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Abstract 

In a previous paper (S. Fritzsche, Comput. Phys. Commun. 103 (1997) 51), we defined data structures to deal with 
typical expressions from Racah algebra within the framework of Maple. Such expressions arise very frequently in various 
fields, for instance, by treating composite wave functions and tensor operators in many-particle physics. Often, these Racah 
expressions are written in terms of Clebsch-Gordan coefficients and Wigner n- j  symbols. Our previous set of Maple 
procedures mainly concerned numerical computations on such symbols, the simplification by special values as well as the 
use of recursion relations. 

The full elegance of applying Racah algebra techniques in daily research work is, however, only revealed by the analytic 
simplification of more complex expressions. In practise, this even requires the major effort in dealing with these techniques. 
Its success closely depends on the knowledge of sum rules which typically include a number of dummy summation indices. 
The application of these sum rules is a rather straightforward task but may become very tedious for more difficult expressions 
due to the large number of symmetries of the Clebsch-Gordan coefficients and Wigner n- j  symbols. We therefore extended 
the Racah program to facilitate sum rule evaluations in the given framework. A set of new and revised procedures now 
supports the evaluation of Racah algebra expressions by applying the orthogonality properties of the Wigner symbols and 
a variety of sum rules. More than 40 sum rules known from the literature and involving products of up to six Wigner n- j  
symbols have been implemented and are available for interactive use. The applicability of this new tool will be demonstrated 
by three examples from many-particle physics. @ 1998 Elsevier Science B.V. 
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PROGRAM SUMMARY 

Title of program: Racah 

Catalogue identifier: ADHW 

Program obtainable from: CPC Program Library, Queen's Univer- 
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sity of Belfast, N. Ireland 

Licensing provisions: none 

Computer for which the program is designed and others on which 
it is operable: 
Computers: All computers with a license of the computer algebra 
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package Maple [ 1 ];Installations: University of Kassel (Germany) 

Operating systems under which the program has been tested." AIX 
3.2.5, Linux 

Program language used: Maple V, Release 3 and 4 

Memory required to execute with typical data: 4 MB 

No. of lines in distributed program, etc.: About 4900 lines in 
addition to the source code of the Racah program as described 
previously in Ref. [2] 

No. of bytes in distributed program, including test data, etc.: 
467242 

Distribution format: ASCII 

Keywords: angular momentum, Racah algebra techniques, sum rule 
evaluation, spherical tensor operators, Wigner n- j  symbols 

Nature of the physical problem 
Computer algebra (CA) is used to evaluate and to simplify typ- 
icai expressions from Racah algebra which may also include the 
summation over dummy quantum numbers. A large variety of sum 
rules is implemented in a set of Maple commands for interactive 
u s e .  

Method of solution 
In a recent paper 12], we defined proper data structures to deal 
efficiently with expressions from Racah algebra and to enable the 
numerical computation of such expressions. The present extension 
of the program now aims at simplifying typical Racab expressions 
which may also include the summation over dummy indices. A 
simplification is attempted by the successive analyses of the vari- 
ous parts of a given Racab expression and by comparison with a 
set of sum rules in their standard form as found in the literature. 
The orthogonality relations which are known for the Wigner n-j  
symbols are also implemented; internally, however, these relations 
are treated as special sum rules. All equivalent symmetric forms 
of a given Racah expression are taken into account during the 
evaluation. More than 40 different sum rules are known to the 
package which will cover many applications in different fields. 

Restrictions onto the complexity of the problem 
The set of sum rules, which has been implemented in the Racah 
program, mainly refers to the monograph by Varshalovich et 
al. 13] on the theory of angular momentum. These sum rules 
either include a single Wigner n-j  symbol or products with a 
different number of such symbols. In general, the complexity of 
Racah expressions increase as more Wigner symbols are involved 
in the product terms. Though we incorporated a large number of 

sum rules for the Wigner 3- j  and 6- j  symbols, only a selected set 
of those rules involving 9- j  symbols have been implemented in 
the present version. So far, we have also considered only a smaller 
number of sum rules involving products of more than four Wigner 
n-j  symbols of different kinds as well as those including more 
than a triple summation over dummy quantum numbers. The most 
complex sum rule currently involves the product of six 3 - j  sym- 
bols and a nine-fold summation. The application of this latter sum 
rule, however, does often not work very efficiently with respect to 
time. 

The success in simplifying Racah algebra expressions critically 
depends on the fact that all equivalent symmetric forms of the 
expression ate recognized internally. Thereby, the overall symme- 
try of a Racah expression is direc'tly related to the symmetries 
of all the Wigner n- j  symbols which are involved in the expres- 
sion. Apart from the classical symmetries of the Wigner symbols, 
there is an extended range of symmetries due to Regge [4]; these 
symmetries, however, are of minor importance for most practical 
applications. Even though, in principle, the Racab package enables 
one to apply the full range of extended symmetries, limitations in 
computer time will often restrict the usage of the program to the 
classical ones. 

Unusual features of the program 
All commands of the Racab package are available for interac- 
tive work. As explained in Ref. [2], the program is based on 
data structures which are suitable for almost any complexity of 
Racah algebra expressions. More enhanced expressions are built 
up from simpler data structures. The simplification of any valid 
Racah expression can be attempted just by typing the command 
Racah.evaluate() at Maple's prompt. This will test all different 
rules which are known to the package. However, if one knows the 
structure of the sum rule in advance, i.e. the number and type of 
the Wigner n- j  symbols involved, these rules can also directly be 
invoked by individual commands. This usually results in a faster 
evaluation, in particular if more complex expressions need to be 
simplified. In Appendix A, we summarize all new commands at 
user's level for quick reference (i.e. thtrse commands which had 
not been described yet in Ref. 12 ] ). 

Typical running time 
All examples of the long write-up require about 3 minutes on an 
IBM workstation. 

References 
[ 1 ] Maple is a registered trademark of Waterloo Maple Inc. 
121 S. Fritz,sche, Comput. Phys. Commun. 103 (1997) 51. 
13] D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quan- 

tum Theory of Angular Momentum (World Scientific, Singa- 
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1. Introduction 

The study of open-shell atoms first raised the question how the rotational symmetry of closed systems, i.e. 
the conservation of angular momentum, can efficiently be exploited in understanding many-particle systems. 
After the pioneering work of Wigner in the late thirties, Racah [ 1 ] developed a powerful machinery to deal 
with such systems. This machinery is known as Racah algebra today, and it became one of the fundamental 
concepts in the (quantitative) treatment of many-particle systems. 

