals.

M - Miscellaneous.
N - Nuclear distributions and parameters.

Q - Quit the program.

For each of these groups, then, a submenu appears if the corresponding letter (not case sensitive) is selected. This two-level structures
makes it easy to add other features or even to rearrange the sequence of tasks as this (may) become necessary or appropriate in the
future.

3.4.2. Level energies and configuration states

For example, if we choose A (-- Level energies, notations and weights), the submenu

A

Select from the menu:

1 - Energy levels and level splittings from one or several .mix files.
2 - Energy levels and level splittings, extended form.
3 - Energy levels and level splittings from one .mix file with LSJ notations.
4 - Display the major jj-coupled CSF and their weights to atomic levels.
5 - Display the major LS-coupled CSF and their weights to atomic levels.

r - Return to the main menu.

appears and enables one to tabulate the level energies from one or several Grasp92 calculations. This can be done even if these bound-
state calculations refer to a different number of electrons, a feature that has been found very useful if photo- or autoionization processes
are analyzed, or if one wishes to identify energetically allowed transitions from some large transition array. Task 2, for instance, enables
one to specify the energy units in the printout of the data as well as the “reference” level with regard to which the (excitation) energies
are taken. Task 3, moreover, also performs a transformation of the levels into a LS J -coupled basis [80] and lists the corresponding leading
contributions.

3.4.3. Manipulation of configuration lists and mixing coefficient files

If C (-- Manipulation of GRASP92 .csl lists and .mix files) is chosen, we will see the submenu:

C

Select from the menu:

1 - Exclude a number of CSF from a GRASP92 .csl list.
2 - Split a GRASP92 .csl list into J^P level groups.
3 - Merge two .csl lists from GRASP92 with the same core.
4 - Merge two .csl lists from GRASP92 with different cores.
5 - Condense a .csl list from GRASP92 on a single weight criterium.
6 - Condense a .csl list from GRASP92 as above but for some given levels only.
7 - Reduce a .mix file from GRASP92 using level numbers.
8 - Reduce a .mix file from GRASP92 using symmetry properties (J and P).
9 - Generate a pair-list from a given .csl list with regard to a reference list.

r - Return to the main menu.

These features enables one to split, merge or condense some given .csl lists from Grasp92 due to further criterions which can be
specified interactively. They also enable one to “remove” certain eigenvector (contributions) from a mixing coefficient file or configuration
state list if these CSF have zero Hamiltonian matrix elements with regard to a given reference list of CSF.

3.4.4. Some miscellaneous features

If we choose M (-- Miscellaneous) from the main menu of the Toolbox, the submenu:

M

Select from the menu:

1 - Effective charge of a given orbital.
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2 - Effective radial charge or charge density of a selected ASF.

4 - GRASP92 grid-parameter calculator.

r - Return to the main menu.

provides us with features to calculate the effective (radial) charge of either a given orbital a = (na,κa),

ρa(r) =
r

∫

0

ds
(

P2
a (s) + Q 2

a (s)
)

(42)

or atomic state function ψα(P JM) from ansatz (7)

ρα(r) =
∑

a

q̄α,aρa(r), (43)

and where q̄α,a refers to the mean occupation number of orbital a for the state ψα . These effective radial densities appear frequently in the
semi-classical collision theory in order to account for a given impact parameter b the screening of the nuclear charge by the (surrounding)
electrons [81]. In this submenu, we also provide a grid-parameter calculator that help determine the size of the grid or number of grid
points, provided that the other grid parameters are given by the user.

These few (sub-)menus give a first impression about the Toolbox of the Ratip program; several other features already exists or might
be added in the future and can be easily explored interactively.

3.5. Distribution and installation of the code

At present, as explained above, only those components of the Ratip program are distributed which have been tested and applied
already in a good number of case studies, and which were summarized in Sections 3.3 and 3.4. For these components, the source code is
comprised within 38 modules and four libraries which need to be compiled and linked to the code separately. The libraries libblas.a,
libdvdson.a, liblapackd.a and liblapacku.a are related to some subroutines from Grasp92 [6] and can be linked directly from
this code, if Grasp92 has been properly installed before. However, these libraries are appended here again for the sake of completeness.

All source code is provided by the ratip-2012 root directory which, in addition, includes several make files for generating the
executable as well as test suites for various components. As for the Relci component before [35], the command make -f make-
component generates the executable of the corresponding component (i.e. xauger, xcesd, xeinstein, xphoto, xrelci, . . . ).
However, for using these makefiles, the script make-environment need to be adapted to the local environment and sourced in
order to define a number of global variables for the compilation and linkage of the program. This script facilitates the use and transfer
of the makefiles if the local architecture is to be changed, or if another compiler (or flags) are to be used, while the structure of the
individual makefiles remains quite simple. Both, previous as well as the present version of Ratip has been found portable (more or less
easily) to different compilers, including gfortran (up to version 4.6, recently), and can thus be used on different platforms.

