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Abstract
The theory of 1 and of spherical tensor op leads to algebraic expressions which are usually

5! )

written in terms of gencralized Clebsch-Gordan coefficients and/or Wigner n-j symbeols. In principle, the evaluation and
simplification of such expressions is a straightforward task but it can alse become extremely cumbcrsome i more complex

applications, for instance, in atomic and nuclear structure theory or in the study of angular d properties. In these
fields, simplification techniques are either based on graphical methods or on the explicit kmwledgc of special values and
sum rules which can be found in some standard form in the lit The direct application of these rules, however, is

often laborious due to a large number of symmetric forms of the Wigner and related symbols and due to the complexity of
the expressions in Racah aigebra,

In order to facilitate the evaluation of Racah algebra expressions, a set of Maple procedures is presented for interactive
work. In this paper, I first define proper data structures o deal with Racah algebra. These structures are the basis to provide
procedures for various numerical computations. The use of rccursion formulas and simplifications of typical expressi
due to special values is also supported here. The impact of this interactive teol on atomic many-body perturbation theosy is

briefiy discussed.
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Memory required 1o execute with typical data: 100000 words

No. of bytes in distributed prog including test dara, er.:

363852

Distribation formas: ASCI

Keywords: Angular momcnmm. vector couphng. Wigner a-j sym-

bols, Racah algebra g D P
Nature of the physicai problem

Computer algebra (CA) is used 10 evaluate Wigner n—j symbols
and vector coupling coefficients and to simplify typical expres-
sions which appear by using Racah algebra lecbmqucs A set of
Maple ds for i ive work is p

Method of so'stion

The simplification of typical Racah algebra expressions is based
on the numerical computation of Wigner n-j symbols and the
explicit knowledge of symametrics. special values, orthogonality
propertics, ard sum rules. To apply these rules by means of CA
weﬁmde&ned‘aemnknmhnpmmonanda!sopmpcrdm
structures for the internal rep jon of lypical cxp

These structures form the hasis to set up a ge. “ral scheme for
the simplification of Racah expressions in a series of steps. All
symmetric forms of the Wigner n-j symbols are taken into ac-
count. This paper, in particular, deals with the implementation of
numerical computations for Racah algebra expressions, recursion
formulas, and with simplifications due to special values.

Restrictions onto the complexity of the problem
The Racah package is mainly based on the properties which are
knowr for as Wigner 3-j ard 6-j symbols. For 9-j symbols, we
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ways; they are not included in this program.

In the present version, we only implement rccursion relations
for 3-j symbols. Ferthermore, special vaiaes are restricted to a
set of 3-j and 6-j symbols as they are given in the tabulation
of Edmonds {2], i.e. with quantum numbers which differ by no
more than 2. The full support for the simplification of general ex-
pressions due to orthogonality and sum rules which are known for
the Wigner symbols, however, will be the subject of forthcoming
work.

Unusual features of the program

All commands of the Racak package are available for intcrac-
tive work. The program is based on data siructures which are
suitable for almost any complexity of Racah algebra expressions.
More enhanced expressions which include the summation over
various quantum numbers, weight factors, some phase as well as
any number of n-j symbols are buiit up from simpler data struc-
tares. Wigner n-j symbols wiii aii arguments having integer or
half-integer values can be computed both as floaung pc.int num-
bcr (wuh a melSlon due to the global Digits variable) or as
ize the most im-
portant mathematica! relati forlhv: ipulation and comp
tion of typical expressions, the internal data structures, zs well as
all commands at the user level for quick reference. There is also
some on-lise help available. In addition to the classical symmetric
forms of Wigner symbols, the package enables to deal with (.
full extended range of symmetries due to Regge [3].

Typical running time
All examples of the long write-u > takee ohnve 20 senonds on an
IBM workstation.

Refs

will culy impicment a few sum rules. The nunerical compuation
of such bols, b is supp d. Therz is 1y a maxi-
mal number of 4 internal i iables which are pted
in the explicit numerical evaluation of Racah algebra expressions.
Higher n—j symbols (# = 12,15,...) could be defincd in different

LONG WRITE-UP

1. Introduction

{ 1] Maple is an blist p

algebra and a reg-
istered trademark of Waterloo Maple Inc.
2] AR. Edmonds, Angular M in Q Mech

{Princeton University Press, New York, 1957).
{3] T. Regge, Nuovo Cimento 10 (1958) 544.

The theory of angular momentum is practically indispensable for the study of quantum many-particle systems.
This theory is not only concerned with closed physical systems where the total angular momentum is conserved
and all properties, due to the isotropy of the space, arc independent of rotetions. Many other angular dependent
properties, for instance in atomic and nuclear scattering, are also invariant under some coordinate rotation
and can, thus, considerably be simplified by using the theory of angular momentum. To exploit rotational
symmetries, a very powerful mathematical technique - the algebra of irreducible tensor operators ~ was
developed by Racah [1] in the early forties. The first advanced applications of this technique dealt with atomic
and nuclear structure theory {2,3]; nowadays, however, there exists a large number of other applications in
particle physics as well as in atomic and molecular scattering.
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‘The power of Racah’s algebra is that it enables the analytic inicgration over angular coordinates in the
evaluation of many-particle matrix elements. If, for the moment, we consider an N-efectron system, the analytic
treatment of angular coordinates aflows one to reduce the problcm which depends on 3N spatial {and further
spin) coordinates to an equivalent one with only N (radial) ccordinates. Morcover, the use of Racah algebra
techniques separates geometrical factors from the actual physical interactions, thus providing a deeper insight
into the physics of many-particle systems.

The theory of angular momentum and various applications of the Racah algebra have been presented in severat
texts and monographs during the past (for a few selected examples? see Ref. [2-7]). In carlier times, many
different notations and symbols were first introduced into the literature. Nowadays, however, most presentations
of this theory are now based on the Wigner n-j symbols. These n-j symbols are algebraic quantitics with a
high symmetry which obey various orthogonality relations and sum rules. The application of siandard Rzcah
algebra techniques often results in rather complex expiessions including multiple sums of products of n-j
symbols. Even though the simplification of such expressions is, in a certain sense, straightforward using the
known symmetries and sum rules, work becomes extremely iaborious in more difficult cases. For that reason,
various graphical methods for the cvaluation of Racah algebra expressions have been developed during the tast
decades {8-10]. In such graphical schemes, the diagrammatic representation of the Racah algebra can also
be extended to include indications of phases and weight factors, but again the simplification process becomes
elaborate in more complex applications.

A new alternative is now offered by use of computer algebra (CA). Several CA programs and languages like
Maple?, Mathematica®, and others are available today. To exploit these facilities, I designed a program withia
the framework of Mapie to evaluaie and simplify typical Racah algebra expressions automatically. Attention
has been given to developing an interactive tool which is flexible and powerful enough for most applications.
Since the evaluation of more difficult expressions is known to be tedious and time-consuming, these facilities
might be useful for both, the active work with Racah algebra techniques as well as for studying the literature
if the reader wants to foliow up some derivation in detail.

In many computer languages, the calculation of individual n-j symbols is now supported by library sub-
programs. Such programs, however, are only spolicable in the final stage to perform numerical computation
of some formulas; they usually do not allow for any simplification of an algebraic expression. This restriction
alsn applies to special commands in Mathematica® which are available for the computation of n—j symbols.
The mzin intention of this work, by contrast, is the evaluation of algebraic expressions by applying various
techniques for simplification.