In studying such systems one often considers composite wave functions and composite tensor operators as 
they arise from many-body wave functions and operators which are symmetric in all participating particles. 
The aim of applying Racah algebra techniques is then to reduce the matrix elements of one- and two-body 
spherical tensor operators for many-particle wave functions. Typical examples are the tensor product of two 
different operators from either a single subsystem or the interaction among two individual subsystems. Thereby, 
Racah algebra is concerned with the analytic evaluation of the angular portion of matrix elements and, in 
particular, with the complications that arise from the coupling of various angular momenta. For this, these 
techniques may provide notational and computational simplifications of great elegance which are practically 
indispensable for describing complex many-particle systems. By contrast, the (often numerical) evaluation of 
the radial integration is straightforward and remains unaffected by the coupling of the angular momenta. 

Even though the mathematical background of angular momentum theory is now well understood, the treat- 
ment and simplification of typical expansions as they arise in Racah algebra is often a very laborious task. 
Many standard techniques of Racah algebra, namely, result in rather complex expressions involving a multiple 
summation over products of Clebsch-Gordan coefficients and/or Wigner n- j  symbols. Usually, these expres- 
sions can be simplified by a given set of sum rules; however, a lot of experience and effort is required to find 
the proper rule and to rewrite the Racah expression in that form that one can recognize possible simplifications. 
Apart from this sum rule evaluation, a variety of graphical methods have also been developed during the last 
decades [ 2-4] which may be very helpful in analytic work but, again, may become so elaborate that alternative 
help will be highly desirable. 

In a previous paper by us ( [5] ,  hereafter referred to as paper I), we defined proper data structures to 
deal with Racah algebra expressions within the framework of Maple. A set of procedures were developed 
for the numerical computation of single Wigner n- j  symbols and for even more complex expressions. We 
also introduced the term Racah expression with the intention of providing an (internal) data structure which 
makes an automatic evaluation and simplification of typical expressions possible. Particular attention was 
directed to defining structures which are flexible and powerful enough for most practical applications. A 
numerical evaluation of a Racah expression, however, can be carried out only if, in the Racah expression, 
all quantum numbers, apart from dummy summation variables, have numerical values. By contrast, the main 
strength of using Racah algebra techniques is that such expressions can often be simplified considerably by 
algebraic transformations. Therefore, we will now present an extension of our Maple program which supports 
the simplification by orthogonality properties and sum rules. A set of frequently applied sum rules has been 
implemented in the package as we will indicate below. 

Useful relations and sum rules in Racah algebra are usually expressed in terms of the Wigner n- j  symbols 
which possess a very high symmetry. During the last decades, much attention in the literature has been devoted 
to deriving and proving certain sum rules among these and other related symbols. Here, we are not concerned 
with such derivations. Instead, we will start from a set of known relations and present a computer algebra tool 
which facilitates handling of such expressions. Emphasize was put on developing an interactive tool for a rather 
wide range of applications. Computer algebra may partially replace graphical methods in the future since it 
allows to treat phases and weight factors in a much simpler way. 
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In the following two sections, we briefly outline the way of handling sum rule evaluation for Racah expres- 
sions. We will also give reasons for the benefit of developing such a computer algebra tool. However, we will 
not present these rules in their explicit form here but will refer the reader for all mathematical details to the 
literature. Reference to the monograph by Varshalovich et al. [6] is given in two tables, one table for sum rules 
involving the Wigner 3- j  symbols and a second one for those rules involving only Wigner 6-3" and 9 - j  symbols. 
We also explain how the program will be distributed. The power of sum rule evaluation is later demonstrated 
in Section 4 by three examples from many-particle physics. They will concern the recoupling of three angular 
momenta as well as the simplification of many-particle matrix elements and of a single Feynman-Goldstone 
diagram. 

2. Sum rule evaluation 

Many sum rules of the Racah algebra can be related to a subsequent application of the known coupling rule 
for two angular momenta (cf. paper I, Eq. (1))  or to the recoupling of three or more angular momenta. These 
rules can therefore often be expressed in terms of the Clebsch-Gordan coefficients, or more generally, in terms 
of overlap integrals of angular momentum eigenstates which belong to different sets of commuting operators. 
Even more frequently, however, these rules are represented in terms of Wigner n-j symbols. The properties of 
these symbols have been discussed previously; they may also be found in most standard texts about the coupling 
of angular momenta. These symbols are the basic quantities of the Racah program and will preferably be used 
in the text below. An example of a typical sum rule occurs for the recoupling of three angular momenta (as 
we will show below) which results in a complete contraction over all magnetic quantum numbers for products 
of four Wigner 3- j  symbols. 

Usually, Racah algebra techniques are mainly concerned with basis functions which have not been antisym- 
metrized with respect to the interchange of particle coordinates. Thus, the standard formalism is to be applied for 
matrix elements of wave functions that are simple products of single-particle functions whose angular momenta 
are coupled together according to some given coupling scheme. Antisymmetrization is sometimes considered 
within a subshell of equivalent particles but this should be done by making use of the cfp-coefficients, i.e. of 
coefficients of fractional parentage [ 7 ]. 

Useful compilations about relations in Racah algebra were given by Rotenberg and co-workers [8] and later, 
in much more comprehensive form, in the monograph by Varshalovich et al. [6]. We will mainly refer to 
this monograph in the course of this text. To simplify complex expressions from Racah algebra one usually 
starts from these compilations today. Here, we would like to remind the reader that, in our notation, a Racah 
expression might include products of an arbitrary number of Wigner n-j symbols (n = 3, 6, 9) of different 
kinds as well as of Kronecker and triangular 8(jl , j2j3) deltas. This has been reflected by the internal structure 
of such expressions in the Racah program as shown in paper I, Appendix B. 

The major difficulty in practical work is to recognize the equivalence of a certain part of a Racah algebra 
expression, for instance with one side of a given sum rule, so that the expression as a whole could be rewritten 
in a simpler form. This requires a careful analysis of the full Racah expression. Since such expressions will 
usually include a summation over dummy indices, these summation indices not only have to be placed correctly 
in the Wigner n-j symbols but they must also contribute to a correct phase and weight of the overall expression. 
Moreover, a summation index may not occur in other Wigner symbols of the Racah expression which are not 
part of the considered rule. 

Another difficulty for the simplification of general Racah expressions arises from the large number of 
symmetric forms of the total expression. The overall symmetry of a Racah expression as a whole namely is 
the direct result of the symmetries of the Wigner n-j symbols. Apart from the so-called classical symmetries 
of the Wigner n-j symbols, there are additional symmetries known due to Regge for the 3 - j  and 6 - j  symbols. 
The number of symmetric forms of the Wigner symbols have been listed in paper I, Table 1. These symmetries 
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need to be exploited in order to simplify general Racah algebra expressions. In the Racah program, however, 
the distinction between the classical symmetries and those due to Regge is kept since the classical ones are by 
far more important for most practical purposes. To remind the reader of our notation in paper I, we consider 
the classical symmetries to be a subset of the Regge symmetries. 