The ratip-2012 root directory is distributed as a compressed tar file ratip-2012.tar.gz, including all the makefiles, subdirec-
tories and a short Read.me. From this file, the root is restored by the command tar -xvf ratip-2012.tar. The simple structure
of the ratip root will facilitate the extension of the Ratip program by further components in the future; in fact, this is readily achieved
by appending the additional modules, (main) programs, and corresponding makefiles. Since several coworkers helped in testing the code
and analyzing results from the various components, this modular structure ensures that additional code developments can be performed
and that the maintenance on both, the user and developer side, still remains straightforward.

4. Test examples

As obvious already from Fig. 1, example calculations can be displayed and discussed here only for a (very) few components of the Ratip

program. Especially, we wish to show here how the various program components do work together and how some (small-scale) examples
may serve also as test of the local installation. For this reason, we shall consider the (sequential) double ionization of atomic cadmium
which has been observed with synchrotron light between about 40–200 eV, and which is known to proceed predominantly via the single
ionization of a 4d or 4p electron, and followed by a subsequent Auger decay of the inner-shell excited Cd+ hole state [82]. For these test
computations, we here assume that all bound-state wave functions were generated (before) by means of the Grasp92 program [6]; these
wave functions are provided in the subdirectories test-photo and test-auger within the ratip-2012 root directory. In Section 4.3,
moreover, we shall demonstrate a few quick “calls” to the Toolbox component, and by making use of the same wave functions.

Of course, more advanced case studies (and tests) can be made by the user by running these or other components of the Ratip program,
and by following the corresponding interactive dialogs. Usually, a basic understanding of the behavior of the active electron(s) and the
atomic levels, which are involved in the underlying (atomic) process, should be sufficient in order to generate meaningful results. A few
further tests of the Ratip code are provided also in other test-component subdirectories within the ratip-2012 root and are briefly
described in the corresponding Read.me-component files.

4.1. 4p and 4d photoionization of atomic cadmium

In Ref. [82], the double ionization of atomic cadmium by extreme ultra-violet (EUV) synchrotron radiation was investigated in detail.
For such a low-intensity light source, the double ionization to the Cd2+4p64d10 1S0 ground state mainly proceeds through the (photo-)
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ionization and subsequent Auger decay of a 4d hole state and the formation of corresponding correlation satellites, whereas the direct

double ionization were observed to be weak. In this work, angle-integrated single-photon double ionization electron spectra of Cd were
measured at photon energies between 40–200 eV, both below and above the 4p threshold. Moreover, a multielectron coincidence tech-
nique was employed to reveal the complete electron pair energy distributions, and this gave rise to important information about the
double ionization processes involved.

In the analysis of the observed electron spectra, MCDF calculations helped to clarify the main mechanisms for the formation of the
Cd2+ ground state. Starting from the 4d105s2 1S0 ground state of neutral Cd (Z = 48), photoionization and Auger computations have been
performed in order to better understand the photo- versus autoionization as well as the associated electron spectra. Typically, the succes-
sive ionization first leads to either a 4p or 4d hole state, and subsequently to a Cd2+ ion. Apart from the (nominal) 4d105s2 , 4d105s and
4d10 reference configurations of the neutral atom as well as the singly and doubly-charged ions, all single and double excitations into the
5p, 5d, 6s, 6p, and 7s shells were taken into account in a series of calculations with systematically enlarged wave functions in order to
provide a proper flexibility for the description of the (photo-)ionization and subsequent decay processes. For open d-shell structures, how-
ever, the size of the wave function expansions increases so rapidly that no attempt was made to include further virtual excitations in the
construction of the wave functions. Moreover, the orbitals were optimized on the basis of the Dirac–Coulomb Hamiltonian (cf. Section 2.2)
and the Breit interaction was included into the low-lying level structure of cadmium, while further QED corrections remain negligible
typically as long as no deep core shells are involved into the ionization process.

Here, we shall not recall all details from the computations in Ref. [82] but restrict ourselves to single-configuration calculations in
order to demonstrate the use of the Photo and Auger components. For the 4d photoionization of the 4d105s2 1S0 ground level, the cross
section for producing some final-ionic level |ψ f 〉 = |ψ(P f J f )〉 is obtained within the electric-dipole approximation by

σ (P f J f ) =
4π2αω

3(2 J i + 1)

∑

κc , Jt

∣

∣D(ω; J f P f ,ǫκc : Jt Pt)
∣

∣

2
(44)

and can readily be calculated by means of the Photo component. In formula (44), the summation over the scattering states runs over
all possible partial waves of the photoelectron with kinetic energy ǫ = E i + ω − E f as well as over the allowed continuum states |ψt〉 ≡
| J f P f ,ǫκc : Jt Pt〉 with total angular momentum J t = 1 and odd parity.