The Racah program will be presented in several parts. This paper here is first dedicated to define appropriate
date structures and to perform numerical computations on Wigner 5-j symbols and snore complex expressions
in Racah algebra. Various recursion formulas as well as the simplification of typical expressions by means of
special values is also incorporated in the current version. The full support for the evaluation of Racah algebra
expression by applying orthogonality and sum rules, on the other hand, is row under work and will be the
subject of a different part in this series.

In the next two sections, I will give a brief introduction to the coupling of angul and Wigner
n—-j symbols, followed by the definition of a Racah expression. At this stage, various strategies to simplify
general expressions are also explained. A few simpler examples, a summary to the Racah package as well as
various test cases are later described in Sections 4-6. The impact of such a computational tool on the study of
many-particle systems is diScussed with the example of atomic many-body perturbation theory. In this theory,

2 A rather complete bibliography can be found in Ref. 17].

3 Mapie is a registered trademark of Waterloo Maple Inc.

4 Mathematica is a registec2d trademark of h inc.

5 Mathematica recognizss a few special values known for n-j values but does not offer data structures to deal with more geners! Racah
algebra expressions.
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perturbation expansions for atomic properties are expressed in terms of Feynman-Goldstone diagrams [10];
for such expansions, then, Racah algebra techniques facilitate the analytic integration over angular coordinates
and help to reduce the diagrams up to some radial integration.

2. Wigner n—j symbols

Ciebsch~Gordan coefficients and Wigner n-j symbols (n = 3,6,9) play a dominant role in the coupling of
angular momenta and the decomposition of :educible representations of composed states. Let us first consider
some physical system which consists of two subsystems with definite angular momenta |jimy) and |jomg). A
wavefunction of the total system with angular momentum (J, M) can then be constructed according to

ltidM) = Y Ljimy) [jama) {jimy jomz | IM) (n

mymy

from the wavefunctions of the subsystems. The coefficients (jym; jam; | JM) in Eq. (1) are the Clebsch-Gordan
or vestor-coupling coefficients; here, we use the rotation of Biink and Satchler [6] which is also very similar
to that one by Edmonds [4]. Nowadays, however, the Clebsch-Gordan coefficients are often expressed in terms
of Wigner 3—j symbols,

i\ - v o2 s
(ramjamz | jams) = (= DyR=rrm [V ("n g -ma) . 2)
which possess much simpler symmetry properties. In Eq. (2), we applied the phase convention of Condon and
Shortley [11] and the abbreviation {a] = (2a + 1) frequently found in Racah aigebra. The 3-j symbols also
have some physical ing in the coupling of three lar momenta where they represent the probability
amplitude to yield a zero total angular momentr=m, J = 0. In much more detail, Clebsch-Gordan coefficients
and Wigpner 3-j symbols as well as important relations among them are explained, for example, in the textbooks
of Edmonds [4], Brink and Satchler [6] and Varshalovich et al. [7].

Apari from Wigner 3-j symbols, there can often be found so-called 6-j and 9-j symbols in the recoupling
of three and four angular momenta, respectively. They are written with curly brackets as { ;' j: :.3 } and

4 3

Jj1 js s
even higher rank (r =12, 15,...) can also be defined (see Ref. [7]); their definition, however, is not anymore

unique and they are much less important for practical applications. Mereover, in order to evaluate Wigner n-j
symbols with n > 9, these symbols are usually expressed in terms of muitiple sums over 3-j and/or 6-j
symbols. Thus, #-j symbols with n > 9 will not be considered here.

Many different notations have been used in the earlier literature to express quantities closely related to the
Wigner symbols. In the latest literaturc, however, the Wigner symbols are predominantly used. A rather complete
compilation of carlier notations can, for instance, be found by Rotenberg et al. [12] and in the monograph of
Varshalovich et al. [7]. I will also refer to these standard texts for most relations which are implemented in
th.e Racah program.

The Wigner n-j symbols (n = 3.6,9) are algebraic functions of six or nine arguments which are only defined,
i.c. nonzero, if all arguments fulfli proper conditions for the coupling of angular momenta. Addition2!ly, the

3- symbol, <J| non

v J2 3
{ Jja Js Je ¢ a few examples for these symbols will occur in Sections 4 and 6 below. Other n-; symbols of

PO £ is nonzero just for my +mz +m3 = 0. Tabulations for a large range of arguments
\#y htz m3

as well as various explicit expressions for the 3-j and 6-j symbols as sums of factorials are given in different
Refs. [4,12]. Appendix A shows the formulas which are applied for numerical computations in the present
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program. There also exist various integral representations of these symbols which need not to be considered
here. In a few special cases, the summation in the algebraic formulas can be carried out explicitly and the final
expressions are then often called special values. The same term will also be used below to characterize one
path in the simplification of Racah algebra expressions. Important special values are listed by Edmonds [4],
Appendix 2, and to a much larger extent by Varshalovich and co-workers [7].

A crucial role in using Wigner n-j symbols is played by the symmetry of these quantities. For example, the
3-j symbol satisfies the symmetries

o BN B (B it R
my mx ms my m3 m my m m

= (=1)Irirth (jl FER ) ) = (=1)itith (.iz B )

my m3 my m om om
(s (3 0
( I ) (M3 my my ) (3)

due to the permutation of columns and

(i i j3)=(_l),~.+j.-+j,( Ji 2B )

\m my m -y —my -

due to a change of signs in the momentum projections. Sometimes these symmetry relations are cafled the
classical symmetries. They result in 12 formally different 3-j symbols with the same absoluie value. There
are additional symmetries known due to Regge [13] which are most easily explained in terms of Regge
symbols [7]. For these details, however, the reader is referred to the literature. A similar distinction between
classical symmetries and additional symmetric forms due to Regge can be made for the 6—/ symbols. Table 1
lists the number of classical symmetries vs. the overall number of symmetric forms known for the Wigner
symbols. In order to simplify Racah algebra expressions, it is highly essential to exploit these symmetries:
they are therefore all incosporated in the program as it is explained below. For practical purposes, however, the
classical symmetries are much ~ore important and, thus, the distinction is kept. In our notation, the classical
symmetries are a subset of the Regge symmetries.

The symmetry relations (3) represent some simple examples, where additional (phase; factors naturally
appear in dealing with Racah algebra. Such factors as well as internal summations over various quantum
numbers ofien occur during the evaluation and simplification of an expression. A typical structure of a Racah
algebra expression will bz shown in the next section. Of course, this structure must alsc find a reflectica by the
internal representation in any CA program on this subject.

A successful simplification of Racah algebra expressions must exploit orthogonality relations and a variety
of important sum rules. indeed, to a large extent, the literature on Racsh algebra is devoted to find and to
prove such relations among the Wigner symbols or to compile them in some useful form. in many ins:ances,
the standard presentation of the different orthogonality and sum rules already gives a first impression how more
complex expressions should be simplified. In the practical use of such rules, however, the standard form is
often not of great help. The main difficulty is to recognize the equivalence of some part of a Racah algebra
expression, for instance with one side of a given sum rule, so that, in fact, this special rule can be applied. The
most comprehensive compilation of these rules as far as 1 know can be found in the book by Varshalovich et
al. {7].
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Table 1
Number of classical symmetries 6f Wigner n- j symbols vs. the symmetries known due to Regge [ 13].
a-j symbol Classical symmetries Regge symmetries {13}
3~ 12 72
6-j 24 144
9-j 72 -
2 3271 (i LB
J . n

Fig. 1. Typical structure of a Racuah expreasion, i.€. an cxpression which appears in Racah algebra.

