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Abstract

An extension to the RACAH program is presented for calculating standard quantities in the decomposition of many-electron
matrix elements in atomic structure theory. These quantities include the coefficients of fractional parentage, the reduced
coefficients of fractional parentage as well as reduced and completely reduced matrix elements for several operators within
the two most frequently applied coupling schemes, namelyLS- and jj -coupling, respectively. Values for these quantities are
available for all (partially-filled) shells(nl)with l � 3 in LS-coupling and for all subshells withj � 9/2 in jj -coupling. Different
notations and classification schemes are supported to characterize the antisymmetrized states of partially-filled shells. 2001
Elsevier Science B.V. All rights reserved.

PACS:3.65F; 2.90+p

PROGRAM SUMMARY

Title of program:RACAH

Catalogue identifier:ADNM

Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADNM

Program obtainable from:CPC Program Library, Queen’s Uni-
versity of Belfast, N. Ireland. Users may obtain the program
also by down-loading the fileracah3.src.gz from our
home page at the University of Kassel (http://www.physik.uni-
kassel.de/fritzsche/programs.html)

Licensing provisions:None

Computers for which the program is designed:All computers with
a license of the computer algebra package MAPLE [1]

Installations:University of Kassel (Germany)

Operating systems under which the program has been tested:Linux,
Windows

Program language used:Maple V, Releases 4 and 5

Memory required to execute with typical data:2 MB
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No. of bytes in distributed program, including test data, etc.:
153 140

Distribution format:gzip file

Keywords: Angular momentum, atomic many-body perturbation
theory, complex atom,jj -coupling, LS-coupling, recoupling coef-
ficient, reduced coefficient of fractional parentage, reduced matrix
element, standard unit tensor, tensor operator

Nature of the physical problem
In atomic and nuclear structure theory, the evaluation and spin-
angular integration of many-particle matrix elements is typically
based on standard quantities like the matrix elements of the unit
tensor, the (reduced) coefficients of fractional parentage as well as a
number of other reduced matrix elements concerning various prod-
ucts of creation and annihilation operators. These quantities arise
very frequently both in configuration interaction approaches and the
derivation of perturbation expansions for many-particle systems us-
ing symmetry-adapted configuration state functions.

Method of solution
In the framework of the RACAH program [2], we provide a set of
procedures for the manipulation and computation of such standard
quantities in atomic theory. Different classifications of the anti-
symmetrized (sub-) shell states are supported for both,LS- and
jj -coupling. The currently provided set of entities includes the coef-
ficients of fractional parentage, the reduced coefficients of fractional
parentage, and the reduced matrix elements of the operatorsU(k) ,

V (k1) andW(kq klks ) in LS-coupling and of the operatorsT (k) and
W
(kqkj ) in jj -coupling, respectively.

Restrictions onto the complexity of the problem
Coefficients and reduced matrix elements can be obtained for all
shells withl � 3 in LS-coupling, i.e. including openf -shells, and
for all subshells withj � 9/2 in jj -coupling (i.e. up tof9/2 andg9/2
subshells).

Unusual features of the program
The interactive use of the procedures within the RACAH program [2]
allows a quick and reliable ‘electronic reference’ to these quantities
for evaluating general matrix elements. The concept and functional-
ity of M APLE can easily be exploited to combine these coefficients
in any other (useful) form than supported by the program in order to
support the evaluation of complex expressions. The definitions and
relations which are relevant for the computation of those quantities
are displayed in Appendix A. For quick reference, Appendix B lists
the additional or extended commands to the RACAH program.

Typical running time
The program replies promptly on all requests. Even lengthy tabu-
lations of (reduced) coefficients and matrix elements can easily be
carried out within a few (tens of) seconds.
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[1] Maple is a registered trademark of Waterloo Maple Inc.
[2] S. Fritzsche, Comp. Phys. Commun. 103 (1997) 51;

S. Fritzsche, S. Varga, D. Geschke, B. Fricke, Comput. Phys.
Commun. 111 (1998) 167 .

LONG WRITE-UP

1. Introduction

During recent years, the RACAH program [1] has been found useful for evaluating expressions from the theory
of angular momentum. The interactive and modular design of this package does not only support numerical
computations on standard expressions (as other libraries do) but also facilitate current research work which is
based on the techniques of Racah’s algebra [2]. The RACAH program is particularly helpful for such (complex)
expressions for which the known algebraic and graphical methods start to become tedious and prone to making
errors. For details about the design and application of RACAH package, we refer the reader to our previous work
[1] and to the web.1

Beside of further applications, atomic structure theory is one of the main areas which, traditionally, makes use
of the rotational symmetry of free atoms. In this theory, the efficient evaluation of many-electron matrix elements
for different one- and two-particle operators plays a very crucial role. These operators can be part of the atomic
Hamiltonian or may describe the interaction of the electrons with other particles and fields. By exploiting the
techniques of Racah’s algebra in atomic structure (see Ref. [3], for instance), the evaluation of these matrix elements
may often be considerably simplified by carrying out the integration over the spin-angular coordinates analytically.

1 http://www.physik.uni-kassel.de/fritzsche/programs.html.
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Different computational schemes have been developed to evaluate many-electron matrix elements, including
those for open-shell structures [4–7]. They deal with different couplings of the individual angular momenta as
well as different notations for classifying the subshell states of equivalent electrons for open-shell configurations.
One of the most popular scheme ist due to Fano [4] which is based on the coefficients of fractional parentage.
Typically, each computational method exploits a set ofstandard quantitiesto decompose the many-electron
matrix elements. Quantities which frequently occur are, for example, (i) the coefficients of fractional parentage
(CFP), (ii) the reduced coefficients of fractional parentage (RCFP), and (iii) the reduced matrix elements of
the unit tensorsU(k) and V (k1) in LS-coupling or of T (k) in jj -coupling, respectively. Often also (iv) the
completely reduced matrix elements of the single-particle operatorW(kqklks ) (LS-coupling) orW(kqkj ) (jj -
coupling) occur in the decomposition. Of course, details in the final evaluation depend on the underlying
coupling scheme, phase conventions, and on quite a number of different notations which are found in the
literature. For all these quantities is common, however, that they are closely related to angular momentum
theory.

Among the standard entities, the RCFPs play a central role in that most of the other quantities above can be
represented in terms of these coefficients. The well-known CFPs, for example, can be expressed as a product
of Wigner 3− j symbols and corresponding RCFPs which are independent of the occupation numberN of the
subshell states. Similarly, the (completely) reduced matrix element of the unit tensor can be written as a weighted
sum of products of Wigner 6− j symbols and RCFPs where the summation is always finite owing to triangular
conditions of the quantum numbers.

In practice, however, the handling and the application of such standard entities in the evaluation of open-shell
matrix elements is not always that simple and often requires considerable effort to bring new implementations
into work. Compilations of various coefficients and matrix elements can be found (in printed form) in the
literature, but their arrangement and notation is often not so suitable for numerical studies. Therefore, in order
to facilitate the usage of these (reduced) coefficients and matrix elements, here we describe an extension
to the RACAH program [1] which provides the user with a fast and interactive access to these quantities.
In the following section, we briefly recall the basic notations for different coupling schemes (as frequently
applied in atomic structure). This also includes the classification of all subshell states to which the program
can be applied. In Section 3, we outline how this extension is built into our previous work and how the
program will be distributed. Finally, Section 4 shows several examples for using the program; this includes
the generation of tabulations (or data files) which could immediately be exploited further in numerical
investigations.

2. The quasispin concept

In describing the structure of many-particle systems, a significant simplification is typically achieved by using a
symmetry-adapted basis for the construction of many particle states. Different classification and coupling schemes
have been developed over the years to incorporate the insight into the ‘physical regime’ (concerning the interaction
among the particles and with external fields) already in the construction of the basis. The two most popular coupling
schemes in defining a symmetry-adapted basis areLS- andjj -coupling whereby the latter one, in particular, has been
applied in the relativistic domain of atomic (as well as nuclear) structure theory. Apart from the well-established
seniority scheme for the classification of (antisymmetrized) subshell states, the concept of quasispin [6] shows a
number of advantages and has therefore been utilized in recent years.

Below, we briefly recall the most frequently applied classifications of (open) subshell states and their notation.
A rather large number of independent subshell states arise in particular for opend andf shells(l � 2) in LS-
coupling and for subshells(nj) with j � 7/2 in jj -coupling, respectively. We also display a compilation of all
subshell states which ensure the ‘access’ to the present extension to the RACAH program.
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2.1. LS-coupling

In quasispin notation, a subshell state ofN equivalent electrons|nlNαLS) is written as [6]

|nlNαQLS), (1)

whereQ is the quasispin momentum of the shellnl andα denotes all additional quantum numbers which are
needed for an unique classification of these states. In practice, such a quantum numberα need to be taken into
account only for subshells with orbital angular momental � 3. Table 1 lists the classification of thes-, p-, d- and
f -subshell states both in quasispin and seniority notation together with their group labelsW andU [8].