In the subdirectory test-photo, we have generated (single-configuration) wave functions for the initial 4d105s2 1S0 ground level
of neutral cadmium and the four (4p54d10 + 4p64d9)5s2 2P1/2,3/2 and 2D3/2,5/2 levels of the photoion by means of Grasp92 and the
Relci component. These wave functions are provided by the files cd-neutral-sc-csl.inp, cd-neutral-sc-scf.out and cd-
neutral-sc-relci.mix for the neutral atom and by cd-singly-sc-csl.inp, ... for the photoion. The calculation of the
photoionization cross sections (44) is then achieved with the help of the Photo components and by following the interactive dialog
(cf. Section 3.3.4)

> ../xphoto
PHOTO: Calculation of photoionization cross sections, angular distribution parameters,
and others (Fortran 95 version).

Enter a file name for the photo.sum file:
photo-neutral-singly-sc.sum
Enter the name of the isotope data file:

isodat48
loading isotope data file ...
... load complete;

Enter the transition multipoles, e.g. E1 M2 ... :
E1
Which units are to be used to enter and to print the energies of the continuum orbitals ?

A : Angstrom;
eV : electron volts;
Hartree : Hartree atomic units;
Hz : Hertz;
Kayser : [cm**(-1)];

eV
Enter the maximal energy of the photo lines (in eV) to built-up the radial grid;

300.
The photon energies can be entered either individually or by
an appropriate interval and step size.
The default is a list of individual energies; revise this ?

y
Enter an interval of photon energies and a corresponding stepsize;
E_lower E_upper delta-E:

50. 151. 50.
Modify default set-up and printout of the program ?
y
Select individual transitions ?

n
Include exchange interactions into the generation of the continuum waves ?

y
Calculate angular distribution parameters ?

y
Calculate spin polarization parameters ?
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n
:
:

from which we display only the first few lines here; all the answers to this “dialog” are given also within the file job-photo-cd
in the subdirectory test-photo and can be executed more conveniently by the command xphoto <job-photo-cd. As seen from
this dialog, we restrict the computations to the electric-dipole amplitudes and select photon energies between 50 and 151 eV, and
with a given stepsize of 50 eV. Moreover, all (photo-)transitions between the initial 4d105s2 1S0 ground level and the four final levels
of the (4p54d10 + 4p64d9)5s2 configurations are taken into account, including the exchange interaction between the photo electron and
the bound-state electron density. Apart from the photoionization cross sections (as default), the angular distribution parameters β2 are
calculated in Babushkin (length) and Coulomb (velocity) gauge but no spin-polarization parameters are selected for the present run.

While the standard output of the Photo component is printed to screen (or some log-file if specified at the beginning), all important
results are compiled also in the photo-neutral-singly-sc.sum summary file. This file contains a short tabulation for each photo
line

Results for PI line from the transition 1 - 1: 0 + ----> 5/2 +
--------------------------------------------------------------------------------

Photon energy = 5.00000000E+01 eV
Electron energy = 3.38292891E+01 eV
Total cross section = 1.89559595E+01 Mb (Babushkin gauge)

= 1.25584454E+01 Mb (Coulomb gauge)
Beta = 3.14584243E-01 ; 3.06212327E-01 (Babushkin; Coulomb)
Alignment (final) = -2.30680218E-01 ; -2.09351082E-01 (Babushkin; Coulomb)

Kappa Total J^P Mp Gauge Amplitude Real-Amplitude Rate (Mb) Phase
--------------------------------------------------------------------------------------------------

p 1- E1 Babushkin 1.832E-03 -4.027E-03 -4.424E-03 5.48137E-04 3.569E+00
p 1- E1 Coulomb 1.499E-03 -3.294E-03 -3.619E-03 3.66793E-04 3.569E+00
f- 1- E1 Babushkin 4.529E-03 9.085E-04 -4.620E-03 5.97591E-04 1.769E+00
f- 1- E1 Coulomb 4.296E-03 8.616E-04 -4.381E-03 5.37567E-04 1.769E+00
f 1- E1 Babushkin 1.773E-02 -6.484E-03 -1.888E-02 9.98304E-03 1.220E+00
f 1- E1 Coulomb 1.427E-02 -5.220E-03 -1.520E-02 6.46852E-03 1.220E+00
:

as well as tables for the cross sections, angular distribution parameters and the alignment of the photo ions.