To simplify a given Racah expression, in practice one has to start with a certain part of the expression and 
then try to identify the equivalence of this part with one side of any sum rule by cycling through all symmetries 
of the Wigner n-j symbols. Once this equivalence has been proven, this part of the Racah expression can be 
replaced by the corresponding simpler structure (i.e., by the other side of this rule). Note that we characterize 
the simplification of an expression in the Racah program by reducing the number of summation indices and/or 
the number of Wigner n-j symbols. To this end computer algebra is well suited, in particular when it comes 
to cycling through all symmetric forms of a Racah expression and to identifying the algebraic equivalent parts. 
The Racah program basically serves these tasks and replaces equivalent parts of a given Racah expression. 

Using graphical methods [ 3,4,6], each sum rule for the Wigner n-j symbols can be illustrated by a diagram 
which shows the coupling of the various angular momenta in this sum. Generally, a different number of 
summation variables corresponds to a different number of external lines in the diagrammatic representation. 
According to the two types of the angular momentum quantum numbers, two different kinds of summations 
appear: 

(i) A summation over an angular momentum quantum number j. This wilt run over all possible integer or 
half-integer values which are consistent with one or more triangular conditions. 

(ii) A summation over some magnetic quantum number mj, i.e. some projection of an angular momentum 
onto the quantization axis. Such an index runs over all correspondingly allowed values - j ,  - j  + 1 . . . . .  +j .  

In a Racah expression as defined in paper I, one could specify for a given summation index (in principle) an 
special index range equation; such ranges of indices other than indicated above, however, do not appear for 
any index in the presently implemented sum rules and are thus not well supported. 

In the literature, compilations of sum rules are often divided due to these different kinds of summation 
variables into two parts. One part includes those products involving Wigner 3 - j  symbols and a second one 
products involving only 6- j  and/or 9 - j  symbols. We will here follow this line and will give a brief account of 
the sum rules which have been implemented in the Racah program in the next two subsections. 

2.1. Sum rules involving products of 3-j symbols 

Varshalovich et al. [6] list a total of about thirty sum rules involving Wigner 3 - j  symbols. These rules 
are most conveniently represented in terms of the Wigner symbols rather than in terms of the Clebsch- 
Gordan coefficients because the 3- j  symbols fulfill simpler symmetry properties without that additional weights 
are occurring. For a selected number of these sum rules, Varshalovich et al. also display the corresponding 
representation in terms of Clebsch-Gordan coefficients. Within the Racah program we need not really distinguish 
between these two representations. Although the internal setup of the Racah program always uses the Wigner 
n-j symbols, Racah expressions which are written in terms of Clebsch-Gordan coefficients can be simplified 
just as easily. This can be seen from the examples in Section 4. All Clebsch-Gordan coefficients which appear 
in a Racah expression are automatically transformed in a Wigner 3- j  symbol taking into account the proper 
phase and weight factors. 

One example of a sum rule involving the products of four Wigner 3 - j  symbols arise from the recoupling of 
three angular momenta, 

z 1,  31(Jl j2 j3)(Jl ,2 ,3)(ll ,2 
ml m2 m3 ml n2 ran3 --/l l  m2 n3 t/1 - n  2 m 3 

mlm2nln2n3 



172 S. Fritzsche et al./Computer Physics Communications 111 (1998) 167-184 

Table 1 
List of sum rules involving Wigner 3-j symbols as implemented in the Racah package 

Sum rules involving Comment Ref. [6] 

one 3-j symbol One such rule is included with a single summation over a magnetic quantum number. Eq. (12.1:2) 

two 3-j symbols Two orthogonality relations for the Wigner 3-j symbols are included in the Racah program F_ZlS. (12.1:3-4) 
each having a double summation. 

One such rule is included with a triple summation over magnetic quantum numbers. 

One such rule having a double summation over one angular momentum and one magnetic 
quantum number is included. This rule results in a single sum involving the product of two 
Wigner 3-j symbols with a single summation over a magnetic index. 

Two of these rules are included representing a single 6-j symbol in terms of four 3-j 
symbols. They express both a complete contraction over the magnetic quantum numbers 
and have either a six-fold or a five-fold summation (cf. Eq. (1)), respectively. Two further 
sum rules known for products of four Wigner 3-j symbols have not yet been incorporated 
in the Racah package. 

One such sum rule representing a single 9-j symbol in terms of six 3-j symbols is included. 
This again is achieved by a complete contraction over all magnetic quantum numbers, i.e. by 
a nine-fold summation. Sometimes, however, a corresponding Racah expression is simplified 
in the program in a two-step evaluation to a triple sum involving Kronecker deltas which 
need to be evaluated explicitly. 

three 3-j symbols Eq. (12.1:6) 

two 3-j symbols and Eq. (12.1:5) 
one 6-j symbol 

four 3-j symbols Eq. (12.1:8) 

six 3-j symbols Eq. (10.2:17) 

A short comment indicates the number of sum rules of this type as well as the number of dummy summation indices involved in these 
rules. For all further mathematical details, reference is given to the monograph by Varshalovich et al. [61, Chapter 12; for instance, a 
notation like (12.1:3-4) refers to Eqs. (3) and (4) in Chapter 12, Section 1 of this monograph. 

j l  j2 j3 ) 
= I I 12 13 ( 1 ) 

with S = li + 12 + 13 + nt + n2 + n3. In this particular situation, a sum over all magnetic quantum numbers 
apart from one (m3) for a product of four Wigner 3 - j  symbols appear. As seen from the right-hand side of 
(1) ,  this term defines an invariant quantity with respect to a rotation of the coordinates, i.e. a quantity which 
is independent of the special choice of the quantization axis. 

Table 1 shows a list of sum rules involving Wigner 3 - j  symbols which have been implemented in the Racah 
program. For all further mathematical details, however, we refer ( in the third column of this table) for each 
sum rule separately to the book of Varshalovich et al.. Though we do not repeat all the formulas, the different 
entries in this table reflect - at least to a certain extent - the structure of the source code of the Racah program 
as well as the sequence in which the different rules are internally "probed". In almost all these sum rules 
each magnetic summation index mj usually appears with opposite signs in two of the Wigner 3 - j  symbols. 

In addition, these sum rules often include the phase factors ( - 1 )  j-mj to ensure that the overall expression is 
invariant under coordinate rotations [6]. 

