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Abstract

An extension to the RCAH program is presented for calculating standard quantities in the decomposition of many-electron
matrix elements in atomic structure theory. These quantities include the coefficients of fractional parentage, the reduced
coefficients of fractional parentage as well as reduced and completely reduced matrix elements for several operators within
the two most frequently applied coupling schemes, narh&lyand jj-coupling, respectively. Values for these quantities are
available for all (partially-filled) shellgnl) with < 3 in LS-coupling and for all subshells with< 9/2 in jj-coupling. Different
notations and classification schemes are supported to characterize the antisymmetrized states of partially-fille@ezlls.
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PROGRAM SUMMARY

Title of program:RACAH
Catalogue identifierADNM
Program summary URLhttp://cpc.cs.qub.ac.uk/summaries/ADNM

Program obtainable from:CPC Program Library, Queen’s Uni-
versity of Belfast, N. Ireland. Users may obtain the program
also by down-loading the fileracah3. src.gz from our
home page at the University of Kassel (http://www.physik.uni-
kassel.de/fritzsche/programs.html)
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E-mail addresss.fritzsche@physik.uni-kassel.de (S. Fritzsche).

Licensing provisionsNone

Computers for which the program is designédt computers with
a license of the computer algebra packagervE [1]

Installations: University of Kassel (Germany)

Operating systems under which the program has been tesitmal,
Windows

Program language usedlaple V, Releases 4 and 5

Memory required to execute with typical dataMB
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No. of bytes in distributed program, including test data, etc.. V&b andw%akiks) in LS-coupling and of the operato®*) and
153140 w%ak7) in jj-coupling, respectively.

Distribution format:gzip file Restrictions onto the complexity of the problem

Coefficients and reduced matrix elements can be obtained for all
shells with/ < 3 in LS-coupling, i.e. including operf-shells, and

for all subshells withy < 9/2 injj-coupling (i.e. up tofg/2 andgg,2
subshells).

Keywords: Angular momentum, atomic many-body perturbation
theory, complex atomjj-coupling, LS-coupling, recoupling coef-
ficient, reduced coefficient of fractional parentage, reduced matrix

element, standard unit tensor, tensor operator
Unusual features of the program

) The interactive use of the procedures within thecRH program [2]
Nature of the physical problem ) ~allows a quick and reliable ‘electronic reference’ to these quantities
In atomic and nuclear structure theory, the evaluation and spin- ¢4 eyajuating general matrix elements. The concept and functional-
angular integration of many-particle matrix elements is typically iy of M apLE can easily be exploited to combine these coefficients
based on standard quantl_tl_es like the matnx elements of the unit any other (useful) form than supported by the program in order to
tensor, the (reduced) coefficients of fractional parentage as well as a gpnort the evaluation of complex expressions. The definitions and
number of other reduced matrix elements concerning various prod- rg|ations which are relevant for the computation of those quantities
ucts of creation and annihilation operators. These quantities arise g, displayed in Appendix A. For quick reference, Appendix B lists

very frequently both in configuration interaction approaches and the 1 aqditional or extended commands to thecRH program.
derivation of perturbation expansions for many-particle systems us-

ing symmetry-adapted configuration state functions. Typical running time
The program replies promptly on all requests. Even lengthy tabu-
Method of solution lations of (reduced) coefficients and matrix elements can easily be

In the framework of the RCAH program [2], we provide a set of carried out within a few (tens of) seconds.

procedures for the manipulation and computation of such standard

quantities in atomic theory. Different classifications of the anti- References

symmetrized (sub-) shell states are supported for biofh,and [1] Maple is a registered trademark of Waterloo Maple Inc.
ji-coupling. The currently provided set of entities includes the coef- [2] S. Fritzsche, Comp. Phys. Commun. 103 (1997) 51,

ficients of fractional parentage, the reduced coefficients of fractional S. Fritzsche, S. Varga, D. Geschke, B. Fricke, Comput. Phys.
parentage, and the reduced matrix elements of the opertbts Commun. 111 (1998) 167 .