The quasispin momentumQ of a given shell(nl) and itsz-projectionMQ behave like an angular momentum in
quasispin space (Q-space). When compared with theseniority classification, Q is simply related to the seniority
quantum numberν byQ= (2l+1−ν)/2 whileMQ = (N−2l−1)/2 depends on the subshell occupation number
N . To facilitate the application of the program to openf -shell states, we also introduce the quantum numberw

instead of the formal group labelsW andU in Table 1 which just provides an (arbitrary) ordering of otherwise
degenerate subshell states.

2.2. jj-coupling

An alternative classification of the subshell states of open-shell systems exploits the quasispin concept injj -
coupling. In this representation, a subshell state ofN equivalent electrons|njNαJ ) with total angular momentum
J is written as

|njNαQJ). (2)

Again, the quasispin momentumQ = (
2j+1

2 − ν)/2 is related to the seniority quantum numberν while its z-

componentMQ = (N − 2j+1
2 )/2 depends on the subshell occupation numberN . For subshells with angular

momentaj = 1/2, 3/2, 5/2, and 7/2, a set of two quantum numbers, eitherQ andJ or ν andJ is sufficient to
classify the subshell states for all allowed occupation numbersN unambiguously. An additional quantum number
α only occurs for the subshell states withj � 9/2. For subshells withj = 9/2, we use a quantum numberw = 0,1,
or 2 similar as forf -shells inLS-coupling. Table 2 lists the allowed subshell states forj = 1/2, 3/2, 5/2, 7/2, and
9/2.

The classification of the subshell states plays akey rolein using our present extension to the RACAH program.
In Tables 1 and 2, we therefore provide a complete reference to this classification schemes; (reduced) coefficients
and matrix elements can be computed for all of these states as discussed below. These tables also enable the user to
make cross reference between different notations or to transfer the group labelsW andU (for openf -shell states
in LS-coupling) to the quantum numberw as applied in our quasispin or seniority notation.

2.3. Completely reduced matrix elements

The concept of quasispin enables us to exploit the Wigner–Eckart theorem inQ-space for subshell states
|nγNαQΓ ) in much the same way as for the total angular momentaJ in jj -coupling (Γ ≡ J , γ ≡ j ) or for L
andS in LS-coupling (Γ ≡ LS, γ ≡ ls). LetA(qγ )m denote any spherical tensor with rankq and projectionmq in
theQ-space, then the corresponding matrix element between any pair of subshell states can be rewritten as

(γ NαQΓMQ||A(qγ )mq ||γN ′
α′Q′Γ ′M ′

Q)

= (−1)Q−MQ

(
Q q Q′

−MQ mq M ′
Q

)
(γ αQΓ |||A(qγ )|||γα′Q′Γ ′). (3)

Eq. (3) represents the relation between the (standard) reduced matrix element on the left-hand side and its
completelyreduced counterpart(γ αQΓ |||A(qγ )|||γα′Q′Γ ′) of the operatorA(qγ ). As seen from this notation,
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Table 1
Classification of states[l]N of N equivalentelectrons in shells withl = 0,1,2,3. The (total) subshell orbital angular momentumL, spin
momentumS, seniority quantum numberν, quasispinQ and the group labelsW andU are shown. For openf -shell states, the last column
lists the additional quantum numberw as presently be used for a unique classification of the corresponding subshell states

subshell 2S+1L ν Q 2S+1L ν Q W U w 2S+1L ν Q W U w

s0 or s2 1S 0 1/2 2D 5 0 3F 4 3/2 (211) (21) 3

s1 2S 1 0 2F 3 1 3F 4 3/2 (211) (30) 4

p0 or p6 1S 0 3/2 2F 5 0 3G 4 3/2 (211) (20) 1

p1 or p5 2P 1 1 2G 3 1 3G 4 3/2 (211) (21) 2

p2 or p4 3P 2 1/2 2G 5 0 3G 4 3/2 (211) (30) 3
1S 0 3/2 2H 3 1 3H 2 5/2 (110) (11) 1
1D 2 1/2 2I 5 0 3H 4 3/2 (211) (11) 2

p3 4S 3 0 subshellf 0 or f 14 3H 4 3/2 (211) (21) 3
2P 1 1 1S 0 7/2 (000) (00) 1 3H 4 3/2 (211) (30) 4
2D 3 0 subshellf 1 or f 13 3I 4 3/2 (211) (20) 1

d0 or d10 1S 0 5/2 2F 1 3 (100) (10) 1 3I 4 3/2 (211) (30) 2

d1 or d9 2D 1 2 subshellf 2 or f 12 3K 4 3/2 (211) (21) 1

d2 or d8 3P 2 3/2 3P 2 5/2 (110) (11) 1 3K 4 3/2 (211) (30) 2
3F 2 3/2 3F 2 5/2 (110) (10) 1 3L 4 3/2 (211) (21) 1
1S 0 5/2 3H 2 5/2 (110) (11) 1 3M 4 3/2 (211) (30) 1
1D 2 3/2 1S 0 7/2 (000) (00) 1 1S 0 7/2 (000) (00) 1
1G 2 3/2 1D 2 5/2 (200) (20) 1 1S 4 3/2 (220) (22) 2

d3 or d7 4P 3 1 1G 2 5/2 (200) (20) 1 1D 2 5/2 (200) (20) 1
4F 3 1 1I 2 5/2 (200) (20) 1 1D 4 3/2 (220) (20) 2
2P 3 1 subshellf 3 or f 11 1D 4 3/2 (220) (21) 3
2D 1 2 4S 3 2 (111) (00) 1 1D 4 3/2 (220) (22) 4
2D 3 1 4D 3 2 (111) (20) 1 1F 4 3/2 (220) (21) 1
2F 3 1 4F 3 2 (111) (10) 1 1G 2 5/2 (200) (20) 1
2G 3 1 4G 3 2 (111) (20) 1 1G 4 3/2 (220) (20) 2
2H 3 1 4I 3 2 (111) (20) 1 1G 4 3/2 (220) (21) 3

d4 or d6 5D 4 1/2 2P 3 2 (210) (11) 1 1G 4 3/2 (220) (22) 4
3P 2 3/2 2D 3 2 (210) (20) 1 1H 4 3/2 (220) (21) 1
3P 4 1/2 2D 3 2 (210) (21) 2 1H 4 3/2 (220) (22) 2
3D 4 1/2 2F 1 3 (100) (10) 1 1I 2 5/2 (200) (20) 1
3F 2 3/2 2F 3 2 (210) (21) 2 1I 4 3/2 (220) (20) 2
3F 4 1/2 2G 3 2 (210) (20) 1 1I 4 3/2 (220) (22) 3
3G 4 1/2 2G 3 2 (210) (21) 2 1K 4 3/2 (220) (21) 1
3H 4 1/2 2H 3 2 (210) (11) 1 1L 4 3/2 (220) (21) 1
1S 0 5/2 2H 3 2 (210) (21) 2 1L 4 3/2 (220) (22) 2
1S 4 1/2 2I 3 2 (210) (20) 1 1N 4 3/2 (220) (22) 1
1D 2 3/2 2K 3 2 (210) (21) 1 subshellf 5 or f 9

1D 4 1/2 2L 3 2 (210) (21) 1 6P 5 1 (110) (11) 0
1F 4 1/2 subshellf 4 or f 10 6F 5 1 (110) (10) 0
1G 2 3/2 5S 4 3/2 (111) (00) 0 6H 5 1 (110) (11) 0
1G 4 1/2 5D 4 3/2 (111) (20) 1 4S 3 2 (111) (00) 1
1I 4 1/2 5F 4 3/2 (111) (10) 1 4P 5 1 (211) (11) 1

d5 6S 5 0 5G 4 3/2 (111) (20) 1 4P 5 1 (211) (30) 2
4P 3 1 5I 4 3/2 (111) (20) 1 4D 3 2 (111) (20) 1
4D 5 0 3P 2 5/2 (110) (11) 1 4D 5 1 (211) (20) 2
4F 3 1 3P 4 3/2 (211) (11) 2 4D 5 1 (211) (21) 3
4G 5 0 3P 4 3/2 (211) (30) 3 4F 3 2 (111) (10) 1
2S 5 0 3D 4 3/2 (211) (20) 1 4F 5 1 (211) (10) 2
2P 3 1 3D 4 3/2 (211) (21) 2 4F 5 1 (211) (21) 3
2D 1 2 3F 2 5/2 (110) (10) 1 4F 5 1 (211) (30) 4
2D 3 1 3F 4 3/2 (211) (10) 2 4G 3 2 (111) (20) 1
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Table 1
(Continued.)