Individual and total photoionization cross sections :
-----------------------------------------------------

-------------------------------------------------------------------------------------
LevI-LevF I- J / Parity -F omega e-Energy CS-Babushkin CS-Coulomb

(eV) (eV) (Mb) (Mb)
-------------------------------------------------------------------------------------

1 - 1 0 + 5/2 + 5.00000E+01 3.38293E+01 1.896E+01 1.256E+01
1 - 1 0 + 5/2 + 1.00000E+02 8.38293E+01 5.206E+00 2.543E+00
1 - 1 0 + 5/2 + 1.50000E+02 1.33829E+02 1.656E-01 1.229E-01
1 - 2 0 + 3/2 + 5.00000E+01 3.31614E+01 1.337E+01 9.612E+00

:
-------------------------------------------------------------------------------------

Photoionization angular parameters:
-----------------------------------

--------------------------------------------------------------------------------------------------
LevI-LevF I- J / Parity -F omega (eV) e-Energy (eV) Beta Beta Beta

(Babushkin) (Coulomb) (Average)
--------------------------------------------------------------------------------------------------

1 - 1 0 + 5/2 + 5.00000E+01 3.38293E+01 3.146E-01 3.062E-01 3.104E-01
1 - 1 0 + 5/2 + 1.00000E+02 8.38293E+01 1.369E+00 1.466E+00 1.418E+00
1 - 1 0 + 5/2 + 1.50000E+02 1.33829E+02 5.131E-01 -4.277E-01 4.270E-02
1 - 2 0 + 3/2 + 5.00000E+01 3.31614E+01 3.503E-01 3.434E-01 3.469E-01

:
-------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------
LevI-LevF I- J / Parity -F omega (eV) e-Energy (eV) Alignment Alignment Alignment

(Babushkin) (Coulomb) (Average)
-------------------------------------------------------------------------------------------------

1 - 1 0 + 5/2 + 5.00000E+01 3.38293E+01 -2.307E-01 -2.094E-01 -2.200E-01



S. Fritzsche / Computer Physics Communications 183 (2012) 1525–1559 1553

1 - 1 0 + 5/2 + 1.00000E+02 8.38293E+01 -2.889E-01 -2.946E-01 -2.918E-01
1 - 1 0 + 5/2 + 1.50000E+02 1.33829E+02 -7.145E-01 -6.853E-01 -6.999E-01
1 - 2 0 + 3/2 + 5.00000E+01 3.31614E+01 -2.227E-01 -2.227E-01 -2.227E-01
:

-------------------------------------------------------------------------------------------------

For a further analysis of the 4d and 4p photoelectron spectra, of course, more involved calculations need to be carried out since, for cad-
mium especially, the ionization of the subvalence shells is often accompanied also by some 5s → (6s+ 7s+ 5p + 5d) shake-up transitions.
This, in turn, also affects the subsequent autoionization to the 4d10 1S0 ground level and to a rather large number of 4d9nlj2S+1L J final
levels of Cd2+, and this leads overall to quite complex electron spectra from which we considered here only some of the main features.

4.2. Subsequent Auger emission from the 4p and 4d hole states

To explore the subsequent autoionization of the 4p−1 and 4d−1 hole states of Cd+, we can make use of the Auger component and the
wave functions in test-auger. The final states of the prior photoionization process, that arise from the (4p54d10+4p64d9)5s2 configura-
tions, now become the initial states of the autoionization, while further wave functions need(ed) to be generated for the 4p6(4d10 +4d95s)
levels of Cd2+. As before, we make use here of pre-generated wave functions cd-singly-sc-csl.inp, ... for the Cd+ ions and
cd-doubly-sc-csl.inp, ... for the Cd2+ ions, respectively. Moreover, the input data for the Auger component are compiled in
the file job-auger-cd and can be executed by invoking ../xauger < job-auger-cd in the test-auger subdirectory. Not much
need to be said about this input in which we include again the exchange interaction for the outgoing electron but no Breit interaction
into the (Auger) transition amplitudes and rates. In these single-configuration calculations, only the two 4p−1 holes states (levels 3 and 4
in cd-singly-sc-csl.inp, ...) contribute to the subsequent Auger emission as we will see again in the next subsection.

Apart from the standard output, which is printed to screen, all major results are listed again in the file auger-singly-doubly-
sc.sum. This summary file contains a short table about each Auger line as well as a tabulation about all rates and lifetimes

Results for Auger transition 3 - 1 : 3/2 - ----> 0 +
------------------------------------------------------------------

Energy = 54.1827348516964 eV
Total rate = 278329046342.734 1/s

Kappa Amplitude Real-Amplitude Rate (1/s) Phase
---------------------------------------------------------------------------

p -9.744E-04 -3.494E-04 -1.035E-03 2.783E+11 1.227E+00
:
:
:

Individual Auger rates :
------------------------

-------------------------------------------------------------
LevI-LevF I- J / Parity -F Energy (eV) Rate (1/s)
-------------------------------------------------------------