2.2. Sum rules involving products of  only 6 - j  and~or 9 - j  symbols 

Sums involving only products of 6 - j  and/or  9 - j  symbols typically represent quantities which are invariant 
under rotations. In this case, summations appear over different angular momenta. From the sum rules given by 
Varshalovich et al., only a selected set of rules involving Wigner 9 - j  symbols have currently been incorporated 
in the Racah program. Reference to these rules is given in Table 2. The Wigner 9--3' symbols have particular 
importance for complex systems as they represent the full contractions over products of six Wigner 3 - j  symbols. 
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Table 2 
List of sum rules involving only Wigner 6-j  and/or 9-j symbols as implemented in the Racah package; the same notation as in Table 1 
is used 

Sam rules involving Comment Ref. [6] 

one 6-3" symbol Two such sum rules with single summations are included. Eqs. (12.2:3-4) 

one 9-j  symbol Two such rules are included having a single summation each. A further sum rule due Eqs. (12.2:5-6) 
to Rotenberg et at. [8], Eq. (3.8), and involving a triple summation has not yet been 
incorporated in the Racah program. 

two 6-j symbols One orthogonality relation for two Wigner 6-j symbols is included. Furthermore, we incor- Eqs. (12.2:7-8) and 
porated one sum rule with a single summation and one rule with a triple summation. (12.2:15) 

one 6-j  symbol and Two of these sum rules are included having a single summation each. Both rules evaluate Eqs. (12.2:9-10) 
one 9-j  symbol themselves to a simple product of two 6-j symbols. 

two 9-j  symbols One orthogonality relation for two Wigner 9-j  symbols is included. Furthermore, a rather Eqs. (12.2:13-14) 
similar rule having an additional phase and a double summation has also been incorporated 
in the Racah package. 

three 6-j  symbols Two such sum rules are included having a single summation. They give rise either to a Eqs. (12.2:18-19) 
single 9-j symbol or to a product of two 6-j  symbols. 

two 6-j  symbols and Three of such sum rules having a double summation are included and one sum rule having Eqs. (12.2:24-26) 
one 9-j symbol a triple summation. By using Racah.evaluate(), however, a corresponding Racah expression and (12.2:28) 

is often simplified in a two-step evaluation applying sum rules for one 6-j  and one 9-j 
symbol, and followed by a sum rule for three 6-j symbols. 

one 6- j  symbol and Three of these sum rules are included, one having double summation and two having a Eqs. (12.2:2~/) and 
two 9-j  symbols triple summation. By using Racab_evaluate(), however, a corresponding Racah expression (12.2:29-30) 

is simplified in a two-step evaluation using sum rules for two 9-j  symbols, and followed 
by a sum rule for two 6-j  and one 9-j  symbols. 

three 9-j symbols One such rule having a triple summation is included. Eq. (12.2:31) 

four 6-j symbols Five of those sum rules can be applied; two of them have a single summation, two a Eqs. (12.2:32-35) 
double summation, and one rule even a triple summation. Only the two rules with a single and (12.2:38) 
summation needed to be implemented explicitly. The other three sum rules can be applied 
using different other sum rules in a two step evaluation. 

One such rule with a double summation is included and two of them with a triple summa- 
tion. The latter two, however, can be simplified using alternative sum rules in a two-step 
evaluation. 

two 6-j  symbols and Four of those sum rules have been included. One has a double summation and three of Eqs. (12.2:41-43) 
two 9-j  symbols them have a triple summation, and (12.2:37) 

one 6-j  symbol and One such rule having a triple summation over dummy angular momenta is included. Eval- Eq. (12.2:44) 
three 9-j symbols uation by this rule works well if the procedure Racah_usesumrulesforonew6jthreew9j() is 

invoked independently. By using Racah_evaluate(), instead, it may need a long time before 
the rule is really applied a. 

three 6-j  symbols and 
one 9-j  symbol 

Eqs. (12.2:36) and 
(12.2:39--40) 

a In general, it is rather difficult to estimate the execution time for the evaluation by different rules. An evaluation is attempted by the 
program if the type and number of Wigner n-j symbols as well as the number of formal summation indices are appropriate. Sum rules 
with a simpler structure are applied first, i.e. they are applied in the order listed in these tables. 

For  ins tance,  these  symbo l s  form the t ransformat ion  matr ix  which  has  to be appl ied when  ch an g i n g  f rom a 

LS-coup l ing  basis  into a j j - c o u p l i n g  basis.  By contrast ,  Wigner  9 - j  symbo l s  are s o m e w h a t  less impor tan t  i f  

they occur  wi th in  sum rules inc luding di f ferent  k inds  o f  Wigne r  n - j  symbols .  To test  w h e t h e r  a cer ta in  sum 

rule has been  i m p l e m e n t e d  in the Racah p rogram it is usually enough  to en te r  the m o r e  c o m p l e x  s ide  o f  the 

sum rule and to invoke the c o m m a n d  Racah_eva lua te ( ) .  This  will be shown  in Sect ion  4. 
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3. Extended setup of the Racah package 

The general setup of the Racah program need not be explained once more since it has been described in 
paper I. There, we outlined the application of the program within the framework of Maple and also showed 
some simpler examples for the syntax of the program. We saw that all commands form a hierarchical structure 
where each procedure by itself could be used as individual command for interactive work as well as a basic 
element to built up procedures at some higher level of the hierarchy. The input and output data were handled 
by the procedures as logical objects which could have, in principle, an arbitrary complex data structure. 

For the current extension of the program which enables the analytic evaluation due to a set of internally 
known sum rules, we basically need to describe only the command Racah_evaluate(). This command attempts 
simplifying a specified Racah expression in a series of individual steps by invoking a large subset of procedures 
for different sum rules. In total, however, we added more than 20 new procedures to the Racah program so that 
the whole package now contains about 80 individual commands. 

The command Racah_evaluate() is described in Appendix A; this expands our description in paper I. Again, 
we follow the style of the Maple handbook by Redfern [9]. In this appendix, we also list the names of all 
individual subprocedures which can be invoked separately with the same list of arguments as Racah_evaluate ( ) 
if the type of the required sum rule is known in advance. The names of these subprocedures are typically 
rather long but they obviously reflect the type of the implemented rules. The prefix Racah_ to the names of all 
procedures of the Racah program shows clearly that they are not part of the inherent functionality of Maple V. 