2S+1L ν Q W U w 2S+1L ν Q W U w 2S+1L ν Q W U w

4G 5 1 (211) (20) 2 2K 5 1 (221) (31) 4 3G 6 1/2 (221) (20) 4
4G 5 1 (211) (21) 3 2K 5 1 (221) (31) 5 3G 6 1/2 (221) (21) 5
4G 5 1 (211) (30) 4 2L 3 2 (210) (21) 1 3G 6 1/2 (221) (30) 6
4H 5 1 (211) (11) 1 2L 5 1 (221) (21) 2 3G 6 1/2 (221) (31) 7
4H 5 1 (211) (21) 2 2L 5 1 (221) (31) 3 3H 2 5/2 (110) (11) 1
4H 5 1 (211) (30) 3 2M 5 1 (221) (30) 1 3H 4 3/2 (211) (11) 2
4I 3 2 (111) (20) 1 2M 5 1 (221) (31) 2 3H 4 3/2 (211) (21) 3
4I 5 1 (211) (20) 2 2N 5 1 (221) (31) 1 3H 4 3/2 (211) (30) 4
4I 5 1 (211) (30) 3 2O 5 1 (221) (31) 0 3H 6 1/2 (221) (11) 5
4K 5 1 (211) (21) 1 subshellf 6 or f 8 3H 6 1/2 (221) (21) 6
4K 5 1 (211) (30) 2 7F 6 1/2 (100) (10) 0 3H 6 1/2 (221) (30) 7
4L 5 1 (211) (21) 1 5S 4 3/2 (111) (00) 0 3H 6 1/2 (221) (31) 8
4M 5 1 (211) (30) 0 5P 6 1/2 (210) (11) 0 3H 6 1/2 (221) (31) 9
2P 3 2 (210) (11) 1 5D 4 3/2 (111) (20) 1 3I 4 3/2 (211) (20) 1
2P 5 1 (221) (11) 2 5D 6 1/2 (210) (20) 2 3I 4 3/2 (211) (30) 2
2P 5 1 (221) (30) 3 5D 6 1/2 (210) (21) 3 3I 6 1/2 (221) (20) 3
2P 5 1 (221) (31) 4 5F 4 3/2 (111) (10) 1 3I 6 1/2 (221) (30) 4
2D 3 2 (210) (20) 1 5F 6 1/2 (210) (21) 2 3I 6 1/2 (221) (31) 5
2D 3 2 (210) (21) 2 5G 4 3/2 (111) (20) 1 3I 6 1/2 (221) (31) 6
2D 5 1 (221) (20) 3 5G 6 1/2 (210) (20) 2 3K 4 3/2 (211) (21) 1
2D 5 1 (221) (21) 4 5G 6 1/2 (210) (21) 3 3K 4 3/2 (211) (30) 2
2D 5 1 (221) (31) 5 5H 6 1/2 (210) (11) 1 3K 6 1/2 (221) (21) 3
2F 1 3 (100) (10) 1 5H 6 1/2 (210) (21) 2 3K 6 1/2 (221) (30) 4
2F 3 2 (210) (21) 2 5I 4 3/2 (111) (20) 1 3K 6 1/2 (221) (31) 5
2F 5 1 (221) (10) 3 5I 6 1/2 (210) (20) 2 3K 6 1/2 (221) (31) 6
2F 5 1 (221) (21) 4 5K 6 1/2 (210) (21) 0 3L 4 3/2 (211) (21) 1
2F 5 1 (221) (30) 5 5L 6 1/2 (210) (21) 0 3L 6 1/2 (221) (21) 2
2F 5 1 (221) (31) 6 3P 2 5/2 (110) (11) 1 3L 6 1/2 (221) (31) 3
2F 5 1 (221) (31) 7 3P 4 3/2 (211) (11) 2 3M 4 3/2 (211) (30) 1
2G 3 2 (210) (20) 1 3P 4 3/2 (211) (30) 3 3M 6 1/2 (221) (30) 2
2G 3 2 (210) (21) 2 3P 6 1/2 (221) (11) 4 3M 6 1/2 (221) (31) 3
2G 5 1 (221) (20) 3 3P 6 1/2 (221) (30) 5 3N 6 1/2 (221) (31) 0
2G 5 1 (221) (21) 4 3P 6 1/2 (221) (31) 6 3O 6 1/2 (221) (31) 0
2G 5 1 (221) (30) 5 3D 4 3/2 (211) (20) 1 1S 0 7/2 (000) (00) 1
2G 5 1 (221) (31) 6 3D 4 3/2 (211) (21) 2 1S 4 3/2 (220) (22) 2
2H 3 2 (210) (11) 1 3D 6 1/2 (221) (20) 3 1S 6 1/2 (222) (00) 3
2H 3 2 (210) (21) 2 3D 6 1/2 (221) (21) 4 1S 6 1/2 (222) (40) 4
2H 5 1 (221) (11) 3 3D 6 1/2 (221) (31) 5 1P 6 1/2 (222) (30) 0
2H 5 1 (221) (21) 4 3F 2 5/2 (110) (10) 1 1D 2 5/2 (200) (20) 1
2H 5 1 (221) (30) 5 3F 4 3/2 (211) (10) 2 1D 4 3/2 (220) (20) 2
2H 5 1 (221) (31) 6 3F 4 3/2 (211) (21) 3 1D 4 3/2 (220) (21) 3
2H 5 1 (221) (31) 7 3F 4 3/2 (211) (30) 4 1D 4 3/2 (220) (22) 4
2I 3 2 (210) (20) 1 3F 6 1/2 (221) (10) 5 1D 6 1/2 (222) (20) 5
2I 5 1 (221) (20) 2 3F 6 1/2 (221) (21) 6 1D 6 1/2 (222) (40) 6
2I 5 1 (221) (30) 3 3F 6 1/2 (221) (30) 7 1F 4 3/2 (220) (21) 1
2I 5 1 (211) (31) 4 3F 6 1/2 (221) (31) 8 1F 6 1/2 (222) (10) 2
2I 5 1 (221) (31) 5 3F 6 1/2 (221) (31) 9 1F 6 1/2 (222) (30) 3
2K 3 2 (210) (21) 1 3G 4 3/2 (211) (20) 1 1F 6 1/2 (222) (40) 4
2K 5 1 (221) (21) 2 3G 4 3/2 (211) (21) 2 1G 2 5/2 (200) (20) 1
2K 5 1 (221) (30) 3 3G 4 3/2 (211) (30) 3 1G 4 3/2 (220) (20) 2
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Table 1
(Continued.)

2S+1L ν Q W U w 2S+1L ν Q W U w 2S+1L ν Q W U w

1G 4 3/2 (220) (21) 3 4F 5 1 (211) (30) 4 2F 7 0 (222) (40) 10
1G 4 3/2 (220) (22) 4 4F 7 0 (220) (21) 5 2G 3 2 (210) (20) 1
1G 6 1/2 (222) (20) 5 4G 3 2 (111) (20) 1 2G 3 2 (210) (21) 2
1G 6 1/2 (222) (30) 6 4G 5 1 (211) (20) 2 2G 5 1 (221) (20) 3
1G 6 1/2 (222) (40) 7 4G 5 1 (211) (21) 3 2G 5 1 (221) (21) 4
1G 6 1/2 (222) (40) 8 4G 5 1 (211) (30) 4 2G 5 1 (221) (30) 5
1H 4 3/2 (220) (21) 1 4G 7 0 (220) (20) 5 2G 5 1 (221) (31) 6
1H 4 3/2 (220) (22) 2 4G 7 0 (220) (21) 6 2G 7 0 (222) (20) 7
1H 6 1/2 (222) (30) 3 4G 7 0 (220) (22) 7 2G 7 0 (222) (30) 8
1H 6 1/2 (222) (40) 4 4H 5 1 (211) (11) 1 2G 7 0 (222) (40) 9
1I 2 5/2 (200) (20) 1 4H 5 1 (221) (21) 2 2G 7 0 (222) (40) 10
1I 4 3/2 (220) (20) 2 4H 5 1 (221) (30) 3 2H 3 2 (210) (11) 1
1I 4 3/2 (220) (22) 3 4H 7 0 (220) (21) 4 2H 3 2 (210) (21) 2
1I 6 1/2 (222) (20) 4 4H 7 0 (220) (22) 5 2H 5 1 (221) (11) 3
1I 6 1/2 (222) (30) 5 4I 3 2 (111) (20) 1 2H 5 1 (221) (21) 4
1I 6 1/2 (222) (40) 6 4I 5 1 (211) (20) 2 2H 5 1 (211) (30) 5
1I 6 1/2 (222) (40) 7 4I 5 1 (211) (30) 3 2H 5 1 (221) (31) 6
1K 4 3/2 (220) (21) 1 4I 7 0 (220) (20) 4 2H 5 1 (221) (31) 7
1K 6 1/2 (222) (30) 2 4I 7 0 (220) (22) 5 2H 7 0 (222) (30) 8
1K 6 1/2 (222) (40) 3 4K 5 1 (211) (21) 1 2H 7 0 (222) (40) 9
1L 4 3/2 (220) (21) 1 4K 5 1 (211) (30) 2 2I 3 2 (210) (20) 1
1L 4 3/2 (220) (22) 2 4K 7 0 (220) (21) 3 2I 5 1 (221) (20) 2
1L 6 1/2 (222) (40) 3 4L 5 1 (211) (21) 1 2I 5 1 (221) (30) 3
1L 6 1/2 (222) (40) 4 4L 7 0 (220) (21) 2 2I 5 1 (221) (31) 4
1M 6 1/2 (222) (30) 1 4L 7 0 (220) (22) 3 2I 5 1 (221) (31) 5
1M 6 1/2 (222) (40) 2 4M 5 1 (211) (30) 0 2I 7 0 (222) (20) 6
1N 4 3/2 (220) (22) 1 4N 7 0 (220) (22) 0 2I 7 0 (222) (30) 7
1N 6 1/2 (222) (40) 2 2S 7 0 (222) (00) 1 2I 7 0 (222) (40) 8
1Q 6 1/2 (222) (40) 0 2S 7 0 (222) (40) 2 2I 7 0 (222) (40) 9