3. Racah expressi and techniqg for simplification

The main effort in dealing with Racah algebra techniques concerns the attempt to simplify complex expres-
sions. To explain more details about the process of simplification, I will first expound the structure of a typical
expression which is later called a Racah expression (or in many applications even shorter Racahexpr). A
useful relation among the Wigner symbols is the algebraic equivalence between a 6-j symbol and a summation
involving four 3-j symbols (see Rotenberg et al. [ 12], Eq. (2.18)),

ok ol ITYE [ hohoh
{ll I 13}- Z = (m, m m;) (m| n *ng)

AR NSy
x( hon ls)(h b js) (@)
aat /11 m; n3 ny —ny m3
_ IRTCITR Y L - ooboh
- Z (=D [13] (m; my m;) (m, ny —n;)
apmymnan
X( A la)(lx L .ix) . )
—ny My N3 ny —ny m3

with S =l + I3 + I3 4+ m + na + n3. The right-hand side of Eq. (5) already displays typical terms of & general
expression in Racah algebra, i.e. some phase and weight faciors, different 3-j symbois and a summation over
various quanium ters. The ion variables may also appear in the phase and/or weight factors. More
generally, a Racah expression may inch-{fe any number of Wigner n-j symbols of different kinds as well as
Kronecker and triangular 8(jy, j2, 3} symbols. We will apply the symbo! 8(ji, j2,j3) to represent +1 if the
triangle relation is satisfied by the angular momenta ji, j2, and jz and to represent zero otherwise. The general
structure of a Racah expression is symbolically shown in Fig. 1. To provide a quick reference to various parts
of a Racah expression we will aiso use a few short-hand notations as explained in Appendix B; the terms which
are most frequently used are an wnj to denote an arbitrary Wigner n-j symbol and furthermore an w3j, we6j,
and w9} with an obvious meaning.

A structure more comiplex than a single Racsh expression is a sum of different Racah expressions, which is
sometimes called a Racahsum below. Such a sum often occurs due to recursion relations if they are applied to
some Wigner n~j symbol which, of coursc. could also be part of a more complex Racah expression.

A numerical evaluation of a Raczh expression can be carried out only if all quantum nursbers in the n-j
symbols apart from summation variables have numerical (integral or half-integral) vaiues. Thus, a numerical
evaluation of a Racah expression is not possible if the input angular momentum quantum numbers correspond to
unspecified symbolic Maple variabies. However, ajready a simple estimation shows that it is no longer feasibie
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to carry it out if more than a very few summation variables appzar. Of course, the main strength of using Racah
algebra techniques is that such expressions can often be simplified considerably by algebraic transformations.
F.om the properties of Wigner symbols which have briefly been discussed in the previous section three different
strategies for the simplification of Racah expressions can be derived:

(i) The application of known special values. Here it is assumed that a n-j symbol is replaced by a (much)
simpler expression which, in particular, does not contain any explicit summation. Note that all #-/ symbols
of a given Racah expression can be analyzed and replaced independently by special-value rules.

(ii) Use of orthogonality properties.
(iit) Use of various sum ruies.

In the present version, I focused the attention onto path (i) and on the numerical evaluation of Racah
expressions. The main obstacle to apply the last two alternatives, (ii) ard (iii), is that they require a carefui
analysis of the Racah expression as a whole. Since all orthogonality relations and sum rules include summations
over formal quantum numbers, these summation variables not only have io be in the correct position in the
Wigner n-j symbols, but they must also contribute to a correct phase and weight of the overall expression.
Moreover, the same variables may not accur in other Wigner symbols of the Racah expression which are not part
of the selected rule. These difficulties in the simplification process are further enhanced by the large number of
equivalent forms of the total Racah expression due to the various symmetric forms of the Wigner n-j symbols.
Therefore, in order to simplify a Racah expression by a giver sum rule, in practice one has to start with a
certain part of the expression and then try to identify equivalence with some relation by means of the various
symmetries of the n-j symbols. Once the equivalence has bzen proven, this part of the Racah expression can be
replaced by a corresponding simpler term. In this context, simplification of a Racah expression always means
reducing the number of summation indices and/or the number of Wigner n-j symbols.

This rather cumbersome procedure of running through all symmetric forms of a Racah expression and
of identifying algebraic equivalent parts makes the simplification of such expressions very suitable for CA
applications. An efficient scheme to perform simplifications of Racah cxpressions by means of the steps (i)-
(iii) is realized in the Racah program. The main part of this program ¢5 to perform certain transformations
and to replace algebraic equivalent structures. Attention has been paid to developing an interactive tool for
rather a wide range of applications. However, before I want to present further details about the Racah program,
the interactive use is shown for a few individual procedurss. An overview to the Racah package will later be
summarized in Section 5 and in Appendices B and C.

4. Interactive work using the Racah procedures

We now display the interactive dialog to perform some simple tasks. For the time being, the reader is »ot
supposed to be familiar with a specific computer algebra system cven though the syntax of Maple is used
throughout. More advanced examples as well as the way to get access to all procedures at the beginning of a
session will be described in the next sections.

A straightforward example is the computation of @ Wigner n-j symbol with only numerical arguments, say

72 3 9/2
{3/2 4 372
> w6ja := Racah set(ws7,7/2,3,9/2,3/2,4,3/2):
> Racah_compute(wéja) ;

-.09258200999

. To find the value of this 6-j symbol, we have to enter two lines at Maple's prompt,

or to obtain the algebraic value

> Racah.compute(w6ja,algebraic);
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172 1/2  1/2 1/2
- 1/269500 2310 70 35 110

The first line assigns the 6-j symbol to the variable w6ja but does not evaluate it immediately; this is done
by the second command Racah.compute(). To compare the result we might look up some appropriate table
which covers the six arguments above. With two similar lines we can obtain the numerical value of any n-j
symbol (n=3,6,9) with almost no restrictions on the size of the arguments.

The angular momenta in Wigner n-j symbols and general Racah expressions are certainly not always fixed
numerical values. They are often just variables or some other expressions. This has been taken into account in
the Racah program. The only restriction within the program is that all variables and expressions which appear
like angular momentum quantum numbers represent either integer or half-integer values and fulfill proper
coupling conditions. This restriction is necessary since the validity of some expression is often difficult to prove
during the process of evaluation. A failure in the coupling conditions can lead to syntax errors in some later
step.

Next, let us consider the Racah expression

§(_,)j—uz[j](_3‘//zz ;l f)(_]m _21 ?g) (6)

where again oniy numerical arguments appear apart from summation variabies. This is necessary in order to
compute the full expression, i.e. to determine its numerica value. Here, all summations within the expression
can be carried out explicitly. The whole expression is entered in 6 lines:

w3ja := Racah set(w35,3/2,j,2,-1/2,m,1):

w3jb := Racah set{w3j,j,2,3/2,-m,-1,1/2):
vexpra := Racah set(Racehezpression,u3ja,w3jb):
wexpra := Racah add(factor,2*j+1,uexpra):
wexpra := Racah.adu(phase,j-1/2,wexpra):
wexpra := Racah.add(sum,{j,m},wexpra):

VVVVVYV

We suppress the reply of Maple by a colon at the end of the input lines. A semicolon, instead, would demonstrate
the Iist structure of all data types as they are shown in Appendix B. To obtain now the result of the numerical
evaluation, we just type

> Racah_compute(wexpra);
9999999998

The answer, 1.0, is not surprising since the Racah expression (6) is the r.h.s. of a well-known orthogonality
relation where we have rewritten the 3-j symbols by means of various classical symmetries.