3 - 1 3/2 - 0 + 5.41827E+01 2.783E+11
3 - 2 3/2 - 3 + 4.57040E+01 1.476E+14
3 - 3 3/2 - 2 + 4.54448E+01 1.319E+14
3 - 4 3/2 - 1 + 4.50110E+01 8.989E+12
3 - 5 3/2 - 2 + 4.45783E+01 1.562E+14
4 - 1 1/2 - 0 + 6.00086E+01 4.084E+06
:

-------------------------------------------------------------

Auger lifetimes, total rates and widths :
-----------------------------------------

----------------------------------------------------------------------------------------
Level Lifetime Total rate Width

-------- ---------- --------------------------------------------
Seconds 1/s Hartrees Kaysers eV

----------------------------------------------------------------------------------------
3 2.2474550D-15 4.4494773D+14 1.0762769D-02 2.3621548D+03 2.9286998D-01
4 2.6045523D-15 3.8394314D+14 9.2871390D-03 2.0382914D+03 2.5271602D-01

----------------------------------------------------------------------------------------

In all these tables, the level numbers refer to the Grasp92 calculations for the corresponding initial and final (bound) states of the
considered process. From the tabulation of the (individual) Auger rates, we can easily identify the 4d10 1S0 ground level (level 1 of the
final states) as well as the 3D3 , 3D2 , 3D1 , and 1D2 levels of the 4d95s configuration (levels 2–5). In the measurements [82], the latter four
levels of the 4d95p configuration were partially resolved and identified by means of (level) data known from optical spectroscopy.
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For energies above of the 4p and 4s ionization threshold (not seen in this single-configuration calculations), the observed electron
spectra for the double ionization of atomic cadmium are strongly influenced by Coster–Kronig (CK) transitions. This was seen in Ref. [82]
in the intensity of the 4d85s2 states which are mainly populated by super-CK decay of a 4p hole. However, in order to resolve the 4p
photoelectron from the CK electron, photon energies above 100 eV are required due to large lifetime width. Rather independent of the
initial photon energy, the Cd2+ ground state appears to always be reached through the same excited Cd+ states in this energy range,
despite the opening of various inner shells at the higher photon energies. In practice, this CK decay can also be analyzed by means of the
Auger component but has not been included in the present example in order to keep the (amount of) input and output data feasible.

4.3. Making use of the Toolbox

To understand the possible excitation and decay paths in the ionization of atoms and ions, one often wishes to first analyze the level
structure of the different charge states that are involved into some process. For example, an ion can autoionize only if its (initial) state
is embedded into the continuum of the next higher charge state, i.e. if Etotal(N) − Etotal(N − 1) > 0. By using the Toolbox of the Ratip

program and the wave functions prepared in Sections 4.1 and 4.2, we can easily identify the allowed decay channels by displaying the
excitation energies of all levels from the 4p64d10 + (4p54d10 + 4p64d9)5s2 + 4p6(4d10 + 4d95s) configurations together for the lowest
three charge states of Cd as obtained in the Grasp92 computations above. This is achieved by (invoking the Toolbox component within
the test-auger directory)

> ../xtoolbox

Select from the menu:

A - Level energies, notations and weights.
C - Manipulation of GRASP92 .csl lists, .mix and .out files.
D - Format or unformat a GRASP92 file.
E - Properties of atomic orbitals.

M - Miscellaneous.
N - Nuclear distributions and parameters.

Q - Quit the program.
A

Select from the menu:

1 - Energy levels and level splittings from one or several .mix files.
2 - Energy levels and level splittings, extended form.
3 - Energy levels and level splittings from one .mix file with LSJ notations.
4 - Display the major jj-coupled CSF and their weights to atomic levels.
:

2
Returns the energy levels and excitation energies of some ASF from one or several .mix files.
For the printout of the excitation energies, the energy units, an ascending/\xch{descending}{decending} order,
and the level, relative to which the excitation energies are taken, can be selected below.

Continue (y/n) ?
y
Which units are to be used to enter and to print the energies of the continuum orbitals ?

A : Angstrom;
eV : electron volts;
Hartree : Hartree atomic units;
Hz : Hertz;
Kayser : [cm**(-1)];

eV
Energies are printed in ascending order; use a \xch{descending}{decending} order instead ?

n
Enter the level number of the reference (zero-) level:

1
Enter one (or several) .mix mixing coefficient file(s):
../test-photo/cd-neutral-sc-relci.mix cd-singly-sc-relci.mix cd-doubly-sc-relci.mix

-----------------------------------------------------------------------------------
Total Level Excitation energy