subshellf 7 2P 3 2 (210) (11) 1 2K 3 2 (210) (21) 1
8S 7 0 (000) (00) 0 2P 5 1 (221) (11) 2 2K 5 1 (221) (21) 2
6P 5 1 (110) (11) 0 2P 5 1 (221) (30) 3 2K 5 1 (221) (30) 3
6D 7 0 (200) (20) 0 2P 5 1 (221) (31) 4 2K 5 1 (221) (31) 4
6F 5 1 (110) (10) 0 2P 7 0 (222) (30) 5 2K 5 1 (221) (31) 5
6G 7 0 (200) (20) 0 2D 3 2 (210) (20) 1 2K 7 0 (222) (30) 6
6H 5 1 (110) (11) 0 2D 3 2 (210) (21) 2 2K 7 0 (222) (40) 7
6I 7 0 (200) (20) 0 2D 5 1 (221) (20) 3 2L 3 2 (210) (21) 1
4S 3 2 (111) (00) 1 2D 5 1 (221) (21) 4 2L 5 1 (221) (21) 2
4S 7 0 (220) (22) 2 2D 5 1 (221) (31) 5 2L 5 1 (221) (31) 3
4P 5 1 (211) (11) 1 2D 7 0 (222) (20) 6 2L 7 0 (222) (40) 4
4P 5 1 (211) (30) 2 2D 7 0 (222) (40) 7 2L 7 0 (222) (40) 5
4D 3 2 (111) (20) 1 2F 1 3 (100) (10) 1 2M 5 1 (221) (30) 1
4D 5 1 (211) (20) 2 2F 3 2 (210) (21) 2 2M 5 1 (221) (31) 2
4D 5 1 (211) (21) 3 2F 5 1 (221) (10) 3 2M 7 0 (222) (30) 3
4D 7 0 (220) (20) 4 2F 5 1 (221) (21) 4 2M 7 0 (222) (40) 4
4D 7 0 (220) (21) 5 2F 5 1 (221) (30) 5 2N 5 1 (221) (31) 1
4D 7 0 (220) (22) 6 2F 5 1 (221) (31) 6 2N 7 0 (222) (40) 2
4F 3 2 (111) (10) 1 2F 5 1 (221) (31) 7 2O 5 1 (221) (31) 0
4F 5 1 (211) (10) 2 2F 7 0 (222) (10) 8 2Q 7 0 (222) (40) 0
4F 5 1 (221) (21) 3 2F 7 0 (222) (30) 9



226 G. Gaigalas et al. / Computer Physics Communications 135 (2001) 219–237

Table 2
Classification of subshell states[j ]N of N equivalentelectrons withj = 1/2, 3/2,5/2,7/2, and 9/2. The seniority quantum numberν, the
subshell angular momentumJ , the subshell quasispinQ and the additional quantum numberw (for subshells withj = 9/2 only) are displayed

subshell ν J Q w subshell ν J Q w

[1/2]0 or [1/2]2 0 0 1/2 3 5/2 1 0

[1/2]1 1 1/2 0 3 7/2 1 0

3 9/2 1 0

[3/2]0 or [3/2]4 0 0 1 3 11/2 1 0

[3/2]1 or [3/2]3 1 3/2 1/2 3 13/2 1 0

[3/2]2 0 0 1 3 15/2 1 0

2 2 0 3 17/2 1 0

3 21/2 1 0

[5/2]0 or [5/2]6 0 0 3/2 [9/2]4 or [9/2]6 0 0 5/2 0

[5/2]1 or [5/2]5 1 5/2 1 2 2 3/2 0

[5/2]2 or [5/2]4 0 0 3/2 2 4 3/2 0

2 2 1/2 2 6 3/2 0

2 4 1/2 2 8 3/2 0

[5/2]3 1 5/2 1 4 0 1/2 0

3 3/2 0 4 2 1/2 0

3 9/2 0 4 3 1/2 0

4 4 1/2 1

[7/2]0 or [7/2]8 0 0 2 4 4 1/2 2

[7/2]1 or [7/2]7 1 7/2 3/2 4 5 1/2 0

[7/2]2 or [7/2]6 0 0 2 4 6 1/2 1

2 2 1 4 6 1/2 2

2 4 1 4 7 1/2 0

2 6 1 4 8 1/2 0

[7/2]3 or [7/2]5 1 7/2 3/2 4 9 1/2 0

3 3/2 1/2 4 10 1/2 0

3 5/2 1/2 4 12 1/2 0

3 9/2 1/2 [9/2]5 1 9/2 2 0

3 11/2 1/2 3 3/2 1 0

3 15/2 1/2 3 5/2 1 0

[7/2]4 0 0 2 3 7/2 1 0

2 2 1 3 9/2 1 0

2 4 1 3 11/2 1 0

2 6 1 3 13/2 1 0

4 2 0 3 15/2 1 0

4 4 0 3 17/2 1 0

4 5 0 3 21/2 1 0

4 8 0 5 1/2 0 0

5 5/2 0 0

[9/2]0 or [9/2]10 0 0 5/2 0 5 7/2 0 0

[9/2]1 or [9/2]9 1 9/2 2 0 5 9/2 0 0

[9/2]2 or [9/2]8 0 0 5/2 0 5 11/2 0 0

2 2 3/2 0 5 13/2 0 0

2 4 3/2 0 5 15/2 0 0

2 6 3/2 0 5 17/2 0 0

2 8 3/2 0 5 19/2 0 0

[9/2]3 or [9/2]7 1 9/2 2 0 5 25/2 0 0

3 3/2 1 0
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the completely reduced matrix element is independent of the occupation numberN of the corresponding subshell
state; the dependence onN is contained inMQ and occurs on the right-hand side as projection of the quasispin

only within the Wigner 3− j symbol
(

Q q Q′
−MQ mq M ′

Q

)
. Thus, by applying the quasispin method to the calculation

of matrix elements of tensor operators between different subshell states, it is often more efficient to exploit the
completely reduced matrix elements instead of the reduced ones. For these quantities, the size of the tabulations
are typically much smaller if compared with those of the standard coefficients and reduced matrix elements [9,10].

In the formalism of second quantization, it is possible to express the CFP by the completely reduced matrix
elements of the electron creation and annihilation operators [cf. Eqs. (9) and (13) in Appendix A]. These completely
reduced matrix elements of the operatora(qγ ) in second quantization are often called the reduced coefficients of
fractional parentage (RCFP). The reduced matrix elements of the double tensorW(kqkj ) in jj -coupling or of the
triple tensorW(kqklks ) in LS-coupling can also be represented as a weighted sum of Wigner 6− j symbols and the
RCFPs, including a summation over all the intermediate terms of the corresponding shells. Moreover, the RCFPs
are closely related to the submatrix elements of the unit tensorsT (k) or U(k) andV (k1), respectively. The given
reduced coefficients and matrix elements are therefore useful also for the traditional approaches which are based
on the CFPs and the submatrix elements of the unit tensorsU(k) andV (k1).