So far, we have seen features for the numerical computation of Racah expressions. In analytic work with
angular momenta we might also need recursion relations and the simplification of Racah expressions. There are
different recursions known for the 3-j symbol

. . PEEN
(i &%) o
a 5 M
in terms of two or more 3-j symbols with different arguments. For example, two of the j-quantum numbers
may be decreasei! simultanecusly by 1/2 if we type

> w3jc := Racah.set(w3j,ja,jb,jc,ma,mb,mc):
> wexprb := facab-recursionforw3j(halfstep,w3djc):
> Racah.print(wexprb):
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.——>
1/2
((jb + mb) (jc - mc))

1/2
({ja+ jb + jc + 1) (- ja+ jb+ jc))

w3j(ja, jb-1/2,jc-1/2,ma,mb-1/2,mc+1/2)

-1
1/2
((jb - mb) (jc + me))

1/2
((ja + jb + jc + 1) (- ja + jb + jc))

w3j(ja,jb-1/2,jc-1/2,ma,mb+1/2,mc-1/2)

thai is

(ja jh jc)=[ (jl?+mh)(j€"mc) ]l/z(ju jb"l/z ./c_l/z)
l'“ )

me mp m) i + b+ e+ Db+ jo — Ja my mp—1/2 m+1/2

- Cin = mp) Ge + me) ”’(ja Js =172 jc—l/Z)
Ga+ o+ je + Db+ je — Ja) my my+1/2 m.—-1/2 )"

In order to apply another recursion relation instead, it would be enough to modify the keyword falfstep into
of the keywords intstep, Louck or magnetic. Tt different iccursion relations for the 3-j symbols which are
implemented in il picsent program are listed in Appendix A. This apnendix aleo includes the explicit formulas
used for the numerical evaluation of the Wigner n-j symbols. There are currently four recursions krown by
the package which can also be accessed by using integer flags instead of the given keyworcs.

5. The Racah package

The Racah package tacilitates the evaluation and simplification of expressions which appear in the application
of Racah algebra techniques. It is designed as an interactive tool in the framework of Maple V and might simply
be considered as an extension of this computer algebra system to the theory of angular momentum. Due to its
interactive character, the Racoh package will be helpful both for occasional applications as well as for more
advanced work dealing with angular momenta in quantum mechanics.

Let us, however, begin with a few general remarks. In this section [ assume that the reader has some practice
with computer algebra and with procedural languages. In a programming language as it is provided in Maple,
set of procedures form a hierarchy. Each procedure can be used as a selfcontained command in interactive work
as well as a basic element to build up procedures at some higher level of the hierarchy. The input and output
data are handled as logical objects which might have an in principle arbitrary complex dnta structure. Thus, this
concept allows one to define data structures appropriate to some special field of application. In the coupling
of 1 such str are, for instance, Wigner’s n—j symbols, Clebsch-Gordan coetticients, or,

&
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more generally, Racah expressions as introduced in Section 3. Within a CA environment, the formulation of
npical structures leads to the infernal representation of this data type. For example, a general Racah expression
is here of type Racahexpr and may contain various other data types like the overall phase, weight factors, etc.
i expiain ali data structures which are used in this package in Appendix B®. The choice and definition of
appropriate structures is crucial for the successful work with CA systems.

Another important feature for interactive work is the concept of generic names in CA programs. Many
commands are zble to recognize the type of the input data and to perform an appropriate action in correspondence
to this type. Le., they often invoke subprocedures which may remain hidden at the user level. This concept
simplifies the work considerably, because the user has o know much less about individual commands and their
syntax. This feature is here also supported, i.e. only the higher-level procedures need to be described below.

In the current version the Racah package contains a total of about 60 procedures at different levels. Due to
the usage of gene:ic names, however, only 16 commands have to be explained in detail. The most important
ones are summarized with a brief description in Table 2. More detailed information about these procedures
which can all be used interactively is shown in Appendix C. The presentation therein follows the style of The
Maple Handbook by Redfern [ 14] which, in particular, scems to me suitable for quick reference. Appendix C
does not teach the theoretical background of the individual procedures but provides a reference to all commands
in alphabetic order. For each command I describe the type of input and output data and, if available, the form
of optional arguments. Additionally, further necessary information and cross reference to related commands is
also given.

Most inherent commands in Maple V have rather short names. This certainly facilitates the frequent use of
these functions. By contrast, the choice of long names keeps the commands selfexplained, and one also needs
not refer so often to the manual in order to find correct abbreviations. The Racah package therefore uses rather
long names. Moreover, all cc ds begin with the prefix Racah_ to make a clear distinction from inherent
funciions of Maple V.

Even though the Racah package is a straightforward extension of Maple’s V functionality to Racah algebra,
it is not intended to support ali features of this CA system. This concerns (i) the access of the commands by
means of with() or the standard long form and (ii) a full on-line help. A list of all current commands is,
however, available from Racah_heip(}.

To access the commands of the Racah package the user has to read in the file racahl by

> read racahi ;

at the beginning of each session with which all procedures are loaded at the same time. This takes about 80000
words of memory; the procedures, however, do not define any global variables which would have to be taken

into account in interactive work.
We will now conclude the description of the Racah package with a few more advanced examples and, finally,
with an outlook to some forthcoming application is atomic many-body theory.

6. Test cases

This section describes four independent tests of the package which will also provide a deeper insight into
how different commands can be use interactively.
Let us again start with the numerical evaluation of Wigner n-j symbols. A known relation for 9~/ symbols

with a single zero and a few repeated parameters is [ 12]

© The knowledge of these structures is the minimum requirement for the design of own programs using the Racah package.
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Table 2

Important commands of the Racah package. A more detailed description of these ds and of other procedures which ase fess
frequently used is given in Appendix C. The intemal representations of the various data types for input and output are explained in
Section 3 und Appendix B.

Racah.add() Adds some n-j symbols, phase contributions, weight factors, or swamation varisbles to a Racak
expression.

Racah. pute() Comp the ical value of some Racah exptcwm by carmrying out all summations explicity.
Here, it is supp that all apart from iables have to be integer or half-integer

constants and have to fulfill the conditions of angular coupling. The expression can be either of type
wnj or Racahexpr.

Racah_delete() Removes explicitly various terms from a Racah expression.

Racah_evaluate()® Attempts to simplify a general Racah expression by using 2 list of special values, orthogonality propesties
and a variety of sum rules which are known for the Wigner n-j symbols. Simplification means the
reduction of the number of summation variables and/or the number of n-j symbols in the Racab

expression.
Racah_help() Displays a list of ali commands implemented in the curent version. A full on-line help for valid
keywords and the syntax of individual commands is not given.
Racah_print() Prints a Racah expression or some part of it in a neat format. No pretty print.
Racah_recursionforw3j()  Applies a specified recursion relation 1o a Wigner 3-j symbol.
Racah_set() Enters some expression in Racah algebra into the internal rep Valid expression are Wigner

n-j symbols, Clebsch-Gordan coefficients, or, more general, Racah expressions.

2 The full support of this dis p d to forth g work: the present version only exploits special values and some orthogonality
properties for the n—j symbols in a Racah expression.
a b e bictet+f
c d eb= (-0 {a b e} @
f f o) [ee+ner+n]/Pld ¢ f

where, in our notation, the left-hand side is of type w9j, i.e. a single 9~/ symbol, and the rh.s. is a simple
Racah expression. We calculate both sides of Eq. (8) independently for some numerical parameters, say
a=3/2,b=7/2,c=2,d=3,e=4,f=3/2

> w9ja := Racahset(w9j5,3/2,7/2,4,2,3,4,3/2,3/2,0):

> Racah_compute(w9ja);

-.008132500612
The r.h.s. of Eq. (8) can be evaiuated in different ways. We consider this term as a Racah expression and
type

> w6jb := Racah.set(w67,3/2,7/2,4,3,2,3/2):

> wexprc := Racah.set(Racshezpression,u6jb):

> wexprc := Racah_add(phase,3/2+2+4+3/2,uexprc) :

> wexprc := Racah add(factor,1/sqrt((2#4+1)*(2%3/2+1)),wexprc):

in order to enter the whole expression. The numerical evaluation of wexprc confirms
> Racah_compute(wexprc);
-.008132500610

the equivalence of relation (8).