In the program, the sum rules are grouped together in accordance with the number of Wigner n - j  symbols 
which are involved in the product terms. For an equal number of such symbols, we further distinguish the type 
of the Wigner symbols as seen in Table A. 1 in the appendix. The simplification of Wigner 3 - j  symbols, thereby, 
has a higher priority than the simplification of Wigner 6 - j  symbols and these again a higher priority than the 
Wigner 9 - j  symbols. All sum rules with an equal number and type of Wigner n - j  symbols are implemented 
within one and the same procedure of the Racah package even if a different number of dummy summation 
indices appear. 

The Racah program will now be distributed as the ASCII file racah2.  This file also contains the whole 
source code of paper I in which we fixed a few minor bugs. As in the previous version, the source file racaIa2 
lists all procedures in alphabetic order. To use these procedures as interactive commands, it is most convenient 
to load the whole program just by entering 

> r e a d  r acah2 ;  

at the beginning of each session. As in our previous version we did not define global variables which would 
have to be kept in mind. 

We will finally remind the user of the Racah program that all variables and expressions which appear like 
angular momentum quantum numbers must represent either integer or half-integer values and must fulfill proper 
coupling conditions. This word of caution is required since, in many instances, the validity of some expression 
cannot easily be checked during the process of evaluation. Failures in the coupling conditions, however, may 
lead to syntax errors in some later step of the evaluation or to incorrect results. 

By using the new feature of sum rule evaluation, we are now able to demonstrate the power of this CA tool 
to Racah's algebra in solving a few simpler problems from many-particle physics. 

4. Test examples from many-particle physics 

We show the usefulness of the program by three examples which could be taken as standard problems in 
teaching many-particle quantum mechanics. Indeed, these or similar examples are found in textbooks on both 
atomic and nuclear structure theories. The evaluation of a single Feynman-Goldstone diagram in our third 
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example will demonstrate further that such a computer algebra tool is useful not only for simple problems but 
also for active research where one has to deal with Racah algebra techniques. In the following we assume that 
the Racah program has been loaded into an interactive Maple session. 

Let us first consider a quantum system described by three angular momentum operators Jl ,  J~, J3, and the 
corresponding z-components jlz, jzz, and J3z, respectively. Then, the six commuting operators {j~, " .2 • JIz ,  J2, J2z, 
j~, jaz} of this system have the product vectors Ijlml,j2m2,j3m3) = Ijlml)Ij2m2)Ij3m3) as eigenvectors. For 
the composite system we can furthermore define the total angular momentum operators 

J = J l + J 2 + J 3 ,  Jz=Jtz +J2z +j3z. 

Using these and similar operators for just two angular momenta, there are three other sets of commuting 
operators where the three one-particle angular momenta are coupled together. One set, for example, is given by 
{J~, J~, J~, J~2, j2, Jz} with the corresponding eigenvectors I(j,j2)J,2j3",JM). In this notation, we omit the 
particle indices and assume the standard convention for carrying out Racah algebra, i.e. that the quantum state 
for particle 1 is coupled with the quantum state of particle 2, and this composite state with the one of particle 
3 in exactly that order in which we read from left to right. 

The two types of eigenvectors are often denoted as the "uncoupled" and "coupled" eigenvectors of the system 
and are related to each other via an expansion in terms of the Clebsch-Gordan coefficients, 

l(jtj2)JJ2j3; JM) = ~ I(jlj2)J12Mt2,j3m3) ((jlj2)J12Mt2j3m3 I (jlj2)J12j3; JM) 
M12m3 

= ~ Ijlrnl,j2m2,j3m3) (jlmlj2m21 (jljz)JlzMl2) 
171 t ~tt2 M12 m3 

× ((jlj2)JI2Ml2j3m3 I (jlj2)Jl2j3; JM) , (2) 

where we have used the coupling of two angular momenta (cf. paper I, Eq. (1)) in two successive steps. The 
latter "overlap" matrix element in (2) represents a Clebsch-Gordan coefficient which does not depend on the 
angular momentum quantum numbers jl and j2; these quantum numbers will be therefore omitted below. The 
expansion (2) can also be written in terms of the Wigner 3-j  symbols as internally dealt with by the Racah 
program. But we need not rewrite here this expression explicitly since the program recognizes both Wigner 3-j  
symbols and Clebsch-Gordan coefficients. Note that for the relative phase between these quantities we shall 
apply the Condon-Shortley phase convention [10]. 

Two other sets of "coupled" eigenvectors are IJl (J2j3) -/23; JM) and I (jl [ j2 ] j3 ) Jl 3; JM). The transformation 
between any two set of these eigenvectors can be constructed explicitly; this gives rise to the so-called 
recoupling coefficients [11]. For the two set of eigenvectors (l(Jlj2)Jl2j3; JM)} and {IJl (j2j3)J23; JM)} this 
transformation is given by 

[jt (j2j3)J23; JM) = ~ I(jlj2)Jl2j3; JM) ( (jlj2)JI2j3; JM t jl (j2ja)J23; JM) . (3) 
Jl2 

For symmetry reasons, one may find simple arguments that the recoupling coefficients 
( (jlj2 ) J12j3; J I jl ( j2j3 ) J23 ; J) = ( (jlj2 ) J12j3; JM I jl (j2ja ) J23; JM) should not depend on the magnetic quan- 
tum number M. A typical textbook problem therefore is showing this independence on M explicitly for the 
transformation between states of three angular momenta with different coupling order. 

This can simply be achieved by the Racah program. We first use the expansion (2) for the eigenvectors 
I(jlj2)J12j3; JM) and a corresponding expansion for IjI(j2j3)J23;JM), i.e. for the left and right side of the 
recoupling coefficient in Eq. (3). Then, to enter the right-hand side, we type the following lines at Maple's 
prompt: 
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> CGr igh t l  := gacah_se t (C l . ebsehGo~ 'dan , j 2 ,m2 , j 3 ,m3 ,J23 ,M23 )  : 
> CGright2 := Racada_set(C~ebsehGordan,j l ,ml ,J23,M23,J,bl):  
> wright : = Racah..add(Racahezpress~,on,CGright l,CGright2) : 
> wright := Racah._add(sum,{ml,m2,m3,M23},wright): 

As in paper I, we terminate these lines with a colon to avoid the reply of all the underlying list structures by 
Maple. The eigenstates of the three subsystems { lJl ml )}, {lj2m2)}, and { ]j3m3)} are assumed to be orthonormal, 
i.e. the matrix elements between the uncoupled states are diagonal in all the j and m quantum numbers. In 

particular, we have <Aml,j2m2,j3m31jlmv,j2m2,, j3my) = 8m, mt, Sm2m2, Sm3m3,, and can thus use the same 
summation variables ml, m2, and m3 for the expansion of the eigenvectors on both sides of the recoupling 
coefficient in (3).  Therefore, the left-hand side is entered by 