3. Additional procedures to the RACAH package

The RACAH package [1] has been designed originally for simplifying expressions from the theory of angular
momentum. Emphasize was paid for developing an interactive and user-friendly tool which neither requires a
detailed knowledge about the group-theoretical background which leads to these expressions nor about techniques
for their simplification. Our previous set of RACAH procedures concerned both, numerical computations as well as
the simplification of complex expressions due to the use of graphical and sum rules where asimplificationmeans
to reduce the number of summation variables, integrals, and/or Wignern − j symbols. In the future, moreover,
we will consider also the properties of the spherical harmonics and of further entities from the angular momentum
theory. In this work, we extent the features of the RACAH program byaddingthe knowledge about a number of
important standard quantities in the evaluation of matrix elements.

Table 3
Additional commands to the RACAH package. A detailed description of these procedures are listed in Appendix B below. See Section 3 and
in-line commands for further information about the internal representation of the RCFP and the individual subshell states for open shells

Racah_cfp() Calculates a CFP inLS- or jj -coupling.

Racah_rcfp() Returns a RCFP inLS- or jj -coupling.

Racah_reduced_T() Calculates a reduced matrix element of the operatorT (k) in jj -coupling.

Racah_reduced_U() Calculates a reduced matrix element of the operatorU(k) in LS-coupling.

Racah_reduced_V() Calculates a reduced matrix element of the operatorV (k1) in LS-coupling.

Racah_reduced_W() Calculates a completely reduced matrix element of either the operatorW(kq klks ) in
LS-coupling orW(kqkj ) in jj -coupling.

Racah_set_coupling_scheme() Defines the current classification and coupling scheme for the evaluation of the
standard quantities in this program.
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As discussed above, the reduced coefficients and matrix elements of spherical tensor operators are closely related
to the theory of angular momentum. This stimulated the present extension which creates a fast access to these
quantities in different classification and coupling schemes. We currently support the computation of the RCFP and
the completely reduced matrix elements ofW(kqkj ) andW(kqklks) as well as of the CFP and the reduced matrix
elements ofT (k), U(k) andV (k1). Table 3 shows a brief overview of the additional procedures which are relevant
to the user; these procedures are based on our previous developments [1]. In total, 18 new procedures have been
added to the RACAH program in the present work. Since all coefficients are evaluated directly to their numerical
(algebraic and floating-point) values, no additional data structures had to be defined for the present work.

One procedure, namely Racah_set_coupling_scheme(), differs from our previous rules [1] in that it ‘assigns’ a
(string) value to the global variableRacah_save_coupling_scheme which specifies the currently defined
coupling scheme and the choice of quantum numbers to classify the individual subshell states. The ‘value’ of
this variable also specifies how the quantum numbers for the reduced coefficients and matrix elements are to
be interpretedto ensure a large flexibility of the program. The command Racah_set_coupling_scheme() must
therefore be invoked before any other quantity can be evaluated. In the present version, we support the classification
schemesLS_quasispin, LS_seniority, jj_quasispin, and jj_seniority; the current selection can be overwritten
interactively at any time by a call to this procedure.

The RACAH program will be distributed as the source fileracah3 which contains both, the full source of
the program as well as the RCFPs and the subshell terms from Tables 1 and 2 in a compact format. The two
commands Racah_set_rcfp_jj() and Racah_set_rcfp_LS() are available to return individual RCFPs, which form the
basic elements of the present extension, injj - andLS-coupling, respectively. These coefficients are stored internally
in MAPLE lists using the format

[Q_1, J_1, Q_2, J_2, weight, nom, den]

for subshells withj � 7/2 and

[w_1, Q_1, J_1, w_2, Q_2, J_2, weight, nom, den]

for subshells withj = 9/2 in jj -coupling as well as

[Q_1, L_1, S_1, Q_2, L_2, S_2, weight, nom, den]

for all shells withl � 2 and

[w_1, Q_1, L_1, S_1, w_2, Q_2, L_2, S_2, weight, nom, den]

for f shells inLS-coupling, respectively. In this representation, the value of a RCFP is simply given by weight×√
nom
den. Similarly, the required subshell states are returned as (list of) lists from the procedures Racah_set_term_jj()

and Racah_set_term_LS().
The sourceracah3 presently contains approximately 140 procedures in alphabetic order. To utilize the code

interactively, the whole program can be loaded by

> read racah3;

at the beginning of each MAPLE session. In a later version, we will slightly modify the form of the distribution
since we intent to include also a number of help pages and worksheets within the framework of MAPLE.

4. Examples

To illustrate the use of the present extension, we first calculate two reduced matrix elements of the single-particle
operatorW(kqklks ). We also show, how a tabulation of all non-zero coefficients of fractional parentage injj -coupling
for subshells withj = 9/2 can easily be generated for later use in numerical applications.
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Let us consider the computation of the completely reduced matrix element(lQ1L1S1|||W(kqklks )|||lQ2L2S2).
We evaluate this matrix element inLS-coupling using quasispin notation for the quantum numberskq = 1, kl =
2, ks = 0, l = 1,Q1 = 1,L1 = 1, S1 = 1/2,Q2 = 0,L2 = 2, andS2 = 1/2. For this, we enter

> Racah_set_coupling_scheme(LS_quasispin);
> W := Racah_reduced_W(1,2,0,1,1,1,1/2,0,2,1/2);

W := 9.486832985.

Note that in order to obtain a different accuracy of this result, it would simply be enough to change the value of
the MAPLE variableDigits.

Different representations of the final results are supported by the program. For instance, one may wish to use
the seniority scheme, instead of quasispin notation, for classifying the subshell states of equivalent electrons and
to obtain the results in a prime–number representation. This is achieved by

> Racah_set_coupling_scheme(LS_seniority);
> W := Racah_reduced_W(1,2,0,1,1,1,1/2,3,2,1/2,prime);

W := [1,1,2,1].
In this representation, the value of the completely reduced matrix element is given due to the integer powers of (up
to 11) prime numbers

[a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11]
which represent the (real) value

a0

(
11∏
i=1

p
ai
i

)1/2

, (4)

wherep1 = 2, p2 = 3, p3 = 5, p4 = 7, p5 = 11, p6 = 13, p7 = 17, p8 = 19,p9 = 23, p10 = 29, p11 = 31. In
the MAPLE output, alltrailing zeros are omitted and need not to be incorporated in the evaluation of expression
(4). Thus, the result W := [1, 1, 2, 1] above is just equivalent to the value 3

√
2× 5 ≡ 9.486832985. The same

(algebraic) result would be obtained by using the keywordalgebraicinstead ofprime.
As second example, we ‘prove’ the relation (13) from Appendix A numerically. For this, we consider the left-

and right-hand-side of Eq. (13) separately for the quantum numbersj = 7/2,N = 4, nu = 2, J = 2, ν′ = 1, and
J ′ = 7/2. Again, we use seniority notation for the CFP(jNανJ ||jN−1(α′ν′Q′J ′)j) on the left-hand side

> Racah_set_coupling_scheme(jj_seniority);
> left := Racah_cfp(7/2,4,2,2,1,7/2,algebraic);

left := 1/3
√

3

To obtain the value from the right-hand side

(−1)N+Q−MQ

√
N[J ]

(
Q 1/2 Q′

−MQ 1/2 M ′
Q

)
(j αQJ |||a(qj)|||j α′Q′J ′) (5)

we have, in addition, the quantum numbersQ = ((2j + 1)/2 − ν)/2 = 1, MQ = (N − (2j + 1)/2)/2 = 0,
Q′ = 3/2, andM ′

Q = −1/2.

> right := Racah_rcfp(7/2,2,2,1,7/2,algebraic);
> w3jr := Racah_set(w3j,1,1/2,3/2,0,1/2,-1/2);
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j := 9/2; Racah_set_coupling_scheme(jj_quasispin);
for N from 1 to 5 do

lprint("CFP for 9/2 subshell with occupation N = ",N);
MQ1 := (N - 5) / 2; MQ2 := (N - 6) / 2;
if type(MQ1,integer) then

term1_jj := Racah_subshell_term_jj(j,Q_int);
term2_jj := Racah_subshell_term_jj(j,Q_halfint);

elif not type(MQ1,integer) then
term1_jj := Racah_subshell_term_jj(j,Q_halfint);
term2_jj := Racah_subshell_term_jj(j,Q_int);

fi;
#
for i from 1 to nops(term1_jj) do

for m from 1 to nops(term2_jj) do
w1 := term1_jj[i][2]; Q1 := term1_jj[i][3]; J1 := term1_jj[i][4];
w2 := term2_jj[m][2]; Q2 := term2_jj[m][3]; J2 := term2_jj[m][4];
nu1 := (2*j+1) / 2 -2 * Q1; nu2 := (2*j+1) / 2 - 2 * Q2;
if not abs(MQ1) > Q1 and not abs(MQ2) > Q2 then

result_p := Racah_cfp(9/2,N,w1,Q1,J1,w2,Q2,J2,prime);
result := Racah_cfp(9/2,N,w1,Q1,J1,w2,Q2,J2);
if result_p[1] <> 0 then

lprint(w1,nu1,J1,w2,nu2,J2,‘=‘,result,result_p);
fi;

fi;
od;

od;
od;

Fig. 1. MAPLE code for generating a compilation of all non-zero CFP injj -coupling and quasispin notation for subshells withj = 9/2. See the
text for explanation and the TEST RUN OUTPUT for the first lines of the results.