Next, Clebsch-Gordan coefficients are computed explicitly in the limit that one of the angular momenta
involved is small compared with the other two j-values. In this case, these coefficients can be approximately
expressed by matrix elements of a finite rotation (cf. Appendix 2 of Ref. [4]). A simple example is
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Table 3
Clehsch-Gordan coefficients (9) for various pairs of guantum numbers (J, M). See text for explanation.
; JUJ- n +2MI+MtM 1 11/’
J M (M| J+ 1M+ 1) [HL
9 1 0.581087 0.534522
i 10 1.0 0.953463
100 H 0.508680 0.503718
100 0 {.553346 0.548383
100 0o 19 0005037
1000 1 0.500874 0.500375
1600 0 0.505371 0.504871
1000 100 0.550337 0.549837
1660 1060 10 0.999500

[J(I+ 1) +2MT + M(M+1)]"?
(27 + 1)(27+2)

QUM J+IM+1) = . (9

Table 3 shows the Clebsch-Gordan coefficients for a few selected pairs (., M) of quantum numbers’ and
compares the results with the values from the r.hs. of Eq. (9). The explicit calculation with Racah_compute()
remains rather fast even for values with J = 1000.

Ancther example concerns the numerical computation of more complex expressions. The command
Racah_compute(} also attempts to evaluate all Racah expressions as long as they are cquivalent to some
numerical value. For instance, we consider a sum rule which is satisfied by combinations of the 3-j and 6-j
symbols [12]

o2 B3 L b Jttvemitn | h B
Z(m; my m;) ("1 nz ‘ml) Z( b7 Hk L L

"3 him
x(ln J2 13)(1: Ik ) 0y
Hy mpon my ny —R3
for the special case ji =2,j2=3,a =2 =3, L=4,m = ~1,m = 1,y = I,n; = —1. Again, we compute

both sides of this relation in turn

> w3jd := Racahset(w37,2,3,2,-1,1,m3):

> w3je := Racah.set(u37,3,4,2,1,-1,-n3):

> wleft := Racah set(Racahezpression,u3jd,w3je):
> wleft := Racah.add(sum,{m3},wleft):

> Racah.compute(wleft);

01844277784
With analogous steps we find for the r.h.s.

w6jc := Racah set(w37,2,3,2,3,4,i3):

w3jf := Racah set(w35,3,3,13,1,1,03):

w3jg := Racah set(w3j,2,4,13,-1,-1,-n3):

wright := Racah.set(Racahezpression,w6jc,w3jf w3jg):
wright := Racah.add(factor,2#13+1,wright):

wright := Racab.add(phuse,2+13-1+1,wright):

VVVVVYV

7 To enter a Clebsch-Gordan cient use the 4 Racah.set().
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> wright := Racah.add(sum,{13,n3},wright):
> Racah_compute{wright);

01844277785

The sum rule (10) is thus directly proven for the given set of quantum rumbers.
A final test searches for special values of one or more Wigner n-j symbols within a Rucah expression. At
the first glance, the expression

R R T T |
(—0)y~MM=bc [y L g 1/2, 00~ 1f2) 3 8C 7 = F
; Ve 729
; d e ¢
J+1j2 32 J )
X(—M -1)2 M+uﬂ{%22'f} (i)

looks rather lengthy sand tedious to evaluate. ~ Could this expression be simplified by the knowledge of special
values for the Wigner n-j symbels ? To study this question we assign the full expression (11) to the variable
wexprd as we have done it before. An attempt to simplify expression (11) is donc by typing just

>wexpre := Racah.evaluate(wexprd);
>Racak_print{wexpre) ;

———
sumM{J}

(33 +2c)
(-1

1/2
J+3U+3/2)(ATJ-4M+2) ((J+bt+tc-20U+b+c-1U+b+c)

(J+b+c+1)(-J+b+c=-3)(-J+b+c-2) (-J+b+c-1)
/
(«-J+b+cD°1/2 / (((2b~-3)(215-2) 2b-Db(2b+ 1)
/
1/2
2c-3Qc-2)Qc-DcRc+1NN1/2(4e+2) )

w6jl{d,c,e,b,J,1/2)
Thus. the result of the evaluation is

(4] -4M+2)(J+b+c—25(J+b+c-1)
(20 - 332 - 2)(2b- D)B(2Z6+ 1)

expression(11) = Y (=1)¥**(J + 3M + 3/2)
J

L UAbH U btet DI +bre-H(=T+bre=D(=J+btc-D(-I+bd+0) 72
(2c~33(2c = 2)(2c ~ D)c{2c + 1 (de +2)
% d ¢ e
B i 12§

By contrast, if the command fails to simplify the expression a NULL. list [} is returned.
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7. Applications in atomic many-bedy theory

Awomic suwucture is one impertant field wkich extensively exploits the techniques of Racah algebra. Most
theorctical support in the interpretation of open-shell spectra is nowadays based on such techniques. So far, the
development of powerful computers has allowed for fast number crunching of formulas which were derived
before and coded in some computer program. With a deeper insight in the electronic structure of atoms and
ions, however. models will become more sophisticated. Therefore, computers might alse be used to work out
dcwu!s of soms model in the future. Computer algebra is the modern and powerful attemipt to perform these
onz § s in faster snlutinns and is nften ymuch mare reliable.

The relativistic many-body perturbation theury (MBPT) is able to account for both rei. tivistic and correlation
effects simuitancously. The theory was developed by se.etal groups during the last decade using either local or
global basis functions { 15.16}. MBPT also provides a systematic approach to the calculation of a large variety
of properties which are expressed in terms of perturbation expansions. The Jerivation of ihese expansions
can become very laburious and is rathoer complicated for all atoms with a nontrivial open-shell structure. The
complexity of the expressivas which occur during the decivation are the main reason tnat only effective one-
and two-particle systems {with no more than two elecirons amd/or holes outside closed shells) have so far been
studied accurately within this framework. In order to extent the dumain of many-body perturbation techniques
towards more complex atoms ard ions one aveds support by coinputer algebra.

Most practical schemes in atomic MBPT start from the generalized Bloch equation in the Rayleigh-
Schrodinger formulation { 10},

{12, Hol P = V2P - DPVOP 2

where Hg is the zero-order part of the Hamiltorion, H= Hp+V = Ko+ Vi + Va4 -+, and {2 is the wave
operator for the states of interest. The operalor V represents one or more poriurbations beyond Hy, for instance
the instantancous Coulomb repulsion, Y-, 1/

The Bloch squation (12} is naturaily expressed in second quantizaiion. In this algebraic form, the derivation
of proper perturbation expansions leads o the evaluation of preducts of primitive operators like Ho, W1, V... ..
fn current treztments, these operaters and all products are represented by Feynman-Geldsione diagrams as it
is, for example. developed and explained in the textbook by Lindgren and Morrison [10). Again, however,
the derivation of the corresponding diagrammatic expansions becomes lengthy for open-shell atoms. Even for
some fixed order of perturbaiion theory, say second order, the numiber of diagrams increases raptdiy if the atom
includes two or more valence-particles and/or valence-holes with respect to a closed-sheli reference state or
if more than onc perturbation has to be included. Furihicrmore, several open-shells in some stom usually 2lso
increases the dimension of the model space which has to be taken into account.