> C G l e f t l  := Racah_set(C~ebsehGord~n,J12,M12,j3,m3,J,M): 
> CGleft2 : = Racah..set (C~ebsehGordan, j I ,ml, j 2,m2, J12, M12) : 
> wleft := Racah_add(Racahezpress~on,CGleftl,CGleft2) : 
> wleft : = Racah_add(sum, {ml ,m2,m3,M12} ,wleft) : 

The full recoupling coefficient (( j lA)Jl2j3; JMIjI(Aj3)J23;JM> is now simply the product of these two 
expansions 

> rcc := Racah_add(Racahezpress~on,wleft,wright): 

but before we carry out the evaluation of this expression we would first like to print it in terms of Wigner 3- j  
symbols, 

> rcc := Racah_print(rcc): 

SUM{M23,ml ,m2 ,m3,M12} 

(-J12 + 2 j 3  - 2 M - 2 j l  - M12 - M23 + 323) 
(-1) 

112 112 
(2 J + 1) (2 J12 + 1) (2 J23 + i) 

w3j (J12 , j3 , J ,M12 ,m3 , -M)  

w3j (j i ,j2, J12 ,ml ,m2,-M12) 

w3j (j  2, j 3, J23, m2, m3, -M23) 

w3j ( j  1, J23, J ,ml ,  M23,-M) 

In order to show the independence on the M quantum number by means of sum rules, we must evaluate this 
Racah expression applying sum rules involving products of three or four Wigner 3- j  symbols; in fact, we need 
not know in advance the sum rule which will apply during the simplification. 
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> Racah_evaluate(rcc) : 

> Racah_print (") : 

(-2 312 + j3 - 2 M - 3 jl - 2 J23 + J - j2) 

(-1) 

177 

112 112 
(2 J12 + 1) (2 J23 + 1) 

delta(J,J) delta(M,M) 

w6j (J12,j3,J,J23,jl,j2) 

From this evaluation we immediately obtain a result which can easily be rewritten to 

(_I)JI+A+j3+j [J12, J23]l/2 { j l  j2 JI2} 
j3 J ./23 (4) 

as it is displayed, for instance, in Ref. [13]. As might have been expected from Eq. (1),  the recoupling 
coefficient r c c  indeed simplifies to a Wigner 6- j  symbol with no explicit dependence on M anymore, i.e. upon 
the choice of the quantization axis. 

Our second example concerns the two-body interaction matrix elements between coupled states of two 
particles, 

(ab; JabM~b Ig12 I cd; JcdMcd) (5) 

and we take for an interaction g12 = g(rl,r~) which is symmetric in the particle indices. Such matrix 
elements arise very frequently in atomic and nuclear structure, for instance. To be more precise, here we 
choose the instantaneous Coulomb repulsion gn  = 1/rn - 1/Irl - r21 as it appears among the electrons in 
(non-relativistic) atomic and molecular computations. To find an expression for the interaction matrix (5),  we 
start from the radial-angular decomposition of the "uncoupled" matrix elements [ 14], 

ab 1_~ cd>--<nalajama(l)nblbjbmb(2) 1----tnclcjcmc(1)ndldjdmd(2) ) 
I r12 r12 

=Z(--l)L--M+jo--m"+jb--mb(--maJa ML mcJC)( --mbJb -ML mdJa) XL(abcd)' (6) 
LM 

with the so-called effective interaction strength XC(abcd) given by 

XL(abcd) = 6(ja,jc, L) 6(jb,jd, L) IIe(la, lc, L) IIe(lb, ld, L) 
×(- I )L  <jo IIc, L, II jc> <j0 IIc(L'II jd> RL(abcd). (7) 

Here, we use the notation ~( j l , j2 , j3)  to represent a symbol which is equal to 1 if jl, jz, and j3 satisfy the 
triangular condition and is zero otherwise. The reduced matrix elements of the normalized spherical harmonics 
are 

( ) UJ°'Jc]'/2 /72 jc L 1/2 0 ' (8)  

and the coefficients 
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1 even, 
IIe(la, Ic, L) = 0 otherwise, (9) 

reflect the conservation of parity for the one-particle states which are solutions to a given central field potential. 
Moreover, RZ(abcd) denotes a pure radial integral [ 14] which we need not discuss in the present context. 

We can use the decomposition of the "uncoupled" matrix elements (6) and an expansion in terms of Clebsch- 
Gordan coefficients as shown in the previous example in order to find an expression for the interaction matrix 
element (5),  

(ab;JabMablgl2lCd;JcdMca)= ~ (ab r~2 cd) (JabMabljamajbmb) (jcmcjdmd[ JcdMcd) 
Dla mr ,Itnb md 

= ~ XL(abcd) ~ (J.bMabl jamaJbmb) (jcmcjdmd[ JcdMcd) 
L M m a m c n l b m  d 

x(__l)L--MJcja--tna~jb--mb( ja L j c ) (  jb L jd) 
--ma M m¢ -m b - M  md " 

(10) 

Again, we can try to simplify the sum over the magnetic quantum numbers by means of the Racah package. 
We enter this sum in a manner similar to our first example and assign it to the variable coup ledg l2 .  By using 
the command Racah_evaluate(), we then obtain 

> Racah_evaluate(coupledgl2) : 

> Racah_print (") : 

(-Mab - Mcd + Jcd - jc - jb - L) 

(-i) 

1/2 
(2 Jab  + 1) 

112 
(2 Jcd  + 1) 

delta(Jcd,Jab) delta(Mcd,Mab) 

w6j (jc,jd,Jcd,jb,ja,L) 

From this reply of Maple, we find the matrix element (5) for a scalar interaction between coupled two-particle 
states to be given by 

{ Jc Jd Jca } XL(abcd) tSJabJc~ BMabMc~ (11) (ab;JabMablglzlcd;JcdMcd)= ~-~J-1)Jc+J~+Jc~ Jb Ja L 
L 

The same result can be found in various textbooks about the structure of many-particle quantum systems, for 
instance by Heyde [12], Chapter 3. 