> right := right * Racah_compute(w3jr,algebraic);
> right := right * (-1)ˆ(4+1+0) / sqrt(4*(2*2+1));

right := 1/30
√

10× 6× 5.

This test case can be seen as a simple example to establish (new) ‘relations’ among the standard quantities in
the evaluation of matrix elements for open-shell configurations. Although, of course, such a numerical treatment
will not proveany analytic relation it may help to obtain further hints on such symmetries. We therefore hope that
our present tool will help to point towardsnewrelations which have not yet been found by other, group-theoretical
studies.

For several entities, as discussed above, extensive compilations have been published over the years and have been
implemented in various ways in atomic structure programs. Even though some of these implementations are not
very efficient, modification on these standard quantities and their internal use is often very tedious and error-prone.
The present extension of the RACAH program now provides a much simpler way to generate just those ‘tables’
which are most appropriate for a given class of applications. To emphasize thisflexibility in the representation of
such quantities, our final example generates a tabulation of all non-zero CFP injj -coupling and quasispin notation
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for subshells withj = 9/2. Fig. 1 shows the MAPLE code which has to be entered interactively; the first few lines
of the corresponding output are displayed in the TEST RUN OUTPUT below.

We need not to explain much about this code in Fig. 1. Following the definition of the coupling scheme and the
notation in the first line, we initiate a loopN = 1, . . . ,5 to cycle, in turn, through all allowed occupation numbers
up to a half-filled shell. In dependence ofMQ1 of the daughter states, we assign a list of all appropriate subshell
terms in the definition of the CFP to the MAPLE list term1_jj andterm2_jj for the bra- and ket-functions,
respectively, These two list then also carry all required quantum numbers to set up the tabulation owing to a call
to the procedure Racah_cfp(). The results are printed, along with the quantum numbers, both as floating-point
numbers as well as in a prime-number representation. Only non-zero coefficients are printed to screen.

In conclusion, we provide a set of additional procedures to the RACAH program which facilitates the handling
of standard entities for evaluating many-particle matrix elements. Special emphasize has been paid to support
different notations and coupling schemes as frequently applied in atomic and nuclear structure theory. We hope our
developments will encourage further work in finding more efficient computational schemes for open-shell atoms
either by our groups or by others. All basic entities are now accessible in the framework of RACAH or can easily
be adopted to the needs of the user within a few lines of code. In the past, similar attempts were hampered by a
rather tedious access to these reduced coefficients and matrix elementsvia tabulations [8,11] which are often based
on different conventions.

Apart from further developments in atomic structure theory, the present extension to the RACAH program may
influence also the work in neighboring fields like nuclear structure and the scattering of particles and light at
composite systems. In these fields, numerical studies are often based on similar entities which could be incorporated
as well in the framework of the RACAH package.
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Appendix A: Definitions and basic relations

All quantities, which we consider in this work, can be defined in terms of the reduced coefficients of fractional
parentage(γ αQΓ |||a(qγ )|||γα′Q′Γ ′) where we haveγ ≡ ls andΓ ≡ LS in LS-coupling andγ ≡ j andΓ ≡ J in
jj -coupling. Below, we provide the definition of the CFP and of the completely reduced matrix elementsW(kqklks )

andW(kqkj ). Owing to the presently supported coupling schemes of the individual angular momenta, this appendix
is divided into two parts forLS- andjj -coupling, respectively.

The quasispin momentumQ and itsz-component are defined asQ= 1
2(
Ω
2 − ν) andMQ = 1

2(N − Ω
2 ), where

N is the number of particles in the given shell andΩ ≡ [l, s] in LS-coupling orΩ ≡ [j ] in jj -coupling. Here, the
notation[a, b, . . .] ≡ (2a+ 1)(2b+ 1) · · · is used throughout this appendix. In addition to the basic definitions, we
also list several important relations which are fulfilled by the reduced and completely reduced matrix elements of
the standard operatorsT (k),U(k),V (k1), andW(kqkγ ), wherekγ ≡ klks in LS-coupling andkγ ≡ kj in jj -coupling.

Several phase conventions among the quantities can be found in the literature. Therefore, the user must pay
attention to the phase and designation of these quantities if he needs to compare the results from the RACAH

program with tabulated data. The CFP and RCFP are defined as in Refs. [9,10], exploiting the quasispin formalism.
This definition simplifies the transformation among different coupling schemes, i.e. in going fromLS- to jj -
coupling or vice versa [12], particularly if subshell states with occupation numbersN > j + 1/2 are involved
in the transformation.
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Different definitions also appear for the reduced matrix elements of the unit operatorU(k). Karazija et al. [11],
for instance, tabulate the submatrix elements(

lNαSL||U(k)||lNα′S′L′), (6)

while Nielson and Koster [8] and Cowan [3] list(
lNαL||U(k)||lNα′L′), (7)

even though by using the same notation as in expression (6). The relation between these reduced matrix elements
is given by(

lNαSL||U(k)||lNα′S′L′)= δ(S,S′)
√
(2S + 1)

(
lNαL||U(k)||lNα′L′). (8)

In RACAH, we follow the work of Karazija et al. [11] by exploiting the relation (11) to generate the reduced matrix
elements ofU(k) from those of the operatorW(k1k2k3).

For all further details on the quasispin concept and the definition of standard operators in atomic structure theory,
we refer the reader to Rudzikas [6] and to Gaigalas et al. [9,10]. These references also summarize the properties of
the corresponding coefficients and matrix elements both inLS- andjj -coupling, respectively.

A.1. LS-coupling

Coefficients of fractional parentage:

(lNαQLS||lN−1(α′Q′L′S′)l)

= (−1)N+Q−MQ

√
N[L,S]

(
Q 1/2 Q′

−MQ 1/2 M ′
Q

)
(lαQLS|||a(qls)|||lα′Q′L′S′). (9)

Completely reduced matrix elements ofW(kqklks ):

(lαQLS|||W(kq klks)|||lα′Q′L′S′)
= (−1)Q+L+S+Q′+L′+S ′+kq+kl+ks√[kq, kl, ks]

×
∑

α′′Q′ ′L′′S ′′

{
q q kq

Q′ Q Q′′

}{
l l kl

L′ L L′′

}{
s s ks

S′ S S′′

}

× (lαQLS|||a(qls)|||lα′′Q′′L′′S′′)(lα′′Q′′L′′S′′|||a(qls)|||lα′Q′L′S′). (10)

Reduced matrix elements ofU(k):

(lNαLS||U(k)||lNα′L′S′)=




(−1)Q−MQ+1

√[k]
(

Q 1 Q′
−MQ 0 MQ

)
× (lαQLS|||W(1k0)|||lα′Q′L′S′) if k = even,
−1√[Q,k] (lαQLS|||W

(0k0)|||lα′Q′L′S′) if k = odd.

(11)

Reduced matrix elements ofV (k1):

(lNαLS||V (k1)||lNα′L′S′)=




−1

2
√[Q,k] (lαQLS|||W

(0k0)|||lα′Q′L′S′) if k = even,

(−1)Q−MQ+1

2
√[k]

(
Q 1 Q′

−MQ 0 MQ

)
× (lαQLS|||W(1k0)|||lα′Q′L′S′) if k = odd.

(12)
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A.2. jj-coupling

Coefficients of fractional parentage:

(jNαQJ ||jN−1(α′Q′J ′)j)

= (−1)N+Q−MQ

√
N[J ]

(
Q 1/2 Q′

−MQ 1/2 M ′
Q

)
(jαQJ |||a(qj)|||jα′Q′J ′). (13)

Completely reduced matrix elements ofW(kqkj ):

(jαQJ |||W(kqkj )|||jα′Q′J ′)

= (−1)Q+J+Q′+J ′+kq+kj√[kq, kj ]
∑

α′′Q′′J ′′

{
q q kq

Q′ Q Q′′

}{
j j kj

J ′ J J ′′

}

× (jαQJ |||a(qj)|||jα′′Q′′J ′′)(jα′′Q′′J ′′|||a(qj)|||jα′Q′J ′). (14)

Reduced matrix elements ofT (k):

(jNαJ ||T (k)||jNα′J ′)=




(−1)Q−MQ+1

2
√[k]

(
Q 1 Q′

−MQ 0 MQ

)
× (jαQJ |||W(1k)|||jα′Q′J ′) if k = even,
−1√

2[Q,k] (jαQJ |||W(0k)|||jα′Q′J ′) if k = odd.