Symbolic computations provide a vscful alternative to derive the diagrammatic expansions in a given approx-
imation scheme; it results, of course, in algebraic expressions which must later be compwmed numericaily. A
key to the successful derivation of perturbation expansions is the ability to simplify operator products in second
quantization like

£k
ajaanay - —(—-l%)—(amplilud«:,)(ampiimdcz} e, {13)
4
where the integer k characterizes the phase of the operator expression, and D is a typical encrgy denominator
which appears in MBPT. The amplitudes ((amplitnde;) ) define any one- or two-particle matrix elements, fo'
exampie of the Coulonib repulsion, (ij {i/riz| ki).
From my point of view, the application of computer algebra tools will become essential for the swdy of
complex atomic sp 1 will conclude this description here with a brief outiook upon a project which has

recenily been started.
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S, Further developments and cutlook

To treat operator products like expression (13), a Mapie program has been designed which is based on
Wick’s theorem anc the anticommutation relations of the (fermnion) creation and annihilation operators. The
setup includes the rules of sevond quantization and is a:so written for interactive use. There is neither a formal
restriction on the number of creation and aunihilation operators nor on the number of amplitudes. This program
also allows for to include one ore more singic perturbations. A current test version ¢nables o solve the Bloch
equation for closed-shell and effective one-particle atoms up to some given order n. This program for deriving
Feynman-Goldstone perturbation cxpansions will be preseated elsewhere, One difficulty in the evaluation of
operator products and the projection onto the model space, however, is to recognize equivalent parts in different
expressicns, a very well-known problem in CA programs.

The direct combination of the Racah package with this work on atomic perturbation theory necds the
implementaiion of basic formulas for spherical teasors. A rather general design for this implementation would
cnable steps to derive automatically all Feynman-Geldstone diagrams in their final radial-angular representation
and 10 perform numerical computations. Moreover, the aagulas parts of these disgrams can then fusther be
reduced by means of the given Racah package.
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Appendix A. Applied mathematical relations

Here, we sammarize the most important mathematical relations which in the present version of the program
are applicd for the computation and manipulation of Racah expressions.

A.l. Computaiion of Wigner n-j svnbols

Let us first introduce the & symbol by

Mab.oy=|@tbzala-brail-atbro 2 AD
A | @+ b+rct+ ) ‘ "
Then, the numersical value of a Wigner 3-j symbol is calculawed by the expression [1]
(rjr.l- :{32; y{;)=‘Sm1..m+m,,o(—\)I‘-‘h-m’éfjh_fzwfg)
; . . . . ; 2
x [y = 3 WG+ m) Wz = ma) G + ma) s — ma) (s + ms)] '/
Z{ (-1
T LU+ 2 = s = DIGE = mi = Dz +me - D!
1 1
(A2)

X - T ryers - .
{3 =fa+ny+Dij~ji—-m+- !)!j

This expression has a nonzero value only if the arguments of all factorials are nonnegative integers.
The comyutuion of a Wigner 6-j symbol follows imsruaiiy the expression {4]
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TS B A 2 j9)A G )AL oy )AL b, )
L b L

"Z[ (=D'a+1
=== =j)-ji=a-B)MU-l~jp - -l —h—j3)!

1
X = —— e . A3
(jl+jz+ll+Iz—l)!(jz+j3+lz+l3—l)!(j3+j|+13+11—I)!] (A3)
Finaliy, the 5-j symbol with numeric arguments is caicuiated by the known sum rule over three Wigner 6-j
symbols

Ju i i (s L L
{ ju s } DI L R R i B (A%)
31 J2 Jm i J Lz
From the properties of the 6-j symbols one can easily see that the 9-j symbol is zero unless the arguments in
each raw and column satisfy the triangular relation.

A.2. Recursion relations for Wigner 3-j symbols

There are four recursion formulas 'wiich are cumrently known to the Racah program (cf. Ref. [12],
Eqgs. (1.45)-(1.48)). They can be accessed, for instance, by a keyword as displayed in itelic mode below
(see also the description of the procedure Racah_recursionforw3j() in Appendix C). To simplify the notation
the abbreviation J = j; + j2 + j3 is uscd in this subsection.

One halfstep recursion [4] allows to decrease two j-values by 1/2

(,—, J2 js)_[(jz+mz)(js—-_v_n_sl]'“(j. =172 j3—1/2)

m om omy) | (J+D)(J-2j) mo omy— 12 my+1/2

_{UmmGs +m 1 (i =12 =172 (A%
[(l+i)(l-2j,) m m+1/2 my-1/2)" i
If the magnetic quantum numbers explicitly fulfill the condition m) = —my — m3, the 1/2-step recursion due
to Louck {17] can be applied,
f.l]( Jr 2 1'3\
13 \~mz—m3 m; om3 )/
=_[(J—2j|)(l+l)’.i3+m3) R A R R V A V)
1 (o — m2) —my—my my+1/2 m3—1/2
_[U=2h)U =2+ DUs—my+1) "2( i k=12 j;+l/2) (A6)
(j2 — mz) —nty — m3 M2+|/2 m;—l/z ' o

An integral decrease of one j-value follows from the recursion with the keyword intstep [4]

(," o) [mm)atm+ DG +m)Ga+m -] (g -1
my mp oms J+ D=2 -2j)(J -2j3+1) m my+1 my—1

_2mz[ Gis & m3) (s — m3) ]”z(jl j2 is—l)
T+ =2 =2/)(J=2j3+1) my omy  m
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_[(jz+'nz)(j2—M2+i)(j;—ms)(js—rns—l)]m<j| P
(J+ DI -2 =2j)(J=2j5s+ 1) m omy—-1 my+1j°
(A7)

A further recursion relation among magretic quantum numbers is [ 12]

i j3)=_ jl(j!+1)—m,(m.+n]”2( P S )
\mi my m A+ 1 —ma(ma = 1D m+1 my my—1

s

_ 1) —mlm 4+ 1) k& N J2 J3 (A8)
A+ 1) —m(m; — 1) m m+l m-1)" )

A.3. Special values for Wigner n-j symbols

The special values of the 3-j and 6-j symbols, which are implemented in the Racah package, are basically
taken from Edmonds tabulation (Tables 2 and 5 in Appendix 2 of Ref. [4]). There are 20 differcat special-value
rules for 3—j symbols and 19 rules for 6-j symbols. A more comprehensive tabulation for special Clebsch-
Gordan coefficients contains the monograph of Varshalovich and co-workers [7] but is not incorporated in the
present version.

Appendix B. Iaternal data structures of Racah expressions

A concise description of the Racah package is simplified by introducing a few short-hand nc*ations to refer
to typical structures of Racah algebra expressions. These short-hand notations have been us:d in this paper
and in many in-line comments in the source code of the Maple procedures: they are listed bei-w in alphabetic
order. Each nciutiun also corresponds to a specific internal list data structure of Maple with a proper keyweosd
as first operand.

Racahexpr A general sum of products of Wigner n-j symbois (— Rproduct), weight factors (— Rfactor),
and a phase (— Rphase) including any summation over internal quantum numbers (— Rsummationset). In
general, a Racahexpr can contain any number of Wigner 3-j, 6-j, and/or 9-j symbols, Kronecker and triangular
8(j1, jo» j3) deltas, typical weights like (2j + 1)™? (n being an integer;. and an asbitrary phase representing a
real quantity. A Racahexpr is internally a Maple list

Racahexpr := [Racahexpri, Rsummationset, Rphase, Rfactor, Rdelta, Rproduct j ,
i.e. a list of list structures.