[File / energy splitting from the reference
Level J Parity [Level] (Hartrees) (eV ) (eV )
-----------------------------------------------------------------------------------
1 0 + [ 1, 1] -5.58947727E+03 0.00000000E+00 0.00000000E+00
2 5/2 + [ 2, 1] -5.58888301E+03 1.61707109E+01 1.61707109E+01
3 3/2 + [ 2, 2] -5.58885846E+03 6.67845653E-01 1.68385566E+01
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4 0 + [ 3, 1] -5.58859175E+03 7.25768728E+00 2.40962438E+01
5 3 + [ 3, 2] -5.58828016E+03 8.47873496E+00 3.25749788E+01
6 2 + [ 3, 3] -5.58827064E+03 2.59170701E-01 3.28341495E+01
7 1 + [ 3, 4] -5.58825469E+03 4.33828684E-01 3.32679782E+01
8 2 + [ 3, 5] -5.58823879E+03 4.32712839E-01 3.37006910E+01
9 3/2 - [ 2, 3] -5.58660057E+03 4.45782877E+01 7.82789787E+01

10 1/2 - [ 2, 4] -5.58638647E+03 5.82584204E+00 8.41048207E+01
-----------------------------------------------------------------------------------

Instead of the (energetically) lowest level of all three .mix files, we could have selected another energy unit as well as another reference
level with regard to which the excitation energies are calculated and displayed. As easily seen from this tabulation, only levels 3 and 4
(from the singly-charged ion in cd-singly-sc-relci.mix-dcb) can contribute to the subsequent Auger emission as levels 1 and 2
are energetically to low.

As described in Section 3.4, the Toolbox helps in solving a number of small but (more or less) frequently occurring tasks. Further tasks
are likely to be added as new requests and applications of the Ratip program will occur. The user is encouraged and may benefit from
knowing and exploring the variety of tasks that can be handled by the Toolbox component. Here, we can only display a few selected
tasks; as a final example, let us consider the overlap of the one-electron orbitals between the 4p−1 and 4d−1 hole states of Cd+ and the
4p6(4d10 + 4d95s) levels of Cd2+. This is obtained by calling again the xtoolbox (in the test-auger subdirectory) and gives rise to

> ../xtoolbox

Select from the menu:

:
E
Select from the menu:

1 - Radial properties of atomic orbitals.
2 - Overlaps between two not quite orthogonal orbital sets.

r - Return to the main menu.
2
Calculates the ’overlaps’ of orbitals with the same symmetry for two not quite orthogonal
sets of orbitals. However, the orbitals within each set are supposed to be orthogonal.

Continue (y/n) ?
y
Enter the name of the initial-state GRASP92 configuration symmetry list file:
cd-singly-sc-csl.inp
Loading configuration symmetry list file ...
There are 15 relativistic subshells;
there are 4 relativistic CSFs;
... load complete.
Enter the name of the final-state GRASP92 configuration symmetry list file:
cd-doubly-sc-csl.inp
Loading configuration symmetry list file ...
There are 15 relativistic subshells;
there are 5 relativistic CSFs;
... load complete.
Enter the name of the initial-state Radial WaveFunction File:
cd-singly-sc-scf.out
... load complete;
Enter the name of the final-state Radial WaveFunction File:
cd-doubly-sc-scf.out
... load complete;

Overlap integrals <n_f kappa | n_i kappa> :
-------------------------------------------

+ s symmetry: < 1s | 1s > = 1.0000E+00 < 1s | 2s > = -3.8034E-06 < 1s | 3s > = -1.9139E-06
------------ < 1s | 4s > = -1.0598E-06 < 1s | 5s > = -3.0317E-07 < 2s | 1s > = 3.8033E-06

< 2s | 2s > = 1.0000E+00 < 2s | 3s > = -2.2078E-05 < 2s | 4s > = -1.5510E-05
< 2s | 5s > = -4.4588E-06 < 3s | 1s > = 1.9137E-06 < 3s | 2s > = 2.2075E-05
< 3s | 3s > = 1.0000E+00 < 3s | 4s > = -1.8095E-04 < 3s | 5s > = -4.7061E-05
< 4s | 1s > = 1.0571E-06 < 4s | 2s > = 1.5478E-05 < 4s | 3s > = 1.8073E-04
< 4s | 4s > = 9.9999E-01 < 4s | 5s > = -2.6449E-03 < 5s | 1s > = 3.2821E-07
< 5s | 2s > = 4.7586E-06 < 5s | 3s > = 4.9098E-05 < 5s | 4s > = 2.7600E-03
< 5s | 5s > = 9.9553E-01

+ p- symmetry: < 2p-| 2p-> = 1.0000E+00 < 2p-| 3p-> = -3.6302E-06 < 2p-| 4p-> = 5.1416E-05
------------ < 3p-| 2p-> = 3.5536E-06 < 3p-| 3p-> = 1.0000E+00 < 3p-| 4p-> = 1.4899E-03
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< 4p-| 2p-> = -5.1420E-05 < 4p-| 3p-> = -1.4898E-03 < 4p-| 4p-> = 1.0000E+00

:

While the inner-shell electrons are not much affected by the (auto-)ionization of the system, a noticeable overlap occurs for the (sub-
)valence shells and provides some qualitative insight why shake-up and shake-off processes play such an important role in the double
ionization of cadmium.