(15)

Appendix B: Additional commands to the RACAH package

For a quick reference, here we briefly explain the new procedures to the RACAH package. We only present those
procedures in detail which are important for interactive work. The description of these procedures follows the style
of The Maple Handbookby Redfern [13]. All arguments must be given as integers or half–integers as appropriate
for the coupling of angular momenta.

• Racah_cfp(j,N,Q1,J1,Q2,J2)

Returns the coefficient of fractional parentage(jNQ1J1||jN−1(Q2J2)j) for subshells with angular momenta
j = 1/2, 3/2, 5/2 and 7/2 using the quasispin notation injj -coupling.

Output: A (floating-point) number is returned.

Argument options: (j,N,Q1,J1,Q2,J2, {algebraic, . . .}) to return the CFP in algebraic form for subshells with
j = 1/2, 3/2, 5/2 and 7/2. ♣ (j,N,Q1,J1,Q2,J2, {prime, . . .}) to return the CFP in a prime-number repre-
sentation.♣ (j,N,ν1,J1,ν2,J2,{seniority, . . .}) to return the CFP(jNν1J1||jN−1(ν2J2)j) using the seniority
notation if the coupling schemejj_seniority has not been specified explicitly.♣ (9/2,N,w1,Q1,J1,w2,Q2,J2,
{. . .}) to return the value of the CFP(jNw1Q1J1||jN−1(w2Q2J2)j) for j = 9/2 and for the additionally
specified quantum numbersw1,2 = 0, 1, or 2 [cf. Table 2].♣ (l,N,Q1,L1,S1,Q2,L2,S2, {. . .}) to return the
CFP(lNQ1L1S1||lN−1(Q2L2S2)l) in LS-coupling for subshells withl = 0, 1 and 2 using the quasispin no-
tation in LS-coupling.♣ (l,N,ν1,L1,S1,ν2,L2,S2, {. . .}) to return the CFP(lNν1L1S1||lN−1(ν2L2S2)l) using
seniority notation inLS-coupling.♣ (3,N,w1,Q1,L1,S1,w2,Q2,L2, S2,{. . .}) to return the value of the CFP
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(f Nw1Q1L1S1||fN−1(w2Q2L2S2)f ) for subshell with orbital angular momentuml = 3 and for the addi-
tionally specified quantum numbersw1,2 = 0, . . . ,10 using the quasispin notation inLS-coupling [cf. Table 1].

Additional information: The list and number of arguments depend on the definition of the under-
lying classification and coupling scheme which has to be defined before by calling the procedure
Racah_set_coupling_scheme(). The current definition of the coupling scheme is kept in the global
variableRacah_save_coupling_scheme. ♣ A set of keywords can be provided in any order as the last
argument; the currently supportedkeywordsarealgebraic, prime, andsenioritywherealgebraicandprime
must be used exclusively. The keywordseniority ‘overwrites’ the currently defined classification scheme.
♣ The calculation of the CFPs is based on a list of RCFP which is stored internally.♣ For details of the prime
number representation seeRacah_calculate_prime().

See also: Racah_set_coupling_scheme().

• Racah_rcfp(j,Q1,J1,Q2,J2)

Returns the reduced coefficient of fractional parentage(jQ1J1|||a(qj)|||jQ2J2) for subshells with angular
momentaj = 1/2, 3/2, 5/2 and 7/2 in jj -coupling.

Output: A (floating-point) number is returned.

Argument options: (j,Q1,J1,Q2,J2, {algebraic}) to return the RCFP in algebraic form.♣ (j,Q1,J1,Q2,J2,
{prime}) to return the RCFP in a prime-number representation.♣ (9/2,w1,Q1,J1,w2,Q2,J2,{. . .}) to return the
RCFP(jw1Q1J1|||a(qj)|||jw2Q2J2) for subshells withj = 9/2 and for the additionally specified quantum
numbersw1,2 = 0, . . . ,2. ♣ (l,Q1,L1,S1,Q2,L2,S2,{. . .}) to return the RCFP(lQ1L1S1|||a(qls)|||lQ2L2S2)

for shells with l = 0, . . . ,2 in LS-coupling. ♣ (3,w1,Q1,L1,S1,w2,Q2,L2,S2, {. . .}) to return the RCFP
(fw1Q1L1S1|||a(qls)|||fw2Q2L2S2) for subshell with orbital angular momentuml = 3 and for the
additionally specified quantum numbersw1,2 = 0, . . . ,10.

Additional information: The list and number of arguments depend on the definition of the underlying cou-
pling scheme which has to be defined before by calling the procedureRacah_set_coupling_scheme().
The current definition of the coupling scheme is kept in the global variableRacah_save_coupling_
scheme. ♣ One of the keywordsalgebraicor prime can be provided as last argument given within a set
structure.

See also: Racah_set_coupling_scheme().

• Racah_reduced_T(k,j,MQ,Q1,J1,Q2,J2)

Returns the reduced matrix element(jQ1J1MQ||T (k)||jQ2J2MQ) for subshells with angular momenta
j = 1/2, 3/2, 5/2 and 7/2 using the quasispin notation injj -coupling.

Output: A (floating-point) number is returned.

Argument options: (k,j,MQ,Q1,J1,Q2,J2, {algebraic, . . .}) to return the reduced matrix element in algebraic
form. ♣ (k,j,MQ,Q1,J1,Q2,J2, {prime, . . .}) to return the reduced matrix element in a prime-number repre-
sentation.♣ (k,j,N,ν1,J1,ν2,J2,{seniority, . . .}) to return the reduced matrix element(jNν1J1||T (k)||jNν2J2)

using seniority notation if the coupling schemejj_seniorityhas not been specified explicitly.♣ (k,9/2,MQ,w1,
Q1,J1,w2,Q2,J2, {. . .}) to return the reduced matrix element(jw1Q1J1MQ||T (k)||jw2Q2J2MQ) for subshells
with orbital angular momentumj = 9/2 and for the additionally specified quantum numbersw1,2 = 0, 1, or
2 using quasispin notation injj -coupling.
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Additional information: The reduced matrix elements of the operatorT (k) are only defined injj -coupling.
♣ The list and number of arguments depend on the definition of the underlying classification and coupling
scheme which has to be defined before by calling the procedureRacah_set_coupling_scheme().
The current definition of the coupling scheme is kept in the global variableRacah_save_coupling_
scheme. ♣ A set of keywords can be provided in any order as the last argument; the currently supported
keywordsare algebraic, prime, and seniority wherealgebraic and prime must be used exclusively. The
keywordseniority ‘overwrites’ the currently defined classification scheme.♣ The calculation of the CFP
is based on a list of RCFP which is stored internally.

See also: Racah_set_coupling_scheme().

• Racah_reduced_U(k,l,MQ,Q1,L1,S1,Q2,L2,S2)

Returns the reduced matrix element(lNQ1L1S1MQ||U(k)||lNQ2L2S2MQ) of the unit tensorU(k) for
subshells with orbital angular momental = 0, 1, and 2 using quasispin notation inLS-coupling.

Output: A (floating-point) number is returned.

Argument options: (k,l,MQ,Q1,L1,S1, Q2,L2,S2,{algebraic, . . .}) to return the reduced matrix element in
algebraic form.♣ (k,l,MQ,Q1,L1,S1,Q2,L2,S2,{prime, . . .}) to return the reduced matrix element in a prime-
number representation.♣ (k,l,N,ν1,L1,S1,ν2,L2,S2,{seniority, . . .}) to return the reduced matrix element
(lNν1L1S1||U(k)||lNν2L2S2)using seniority notation if the coupling scheme;LS_seniorityhas not been
specified explicitly.♣ (k,3,MQ,w1, Q1,L1,S1,w2,Q2,L2,S2,{. . .}) to return the reduced matrix element
(f Nw1Q1L1S1MQ||U(k)||f Nw2Q2L2S2MQ) for shells with orbital angular momentuml = 3 and for the
additionally specified quantum numbersw1,2 = 0, . . . ,10 using quasispin notation.

Additional information: The reduced matrix elements of the operatorU(k) are only defined inLS-coupling.
♣ The list and number of arguments depend on the definition of the underlying classification and coupling
scheme which has to be defined before by calling the procedureRacah_set_coupling_scheme().
The current definition of the coupling scheme is kept in the global variableRacah_save_coupling_
scheme. ♣ A set of keywords can be provided in any order as the last argument; the currently supported
keywordare algebraic, prime, andseniority wherealgebraicand prime must be used exclusively.♣ The
calculation of the CFP is based on a list of RCFP which is stored internally.

See also: Racah_set_coupling_scheme().

• Racah_reduced_V(k,l,MQ,Q1,L1,S1,Q2,L2,S2)

Returns the reduced matrix element(lNQ1L1S1MQ||V (k1)||lNQ2L2S2MQ) for subshells with orbital angular
momental = 0, 1 and 2 using quasispin notation inLS-coupling.