Racahsum A sum of Racah expressions (— Racahexpr) which are put together internally in a common list
structure. For instance, such a sum appears due to recursion relations which might be applied to a Wigner 3~/
symbol. The sign of each Racahexpr in a Racahsum is determined due to the phase factor (— Rphase). A
Racahsum has the internal representation
Racah := [Racahsum}j, Racahexpry, Racahexprz, ... ] .
Rdelta A product of any number of Kronecker 6;,;, and/or triangular 8(ji, j2.j3) delta which appear due to
the evaluation and simplification of a general Racah expression. Internally, a Rdelta is a list of (—) tdelta lists,
Rdelta := [Rdeltaf}, tdeltay, .., tdelta, | .

Rfactor An algebraic or numerical weight factor in a Racah expression (— Racahexpr). Typically, such a weight

factorizes into a rational factor and typical powers of some angular momenta like j*, j™/%,. .., (2j;+ D®/2, . .
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with all n being integers. The specification of Rfactor is, however, not restricted to this form, i.e. other
expressions may appear. In Maple terminology, Rfactor must be only of type algebraic.

Rphase A sum of integer and half-integer cc variables, and/or expressions which characterize the sign
of a (—) Racahexpr by (—1)R?'° Rphase is supposed to represent an integer expression so that the total
phase remains always real.

Rpreduct A product of any number of Wigner n-j symbols (—) wnj; the sequence of these n-j symbols
has no meaning. An wnj can represent either a Wigner 3-j, 6-j, or 9-j symbol. The simplification of Racah
expressions including 9-7 symbols will not fully be supported by using orthogonality and sum rules known in
the present version. A Rproduct has the internal Maple representation

Rproduct := [wajf, wnjy, ..., waj, ] .

Rsummationset The internal representation of the T, the summation indices, and all ranges for summation.
In the Racah package, it is represented by a set of (integer or half-integer valued) variables and/or index-
range equations, i.e. the sequence of the entries is arbitrary. Note that no constant value may be assigned to a
summation variable,

Rsummationset := { var). .., var, } .

tdelta A short-hand netation to describe either a Kronecker delta 8y, ;, or triangular delta 8(ji, j2, j3) which
depend on iwe or three sagular momentum quantum numbers, respectively. Both & factors are internally
represented by a list where a keyword as first operand characterizes the individual meaning, i.e.

tdelta; = [deliall, ji, j2 | or

deltay = [erianviel, ji, ja. j3 1 .

wni Short-hand notation for cither a Wigner 3-j, 6-j, or 9-j symbol.
o2 B

w3j Short-hand notation for a Wigner 3-j symbol (
m nm; m

). The internal list representation is
w3j o= [w3jl, fi, ja Js.om, maoma ]

w6j Short-hand notation for a Wigner 6-j symbol {j‘: ﬁ j: } The internal list representation is
w6j = |wil. ji. Jz2. j3. ja. Js. Js 1.
Bt B
w9j Short-hand notation for a Wigner 9-j symbol { Ja Js Js } The internal list representation is
f1 I8 Js
wj = (W9 ji. J2. J3. Jas Jss Jes J1s Jos Jo 1

Appendix C. Command listing to the Racah package

‘This appendix serves users of the Racah package for quick reference. It provides a list of all commands
which are necessary for the inteructive work at the user level. Auxiliary procedures which are invoked at some
hidden level are not explained here. The whole package contains a total of about 60 subprograms.

In this appeadix, the presentation follows the style of The Maple Handbook by Redfern [ 14] which provides
a complete reference to Maple V in the form of logical subsets. Within each subset the individual commands
are ordered alphabeiically. The Racah package furms an additional subset to manipulate expressions from Racah
algebra. For cach command it is briefly described how it works, the structure of the input and output data,
and, if available, optional arge . Reference to ail internal data structures can be found in Appendix B.
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Two further sections for each command provide some additional information and cross references to refated
commands within the Racah package.

According to the restrictions we made in this paper with respect to the full simplification of Racah expressions,
we list below only procedures which are currently available.

Racah_add(njsymbol,wnj),wnjs, . . ,wnj,,Racahexpr)

Appends one or more Wigner n-j symbols t¢ Racahexpr.

QOutput: A Racahexpr is returned.

Argument options:{delta,tdelta,,. . . tdelta, Racnhexpr) adds one or more tdelta factors to Racahexpr
&(factor Rfactor,Racahexpr) multiplies Rfactor to the current internal weight of Racahexpr.
&(phase Rphase,Racahexpr) adds Rphase to the internal phase of Racahexpr. &(sum,Rsummationset,Racahexpe}
adds the variables and ranges of Rsummationset (which has to be a set structure) to the internal set of summa-
tion variables. &( Rarahexpression,Racahexpr) Racahexps,, . . . Racahexpr, ) multiplies Racahexpr; x Racalexprz
{ x ...x Racahexpr, ] together.

Additional information:The first argument always denote & keyword which specifics the type of the other
arguments and how the procedure works. &A notation like wnjj,wnja,. . .,wnj, indicates that the command can
be used with any number of these quantities. The last argument, however, must te of type Racahexpr. &If the
keyword is sum, the summation variables are supposed to be nonconstant as well as uniquely defined in the
full Racahexpr due to the set structure of Rsummation. &The multiplication of two or more Racahexpr often
appears during the simplification of a more complex Racahexpr. This applies, for instance, if some part of a
Racahexpr (including any internal summation) can be replaced by a simpler expression.

See also:Racah_delete().

Racah_compute(wexpr)

Computes the numerical value of wexpr by performing an explicit summation and numerical evaluation of all
included Wigner n-j symbols. wexpr can be either of type wnj or Racahexpr.

Output:A (floating-point} number is returned if the calculaticn is feasible.

Argument options: (wexpr.algebraic) attempts to perform the same computation algebraically correct without
numerical floating point e valuation.

Additional information: All arguments of wexpr (apart from sumimation variabics in a Racah expression) have
to evaluate to integer or half-integer constants and have to fulfill the conditions of angular coupling. &An
algebraically exact calculation can only be carried out for singie Wigner n—j symbols. &Explicit formulas for
the internal computation of Wigner n-j symbols are shown in Appendix A.1.

See also:Racah_set(}, Racah_evaluate().

Racah.delete(njsymbol,waj; ,wnjs, . . ,wnj,,Racahexpr)

Removes one or more Wigner n-j symbois from Racakexpr without any replacement.

Output:A Racahexpr is retursied.

Argument options:(delta,tdeltay,. . . tdelta, Racahexpr) removes one or more tdelta factors from Racahexpr.
&(factor,Rfactor,Racahexpr) divides the internal weight of Racahexpr by Rfactor. &(phase Rphase,Racahexpr)

subtracts Rphase from the internal phase of Racahexpr. &(sum,R ynset,Racahexpr) removes the variables

and index range equations of Rsummationset (which must be a set structure) from the internal set of summation

variables of Raczhexpr.

Additional information:The first argument always denotes a keyword which specifies the type of the other

arguments and how the procedure works. #A notation like wnj;,wnjz,. . ., wnj, indi that the cc d can
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be used with any number of these quantities. The last argument, however, must be of type Racahexpr. 4The
procedure terminates with a proper ERROR message if onc of the list structures to be deleted is not found in
Racahexpr. &If the keyword is sum, the summation variables are supposcd 1o be uniguely defined in the full
Racahexpr in agreement with a formal mathematical view due to the set structure of Rsummation.