5. Summary and outlook

The Ratip program for relativistic calculations of atomic transition, ionization and recombination properties has been presented and
some of its recent applications briefly reviewed. Over the past decade, the number of properties that can be studied by this program has
been increased continuously and has made Ratip a powerful tool for rather a broad community in physics, from atomic photoionization
and electron spectroscopy to the study of highly-charged ions, the spectroscopy of heavy and superheavy elements, the generation of
atomic data for astro and plasma physics, and up to the search for time-reversal violating interactions in atomic systems. Based on Fortran
90 and its subsequent standards, Ratip combines the numerical strength of Fortran with an object-oriented approach in dealing, for
example, with quantum numbers, atomic and configuration states, or many-electron transition amplitudes.

From the various properties (and the code that is necessary to deal with them), those components of the Ratip program are explained
in more detail and distributed in the present distribution, which have been tested already in a number of case studies. In particular, all
components from Sections 3.3 and 3.4 are provided in the present distribution of the program. Other components still need either further
development or more tests, and these components will be made available only later by some up-date of the program.

As already indicated in Fig. 1, there are several further program components which are currently under work or test, and which will
make Ratip useful for future investigations. Apart from the incorporation of plasma effects within some mean-field approach into the
calculation of transition amplitudes and probabilities of multiply charged ions [72], recent developments concern the following — given in
alphabetic order, and more or less completed — components:

• Conci generates approximate many-electron continuum states as they occur in the summation over intermediate states in all second-
and higher-order transition processes. This component makes use of the one-electron orbital functions from the Spectrum component
to construct ASF with one or more electrons in the continuum. An approximate many-electron spectrum is generated by diagonalizing
the Hamiltonian matrix similar as in Relci but with additional restrictions upon the “free–free” matrix elements of the Hamilto-
nian. Different approximations are currently explored but not much is known so far how well such a computational scheme can be
employed for describing second- or higher-order processes.

• Coulex calculates Coulomb excitation amplitudes, cross sections and alignment parameters in ion–atom collisions. This component is
based on a semi-classical picture in which the projectile passes the target at some distance b, the so-called impact parameter, with a
fixed velocity βp = v p/c along a straight-line trajectory, and where c is the speed of light here. A Coulomb excitation (or ionization)
of the projectile may then occur in this picture due to the Lienard–Wiechert potential of the target atoms, as seen by the projectile
electrons. In the Coulex component, the integration over the time and impact parameter is carried out analytically by means of a
Fourier transformation, and the so obtained excitation amplitude is decomposed into a series of multipole components [83]. This
approach has been found useful especially for multiple and highly-charged ions; cf. Ref. [84].

• Dierec helps calculate energies, rates, capture cross sections and resonance strengths for the dielectronic recombination of atoms and
ions. It makes use of three sets of wave functions to represent the initial (N − 1 electron) states before the capture, the intermediate

resonant states as well as the final states after the radiative stabilization has taken place. Dierec calls internally the Auger and
Einstein components to automatically generate and combine all required Auger and radiative amplitudes for the property of interest
in the given recombination system. All radiative amplitudes are calculated simultaneously in both, Babushkin (length) and Coulomb
(velocity) gauge, in order to recognize possible limitations in the computational model.

• Eimex supports the calculation of electron-impact excitation cross sections and collision strengths following the work of Hagelstein
and Jung [85]. The collision strengths are closely related to the electron–electron interaction amplitudes in Section 2.3 but here
includes a free electron on both sides, in the initial and final states of the transition matrix.
Although the standard decomposition into angular coefficients and radial integrals can be applied, and thus allows to include both
the Coulomb and Breit interaction into the collision strength, special care has to be taken in evaluating the radial parts of these
amplitudes. In the Eimex component, all required continuum orbitals are generated “on fly” in course of the computations.

• Hfs evaluates the diagonal and nondiagonal hyperfine amplitudes (30) from Section 2.3 between atomic levels of the same parity and
for some given total spin and moments of the nucleus. These amplitudes can further be utilized to calculate the hyperfine levels (28)
by diagonalizing the Hamiltonian H = HDFB + Hhfs by means of the Toolbox component or to calculate hyperfine-quenched transition
rates and lifetimes of isotopes with non-zero nuclear spin. In the latter case, the transition amplitudes need to be calculated before

with the Einstein or Reos programs. Moreover, the hyperfine amplitudes from Hfs are currently applied also to explore the hyperfine
splitting of the (low-lying) dielectronic resonances in the nonradiative electron capture of highly-charged ions.