The simplification of even more complex Racah expressions is frequently required in the calculation of 
Feynman-Goldstone diagrams in various forms of many-body perturbation theory. For a closed-shell atom and 
assuming a Hartree-Fock basis, for example, there are just two Feynman-Goldstone diagrams which represent 
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Fig. 1. One of the Feynman-Goldstone diagrams which occur in the second-order correlation contributions of atoms. 

the second-order correlation contribution to the total energy of the atom [4]. One of these diagrams is shown 
in Fig. 1 and can be written as 

<ab ~ rs> ( r s  ~ ab)  
D =  ~ 2.. ~ ( ~  ~-~h-~ Z - - E )  . (12) 

abrs 

The matrix elements in the nominator of this expression are those between "uncoupled" two-electron states 
(6). In this algebraic form (12), the indices a - (nalajaraa), b =- (nblbjbmo) run over all occupied one-particle 
states whereas the indices r =. (nrlrjrmr) . . . .  run over all unoccupied states in the Hartree-Fock determinant. In 
general, the corresponding one-particle energies e,~ = En~t,j, do not depend on the magnetic quantum numbers. 

Using the radial-angular decomposition (6) of the matrix elements from the previous example, we obtain 
for this "diagram" 

X L2 (abrs) X L~ (rsab) 
.A4, (13) 

( c a  + e b  - e r  - a s )  

1 D = 7  

with 

A4= 
--mr MI ma --mb - M I  mb 

m' s , g '  s 

x (  ja L2 j , . ) (  jb L2 j s )  (14) 
\ --ma M2 mr --mb - M 2  ms 

and S = L~ - Mi + Lz - Mz + ja - mo + jb -- rnb + Jr -- mr + js -- ms. Following the lines of the two previous 
examples, it is now a straightforward task to enter the expression .M and to "simplify" it with the Racah 
program. We assign the sum as a whole to the variable M, 

> wl := Racah_set(w3j,jr,Ll,ja,-mr,Mi,ma): 

> w2 := Racah_set(w3j,js,Li,jb,-ms,-Ml,mb): 

> w3 := Racah_set(w33,ja,L2,jr,-ma,M2,mr) : 
> w4 := Racah_set(w3j,jb,L2,js,-mb,-M2,ms): 

> M := Racah_se t (Racahempr)  : 
> M := R a c a h _ a d d ( n j s y m b o l , w l , w 2 , w 3 , w 4 , M ) :  
> M := Racah_add(phase ,L1-Ml+L2-M2+ja-ma+jb-mb+jr-mr+js-ms ,M)  : 
> M := Racah_add(sum, {ma,mb,mr,ms,M1 ,M2},M) : 
> Racah_print (M) : 

SUM{mr,M2,mb,ms,ma, MI} 

(LI - MI + L2 - M2 + 3a - ma + jb -mb + jr - mr + js - ms) 
(-i) 
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w3j (jr,Ll ,ja,-mr,Ml ,ma) 

w3j (j s, LI, j b, -ms, -MI, rob) 

w3j (j a, L2, j r, -ma, M2, mr) 

w3j (j b, L2, j s, -rob, -M2, ms) 

and evaluate it by the command Racah_evaluate(). 

> M := Racah_evaluate(M) ; 
> Racah_print (M) : 

------> 

SUM{M2 ,mb,ms ,MI} 

(2 L1 - 2 M1 + 2 L2 - M2 + ja + jb - mb+ 3s 

(-i) 
- ms - jr) 

i 

2LI + 1 

delta(Li,L2) delta(-MI,M2) triangle(Ll,ja,jr) 

w3j (j s, LI, jb,-ms,-Ml,mb) 

w3j (jb, L2, j s,-mb,-M2 ,ms) 

Here, a first step of the evaluation does not yield the final result. In order to proceed, we simplify the 
Kronecker iS-factors and then re-evaluate the expression 

> M := Racah~simplifydeltas(M): 
> M := Racah_evaluate(M): 
> Racah_print(M): 

( -1)  

---> 

SUM{MI} 

(3 L1 + 3 L2 + ja + jb - jr - is) 

1 

2 
(2 L1 + 1) 

delta(Li,L2) triangle(Ll,ja,jr) delta(Li,L2) delta(Mi,M1) triaagle(Ll,jb,js) 
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In this case, the summation over M1 cannot be evaluated automatically 

> Racah_simplifydeltas(M) ; 

The following tdelta cannot be simplified automatically; tdelta = 

[Cdelta#C, MI, MI] 

since the range of M1 values is not being recognized by the Racah program itself. Simplications like that one 
should be done interactively instead. 

Summarizing the different steps of the evaluation, the angular reduction of the diagram D thus gives rise to 

( )jo+j~-j,-j, XL(abrs) XL(rsab) l D= ~ Z 6(L,ja,jc) 6(L,jb,jd) , (15) 
[Z] (Ca ~- IEb --  Er - -  e s )  

nol.j ....... L 

In the present case, we could have obtained the same result more elegantly using graphical rules for the 
coupling of the angular momenta. But not every reader will be familiar with these rules. Moreover, this example 
already demonstrates that simplifying complex expressions from Racah algebra is a straightforward matter. This 
advantage remains the same for more elaborate situations where graphical methods might become awkward and 
rather error-prone with respect to the weight and phase factors. 

5. Outlook 

The Racah program will be developed further in the future. There are different possible directions which will 
help to make this CA tool more powerful for the study of many-particle systems. Apart from the Wigner symbols 
and Clebsch-Gordan coefficients, the spherical harmonics Y~m(O,~p) and the reduced matrix elements of the 

(j) 
rotation operator dram, (fl) play an inherent role in Racah algebra. The spherical harmonics are the well-known 
eigenfunctions of the orbital angular momentum operator. The close relation between them and the Wigner 
n-j symbols can, for instance, easily be seen from the Clebsch-Gordan expansion of products of two or more 
spherical harmonics with the same angular arguments [6]. Moreover, there appear the vector and some types 
of tensor spherical harmonics in many derivations concerning atomic and nuclear angular dependent properties. 
We have now started to implement the spherical harmonics into the Racah program, i.e. into the previously 
established structure of a Racah expression. Special commands are designed for numerical computations on 
spherical harmonics, their graphical representation as well as for various useful expansions. 

(j) 
The spherical harmonics Y~,,(O, ~) and the reduced matrix elements dmm,(fl ) depend not only on different 

quantum numbers but also on a set of continuous angular variables. Therefore, different types of integrals over 
these variables may also appear during some evaluation. Often, this integration can be carried out analytically 
and then again results in entities from Racah algebra. Thus, such integral representations should also be included 
in some appropriate form in our forthcoming work. 

In Section 4, our third example showed the close interconnection of atomic many-body perturbation theory 
with the application of Racah algebra techniques. Beside of the angular parts of the matrix elements and 
diagrams one would also like to treat the radial parts within a similar framework. In such cases, the gradient 
of the spherical harmonics (as they appear in the matrix elements) depends on the structure of the associated 
radial functions. This must be reflected in an appropriate data structure during further course of developing the 
Racah program. 
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Appendix A. Further commands to the Racah package 

For quick reference, we add here new and revised procedures of the Racah package to the description of 
paper I, Appendix C. We will only present those procedures in more detail which are important for interactive 
work whereas all other procedures at some hidden level in the program will remain unexplained. The whole 
package now contains a total of about 80 subprograms. 