See also:Racah.add().

Racah_evaluate(wexpr)
Attempts to simplify wexpr which can be either of type wnj or Racahexpr.
Qutput:A Racahexpr is returned if the simplification was successful and a [NULL] list otherwise.
Additional information:Simplification of a Racahexpr always means the reduction of the number of summation
indices and/or the number of Wigner n-j symbols. #The argument wexpr is converted into a Racahexpr no
matter what the type of the argument is. &The procedure will attempt three steps of simplification by

(i) Applying a set of special values for the Wigner n-j symbois.

(ii) Using the orthogonality properties for sums of products of equi-alent n-j symbols.
(iii) Using a variety of important sum rules and incomplete orthogonality relations which can be found in the

literature.

Whereas special-value evaluation applies to individual n-j symbols, the methods in steps (ii) and (iii) require
the analysis of the whole Racah expression including all summation indices, the dependence on variables in
the remaining parts of Racahexpr as well as the overall phase. The current version only supports step (i) in
full detail. #A list of important special values can be found in the Refs. [4,7]. #The simplification of complex
Racahexpr can be both very time- and niwmory-consuming.

See also:Racah_add(), Racah_compute(), Racah._delete().

Racah_extractfacter(var,Rfactor)

Extracts the product part of Rfactor which purely depends on the variable var. This is usually some power of
this variable or of the root (2 var + 1)}/

Output:An expression is returned if some valid factor can be extracted and FAILs otherwise.

Additional information:The present version assumes that Rfactor factorizes into any (half-integer) powers of
the vasiable var™? and/or the typical root (2 var + 1)™2 with n being an integer. #The procedure recognizes
only a limited number of structures of Rfactor; it terminates with an appropriate ERROR message if more
sophisticated structures appear during the evaluation.

See also:Racah.extractphase().

Racah_extractphase(var,Racahexpr)

Extracts the phase contribution of Racahexpr which purely depends on the variable var.
Cutput:An expression in var is returned if the phase depends on this variable and 0 oerwise.

Additional information:The procedure recognizes only a limited number of structures for the representation
of the phase; it terminates with an appropriate ERROR message if more sophisticated structures appear during
the evaluation.

See also:Racah.extractfactor().
Racah_isRacahexpr(wexpr)

Tests whether wexpr is of type Racahexpr.

Qutput:A Boolean value of either true or false is returned.

Additional information:To test other internal struciures there are analog commands available: Racah._isdelta(),
Racah_isRacahsum(), Racah_iswnj(), Racah.isw3j(), Racah.isw6j({), Racah_isw9i().
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Racah_istriangle(j1,jz.j3)

Tests whether ji, j2, and j3 form a angular momentum coupling triangte 5(ji, j2, j3).

OQutput:A Boolean value of either true or false is returned.

Additional information:The procedure checks the inequalities ji + j» > j3 (and ail cyclic permutations) as
well as that ji + j2 + js is of type integer. #All arguments must be integer or half-integer coastants. &The
procedure terminates with an appropriate ERROR message if the arguments 2  ji are not of type nonnegint.

Racah_print(wexpr)
Prints wexpr in a fast neat format. wexpr can be either of type Racahsum, Racahexpr, or wnj. No pretty print.

Output:A NULL expression is returned.

Racah_recursionforw3j(nrule,w3j)

Applies a recursion relation to the Wigner 3-j symbol w3j. The type of recursion is specified by the ‘nicger or
keyword nrule.

Output:A Racahsum which contains two or more Racahexpr is returned.

Additional information:The parameter nrule which specifies the type of recursion can be an integer n =
1,...,4 or one of the allowed keywords {halfstep, Louck, intstep, magnetic}. The given sequence of Leywords
corresponds to n = 1,2, 3, and 4, respectively. &The applied recursion relations are based on Egs. (A.5)-(A.8)
in Appendix A.

Racah_replace(varexpr,Racahezpr)

Replaces variable var by expr at all occurrences in Racahexpr.

Output:A Racahexpr is returned.

Argument options:({vary,. .. var,],[expri,. .. .expr,|,Racahexpr) to perform the same repiacement for each
pair (var;expr;).

Additional infarmation:The output has always Rsummationset = { NULL } .

Racah.set(Racahexpression,waji, . . . ,wnj,)
Enters one or more Wigner n-j symbols into the (internal Maple) representation of a Racahexpr.

Output:A Racahexpr is returned.

Argument options:() to sct up the internal list representation of a Racahexpr without any arguments.
&(ClebschGordan,j).my j2,my,j3;m3) enters a Clebsch-Gordan coefficient (jimy, jomz | jams) into the inter-
nal Maple representation. &(w3j,ji.j2.j3.m;,mz,m3) enters a Wigner 3-j symbol. An expression of type

Additional information:A notation like wnjj, ..., wnj, indicates that there can be any number of these data
structures in the parameter list #If keyword is Racahexpression, then, the output has always Riactor = | and
Rphase = 0. #For Clebsch-Gorlan coefficients we use the phase convention (2) of Condon and Shostizy {11}
for the conversion into 3-j symbols. #All j; and m; must be integer or half-integer constants or expressions
and have to fulfill the conditions of angular coupling.

See also:Racah.add(), Racah.compute(), Racah_delete().

Racah_simplifydeltas(Racahexpr)
Simplifies Racahexpr due to the internal list of 8 factors.
Output:A Racahexpr or NULL is returned.
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Additienal information:The procedure also checks the validity of Racahexpr. It prints a short message if
Racahexpr evaluates identically to zero and returns NULL in this case.

Racah symmetricw3j(n,w3j)

Evaluates the nth symmetric form of a Wigner 3-j symbel.

Qutput:A Racshexpr is returned.

Argument options:{n,w3j.Regge) to access one of the 72 symmetric forms of the 3-j symbol due to
Regge {131 ie n must be in the range | < n < 72,

Additional information:There are 12 basic symmetric forms (3) for a Wigner 3-j symbol whose sequence is
internaily defined, i.e. the allowed range of nis 1 < n < 12. &The symmetric form for 2 = | is identical to the
argument w3i. &The output has always Rsummationset = { NULL } and Rfactor = 1.

See also:Racah_symmetricw6j(), Racali_symmetricwi().

Racah.symmetricw6j(n,w6j)

Eval the nth sy tric form of a Wigner 6-j symbol.

Output:A Racahexpr is returned.

Argument options:(n,wGj,Regge) to access one of the 144 symmetric forms of the 6-j symbol due to
Regge [13], i.c. # must be in the ranze | < n < 144,

Additional information:There are 24 basic symmetric forms for a 6-j symbol whose sequence is internally
defined, i.e. the allowed range of n is 1 < n < 24. &The symmetric form for n = 1 is identical to the argument
w6j. #The outpui has always Rsummationset = { NULL }, Rphase = 0, and Rfactor = 1.

See also:Racah_symmetricw3j(). Racah symmetricwdj().

Racah.symmetricw9j(n,w9j)

Eval the nth sy ic form of a Wigner 9-j symbol.

Qutput:A Racahexpr is returned.

Additional information:There are 72 basic symumetric forms for a 9-j symbol whose sequence is internally
defined, i.e. the aliowed range of n is | < n < 72. &The symmetric form for # = | is identical to the argument
w9j. &The output has always Rsummationset = { NULL } and Rfactor = 1.

See also:Racah.symmetricw3j(), Racah_symmetricw6j().
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