Output: A (floating-point) number is returned.

Argument options: (k,l,MQ,Q1,L1,S1, Q2,L2,S2,{algebraic, . . .}) to return the reduced matrix element in
algebraic form.♣ (k,l,MQ,Q1,L1,S1,Q2,L2,S2,{prime, . . .}) to return the reduced matrix element in a prime-
number representation.♣ (k,l,N,ν1,L1,S1,ν2,L2,S2,{seniority, . . .}) to return the reduced matrix element
(lNν1L1S1||V (k1)||lNν2L2S2) using seniority notation if the coupling scheme;LS_seniorityhas not been
specified explicitly.♣ (k,3,MQ,w1,Q1,L1,S1,w2,Q2,L2,S2 ,{. . .}) to return the reduced matrix element
(f Nw1Q1L1S1MQ||V (k1)||fNw2Q2L2S2MQ) for subshell with orbital angular momentuml = 3 and for
the additionally specified quantum numbersw1,2 = 0, . . . ,10 using quasispin notation.

Additional information: The reduced matrix elements of the operatorV (k1) are only defined inLS-coupling.
♣ The number and sequence of arguments depends on the definition of the coupling scheme which has to be
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defined before by calling the procedure lineRacah_set_coupling_scheme(). This definition is kept
in the global variableRacah_save_coupling_scheme. ♣ A set of differentkeywordscan be provided
as the last argument. The currently supportedkeywordsarealgebraic, algebraic, prime, andsenioritywhere
algebraicandprimemust be used exclusively.♣ The list and number of arguments depend on the definition
of the underlying classification and coupling scheme which has to be defined before by calling the procedure
Racah_set_coupling_scheme().

See also: Racah_set_coupling_scheme().

• Racah_reduced_W(kq,kj ,j,Q1,J1,Q2,J2)

Returns the reduced matrix element(jQ1J1|||W(kqkj )|||jQ2J2) for subshells with angular momentaj = 1/2,
3/2, 5/2 and 7/2 using quasispin notation injj -coupling.

Output: A (floating-point) number is returned.

Argument options: (kq ,kj ,j,Q1,J1,Q2,J2, {algebraic, . . .}) to return the reduced matrix element in al-
gebraic form. ♣ (kq ,kj ,j,Q1,J1,Q2,J2, prime, . . .) to return this reduced matrix element in a prime-
number representation.♣ (kq ,kj ,9/2,w1,Q1,J1,w2,Q2,J2, {. . .}) to return the reduced matrix element
(j w1Q1J1|||W(kqkj )|||j w2Q2J2) for subshells withj = 9/2 and for the additionally specified quantum
numbersw1,2 = 0, 1, or 2 using quasispin notation injj -coupling.♣ (kq ,kl ,ks ,l,Q1,L1,S1,Q2,L2,S2, {. . .}) to
return the reduced matrix element(lQ1L1S1|||W(kqklks )|||lQ2L2S2) for subshells withl = 0, 1 and 2 using
quasispin notation inLS-coupling.♣ (kq ,kl ,ks ,3,w1,Q1,L1,S1,w2,Q2,L2,S2,{. . .}) to return the reduced matrix
element(f w1Q1L1S1|||W(kqklks )|||f w2Q2L2S2) for subshells with orbital angular momentuml = 3 and
for the additionally specified quantum numbersw1,2 = 0, . . . ,10 using quasispin notation inLS-coupling.

Additional information: The list and number of arguments depend on the definition of the under-
lying classification and coupling scheme which has to be defined before by calling the procedure
Racah_set_coupling_scheme(). ♣ A set of differentkeywordscan be provided as the last argument.
The currently supportedkeywordsarealgebraic, prime, andsenioritywherealgebraicandprimemust be used
exclusively. The keywordseniority‘overwrites’ the currently defined classification scheme.

See also: Racah_set_coupling_scheme().

• Racah_set_coupling_scheme(jj_quasispin)

‘Defines’ the global framework to use quasispin notation injj -coupling.

Output: A NULL expression is returned.

Argument options: (LS_quasispin) to set the global framework to use quasispin notation inLS-coupling.
♣ (jj_seniority) to set the global framework to use seniority notation injj -coupling.♣ (LS_seniority) to set
the global framework to use seniority notation inLS-coupling.

Additional information: The currently defined coupling scheme and notation is kept in the global variable
Racah_save_coupling_scheme. No default value is provided for this variable and, thus, this procedure
mustbe called before any of the other procedures can be invoked.

References

[1] S. Fritzsche, Comput. Phys. Commun. 105 (1997) 51;
S. Fritzsche, S. Varga, D. Geschke, B. Fricke, Comput. Phys. Commun. 111 (1998) 167.

[2] G. Racah, Phys. Rev. 61 (1941) 186; Phys. Rev. 62 (1942) 438; Phys. Rev. 63 (1943) 367.



G. Gaigalas et al. / Computer Physics Communications 135 (2001) 219–237 237

[3] R.D. Cowan, The Theory of Atomic Structure and Spectra, University of California Press, Berkeley and Los Angeles, 1981.
[4] U. Fano, Phys. Rev. A 67 (1965) 140.
[5] I.P. Grant, in: Methods in Computational Chemistry, Vol. 2, S. Wilson (Ed.), Plenum, New York, 1988, p. 1.
[6] Z.B. Rudzikas, Theoretical Atomic Spectroscopy, Cambridge University Press, Cambridge, 1997.
[7] G. Gaigalas, Z. Rudzikas, C. Froese Fischer, J. Phys. B 30 (1997) 3747.
[8] C.W. Nielson, G. Koster, Spectroscopic Coefficients for thepn, dn, andf n Configurations, MIT Press, Cambridge, MA, 1963.
[9] G. Gaigalas, Z. Rudzikas, C. Froese Fischer, At. Data Nucl. Data Tables 70 (1998) 1.

[10] G. Gaigalas, S. Fritzsche, Z. Rudzikas, At. Data Nucl. Data Tables 76 (2000), in print.
[11] R.I. Karazija, Ya.I. Vizbaraité, Z.B. Rudzikas, A.P. Jucys, Tables for the Calculation of Matrix Elements of Atomic Quantities, Nauka,

Moscow, 1967, p. 106; English transl. by E.K. Wilip, ANL-Trans-563 National Technical Information Service, Springfield, VA, 1968.
[12] K.G. Dyall, I.P. Grant, J. Phys. B 15 (1982) L371.
[13] D. Redfern, The Maple Handbook, Springer, New York, 1997.

TEST RUN OUTPUT

"CFP for 9/2 subshells with occupation N = " 1
0 1 9/2 0 0 0 = .9999999998 [1]
"CFP for 9/2 subshells with occupation N = " 2
0 0 0 0 1 9/2 = .9999999994 [1]
0 2 2 0 1 9/2 = 1. [1]
0 2 4 0 1 9/2 = 1. [1]
0 2 6 0 1 9/2 = .9999999997 [1]
0 2 8 0 1 9/2 = .9999999996 [1]
"CFP for 9/2 subshells with occupation N = " 3
0 3 3/2 0 2 4 = .8528028655 [1, 3, 0, 0, 0, -1]
0 3 3/2 0 2 6 = -.5222329679 [-1, 0, 1, 0, 0, -1]
0 3 5/2 0 2 2 = .5270462768 [1, -1, -2, 1]
0 3 5/2 0 2 4 = -.4438126822 [-1, -1, -1, 0, 0, -1, 1]
0 3 5/2 0 2 6 = -.7247430754 [-1, 2, -2, 0, 0, -1, 1]
0 3 7/2 0 2 2 = .7247430753 [1, 2, -2, 0, 0, -1, 1]
0 3 7/2 0 2 4 = .3739787960 [1, 2, 0, 1, 0, -1, -1]
0 3 7/2 0 2 6 = .4494665749e-1 [1, 0, -2, -1, 0, -1]
0 3 7/2 0 2 8 = -.5769463865 [-1, 1, 0, -1, 1, -1, -1, 1]
0 1 9/2 0 0 0 = .5163977794 [1, 2, -1, -1]
0 1 9/2 0 2 2 = -.2886751345 [-1, -2, -1]
0 1 9/2 0 2 4 = -.3872983346 [-1, -2, 1, -1]
0 1 9/2 0 2 6 = -.4654746682 [-1, -2, -1, -1, 0, 0, 1]
0 1 9/2 0 2 8 = -.5322906475 [-1, -2, -1, -1, 0, 0, 0, 1]
0 3 9/2 0 2 2 = .1811857689 [1, -2, -2, 0, 0, -1, 1]
0 3 9/2 0 2 4 = -.6544628930 [-1, -2, 0, 1, 2, -1, -1]
. . .