The presentation follows, again, the style of The Maple Handbook by Redfern [9]. Reference to the internal 
representation of all data structures as they appear as input and output of the commands were given in paper I, 
Appendix B. 

Racah_evaluate(wexpr) 
Attempts to simplify wexpr which can be either of type wnj or Racahexpr. 

Output: A Racahexpr is returned if the simplification was successful and a [NULL] list otherwise. 

Argument options: (Racahexpr, Regge) to apply also all symmetric forms due to Regge [ 15] to the Wigner 
n-j symbols. This optional argument, however, can result in a very time- and memory-consuming evaluation 
process. 

Additional information: A Racahexpr is considered to be simplified if the number of summation indices and/or 
the number of Wigner n-j symbols is reduced. #, The argument wexpr is converted into a Racahexpr independent 
of the given type of the argument. Then, the procedure normally invokes Racah_evaluateRacahexpr() to perform 
the attempted evaluation. & The procedure mainly attempts three ways of simplification by 

(i) Applying a set of special values for the Wigner n-j symbols. 
(ii) Using the orthogonality properties for sums of products of two Wigner n-j symbols of the same type. 

(iii) Using a variety of sum rules and incomplete orthogonality relations which can be found in the literature. 
A brief compilation of these rules is displayed in Section 2 Tables 1 and 2. 

Whereas special-value evaluation applies to individual Wigner n-j symbols, the methods in steps (ii) and (iii) 
requires analyzing the whole Racahexpr including all summation indices, the dependence on variables in the 
remaining parts of Racahexpr as well as the overall phase. & If a simplification is found and replaced by 
the program, the Racah expression might be returned before the same rule or other sum rules are "probed" 
again. Therefore, some Racah expressions may require a two-step evaluation or even several steps using this 
command to find the final answer. & A list of important special values can be found by Edmonds [ 16] and in 
the monograph by Varshalovich et al. [6]. & The simplification of complex Racahexpr can be both very time- 
and memory-consuming. 

See also: Racah_add(), Racah_compute 0,  Racah_delete(). 

Racah_useorthogonality(Racahexpr) 

Attempts to simplify a Racabexpr by using the orthogonality relations of two Wigner n-j symbols of the same 
type. 

Output: A Racahexpr is returned if the simplification was successful and a [NULL] list otherwise. 

Argument options: (Racahexpr,Regge) to apply also all symmetric forms due to Regge [ 15] to the Wigner 
n-j symbols. This optional argument, however, can result in a very time- and memory-consuming evaluation 
process. 

Additional information: There are two orthogonality relations for the Wigner 3-j  symbols, and one relation 
for each, the Wigner 6- j  and 9-j  symbols. These formulas are shown in detail as in-line comments in the 
Maple procedures. 8 In the standard application, the procedure considers all basic symmetric forms of the 
Wigner n-j symbols and "compares" them with some internal representation of the corresponding orthogonality 
relation, a, If an orthogonality is found for one type of Wigner n-j symbols, the simplification is carried out 
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Table A. 1 
Subprograms to the commands Racah_evaluate() and Racah_usesumrules() 

183 

Racah_usesumrulesforonew3j ( ) 
Racah_usesumrulesforonew9j ( ) 

Raeah_usesumrulesfortwow3j ( ) 
Racah_usesumrulesforonew6jonew9j ( ) 

Racah_usesumrulesforthreew3j ( ) 
Racah_usesumrulesforthreew6j ( ) 
Racah_usesumrulesforthreew9j ( ) 

Racah_usesumrulesfoffourw3j ( ) 
Racah_usesumrulesforthreew6jonew9j ( ) 
Racah_usesumrulesforonew6jthreew9j ( ) 

Racah_usesumrulesforsixw3j ( ) 

R acah_usesu mrules foronew6j ( ) 

Racah_usesumrulesfortwow6j ( ) 
Racah_usesumrulesfortwow9j ( ) 

Racah_usesumrules fortwow3jonew6j ( ) 
Racah_usesumrules fortwow6jonew9j ( ) 

Racah_u~sumrulesforfourw6j ( ) 
Racah_usesumrulesfortwow6jtwowgj ( ) 

Each subprogram attempts the simplification of a given Racah expression by one or a few some rules, the type of which is simply indicated 
by the name of the corresponding procedure. They all return (analogue to the command Racah_usesumrules() ) a valid Racah expression 
if the simplification was successful and a [NULL] list otherwise. Similar to Racah_usesumrules(), each subprogram may be invoked 
separately with the optional argument list (Racahexpr, Regge) (cf. Tables 1 and 2 in Section 2). 

and the simplified Racahexpr returned. The procedure does not look for further simplifications for the same 
type of Wigner n-j symbols but this could easily be done by applying the procedure again to the result of the 
previous step. 

See also: Racah_usespecialvalues(), Racah_usesurnrules(). 

Racah_usesumrules(Racahexpr) 

Attempts to simplify a Racahexpr by using various known sum rules for products of Wigner n-j symbols in 
this expression. 

Output: A Racahexpr is returned if the simplification was successful and a [NULL] list otherwise. 

Argument options: (Racahexpr, Regge) to apply also all symmetric forms due to Regge [ 15] to the Wigner 
n-j symbols. This optional argument, however, can result in a very time- and memory-consuming evaluation 
process. 

Additional information: The command invokes a set of procedures which classify the simplification into 
groups of products of Wigner n-j symbols as indicated by the names of the corresponding subprocedures. 
This modular structure easily allows to add further rules for simplification. ~ The formulas of all sum rules 
are shown in detail by Varshalovich et al. [6] (see Tables 1 and 2) and as in-line comments in the Maple 
procedures. 8, The procedure considers all basic symmetric forms of the Wigner n-j symbols and "compares" 
them with the internal representation of the corresponding sum rule. a, If a simplification due to one type of a 
given sum rule is found, this rule is applied and the simplified Racahexpr is returned. The procedure does not 
search for further simplifications by the same rule but this could easily be done by applying the same procedure 
again to the result of the previous step. ,~ In Table A.1, the subprograms of Racah_usesumrules() are listed 
(not alphabetically but) by the number and type of Wigner n-j symbols. For an equal number of Wigner n-j 
symbols we report the 3-j  symbols before the 6-j  symbols and these again before the 9-j  symbols. 

See also: Racah_useorthogonality(), Racah_usespecialvalues(). 
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