• Isotope shift parameters can be calculated by some (not yet distributed) task of the Toolbox. For two given isotopes with mass
numbers A > A′ , the isotope shift can be parametrized as

δν A,A′ =
(

Mnms + Msms) A − A′

AA′ + F δ
〈

r2
〉A,A′

(45)

where Mnms and Msms refer to the normal and specific mass shifts, respectively, and where F is known as the field-shift coefficient.
From the individual transition frequencies, which need to be calculated separately for three or more isotopes, the mass-shift M

and field-shift parameters F are obtained by solving Eq. (45) for different triples of isotopes. Here, all level or transition amplitude
calculations are supposed to have been performed before by either the Relci component or Rci92 from Grasp92; however, no attempt
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has been made yet to incorporate the relativistic recoil corrections to the specific mass shift operator [86]. While formula (45) assumes
that all higher powers in the charge distribution, δ〈r4〉A,A′

, δ〈r6〉A,A′
, . . . can be captured simply by means of a single (field-shift)

parameter F [87], this procedure enables one to deal with all isotope effects within the same computational framework. For several
medium and heavy elements, in fact, laser-spectroscopic measurements of the isotope shifts have been carried out for different chains
(of isotopes) in order to derive useful information about the nuclear spins and charge radii of different (radioactive) isotopes.

• Multiphoton has been designed as new component for estimating second-order two-photon transition amplitudes. Again, such cal-
culations include the summation (integration) over a — more or less complete — set of intermediate states as generated, for example,
by means of the Conci component. In the Multiphoton component, the multipole decomposition of the photon field is utilized in
order to explore the effects of the non-electric dipole contributions (other than E1) to the two-photon excitation and decay rates [77].
If appropriate, this approach is planned to be extended to various three- and multi-photon transition amplitudes in order to investigate
various direct multi-photon ionization processes.

• Resonance is developed to evaluate the (resonant) photoionization cross sections and angular parameters across one or a few au-
toionizing resonances. This component utilizes the transition amplitudes files from the Photo and Auger components and combines
these amplitudes to compute the shape of individual resonances and to determine their Fano parameters [88].

• Schiff helps calculate various parity- and time-reversal violating amplitudes and enhancement factors that gives rise to atomic
electric-dipole moments in second-order perturbation theory. These amplitudes include the (P , T )-odd interactions due to nuclear
Schiff moment as well as various (P , T )-odd electron–nucleon interactions. These interactions usually depend on the nuclear spin and
display strong singularities near to the nucleus [89]. The electronic enhancement factors due to these interactions are important for
several on-going experiments on diamagnetic atoms, such as Xe, Hg and Ra [90].

• Spectrum computes a complete but discretized one-particle spectrum for either a bare nucleus or predefined (spherical) mean-field
potential. This mean-field potential is derived from the occupation numbers of an atomic states, as either the direct part of the Dirac–
Fock or some x-alpha potential [91]. The Dirac equation is solved for this potential and for each symmetry κ (the one-electron total
angular momentum and parity) in a spherical box by using B-splines; these solutions are afterwards interpolated into the standard
grids of Grasp92 and Ratip. However, since all orbitals are normalized to one, like the bound-state orbitals, these orbital functions
represent (spherical) wave packets with a certain energy distribution rather than electrons with well-defined energy.
The one-electron orbitals of the Spectrum component are generated mainly for use by the Conci program in order to construct
approximate continuum states and for an (approximate) integration over the continuum.

Many of these recent developments mentioned here have been made in response to some given experiment or the requirement of
users, and hence have been developed first of all with a particular atom or ion in mind. Therefore, these components need to be further
generalized in order to make them applicable to a larger range of atoms and shell structures as it is typical for most components of the
Ratip program.

As seen from the list of “new” components above, much of the present interest in studying the excitation and ionization dynamics
of atoms focus on second- and higher-order processes that formally include a summation of transition amplitudes over the (complete)
spectrum of the system. Apart from the discrete bound states, this generally requires an integration over the continuum part of the
many-electron spectrum. Obviously, this is a highly non-trivial task, especially for multi-electron systems, since it requires to generate the
continuum and to evaluate the free–free transition amplitudes. Examples of such second-order processes are the (single-photon) double
ionization of atoms, the two-photon excitation and decay, sequential two-photon processes, double Auger processes, and several others.
Any implementation of these physical properties requires first of all a good “physical insight” into the relevant part of the many-electron
spectrum in order to reduce it to a finite and well feasible set of intermediate states. In Ratip, we will continue to developing the
Spectrum and Conci components in order to generate an intermediate set of atomic states independently and before these states are
utilized to compute transition amplitudes. I hope this will make Ratip ready for a new generation of experiments that are performed at
present or in the near future at free-electron lasers or some other high-intense light sources.
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