LONG WRITE-UP

1. Introduction

During recent years, theA®R AH program [1] has been found useful for evaluating expressions from the theory
of angular momentum. The interactive and modular design of this package does not only support numerical
computations on standard expressions (as other libraries do) but also facilitate current research work which is
based on the techniques of Racah’s algebra [2]. TReAR program is particularly helpful for such (complex)
expressions for which the known algebraic and graphical methods start to become tedious and prone to making
errors. For details about the design and applicationaf /&4 package, we refer the reader to our previous work
[1] and to the webt

Beside of further applications, atomic structure theory is one of the main areas which, traditionally, makes use
of the rotational symmetry of free atoms. In this theory, the efficient evaluation of many-electron matrix elements
for different one- and two-particle operators plays a very crucial role. These operators can be part of the atomic
Hamiltonian or may describe the interaction of the electrons with other particles and fields. By exploiting the
techniques of Racah’s algebrain atomic structure (see Ref. [3], for instance), the evaluation of these matrix elements
may often be considerably simplified by carrying out the integration over the spin-angular coordinates analytically.

1 http:/Avww.physik.uni-kassel.de/fritzsche/programs. htm.
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Different computational schemes have been developed to evaluate many-electron matrix elements, including
those for open-shell structures [4—7]. They deal with different couplings of the individual angular momenta as
well as different notations for classifying the subshell states of equivalent electrons for open-shell configurations.
One of the most popular scheme ist due to Fano [4] which is based on the coefficients of fractional parentage.
Typically, each computational method exploits a setst#fndard quantitiedo decompose the many-electron
matrix elements. Quantities which frequently occur are, for example, (i) the coefficients of fractional parentage
(CFP), (ii) the reduced coefficients of fractional parentage (RCFP), and (iii) the reduced matrix elements of
the unit tensorsU® and V*Y in LS-coupling or of 7® in jj-coupling, respectively. Often also (iv) the
completely reduced matrix elements of the single-particle operatdr**) (LS-coupling) or w%aki) (jj-
coupling) occur in the decomposition. Of course, details in the final evaluation depend on the underlying
coupling scheme, phase conventions, and on quite a number of different notations which are found in the
literature. For all these quantities is common, however, that they are closely related to angular momentum
theory.

Among the standard entities, the RCFPs play a central role in that most of the other quantities above can be
represented in terms of these coefficients. The well-known CFPs, for example, can be expressed as a product
of Wigner 3— j symbols and corresponding RCFPs which are independent of the occupation mirobére
subshell states. Similarly, the (completely) reduced matrix element of the unit tensor can be written as a weighted
sum of products of Wigner 6 j symbols and RCFPs where the summation is always finite owing to triangular
conditions of the quantum numbers.

In practice, however, the handling and the application of such standard entities in the evaluation of open-shell
matrix elements is not always that simple and often requires considerable effort to bring new implementations
into work. Compilations of various coefficients and matrix elements can be found (in printed form) in the
literature, but their arrangement and notation is often not so suitable for numerical studies. Therefore, in order
to facilitate the usage of these (reduced) coefficients and matrix elements, here we describe an extension
to the RacaH program [1] which provides the user with a fast and interactive access to these quantities.
In the following section, we briefly recall the basic notations for different coupling schemes (as frequently
applied in atomic structure). This also includes the classification of all subshell states to which the program
can be applied. In Section 3, we outline how this extension is built into our previous work and how the
program will be distributed. Finally, Section 4 shows several examples for using the program; this includes
the generation of tabulations (or data files) which could immediately be exploited further in numerical
investigations.

2. The quasispin concept

In describing the structure of many-particle systems, a significant simplification is typically achieved by using a
symmetry-adapted basis for the construction of many particle states. Different classification and coupling schemes
have been developed over the years to incorporate the insight into the ‘physical regime’ (concerning the interaction
among the particles and with external fields) already in the construction of the basis. The two most popular coupling
schemes in defining a symmetry-adapted basik &randjj-coupling whereby the latter one, in particular, has been
applied in the relativistic domain of atomic (as well as nuclear) structure theory. Apart from the well-established
seniority scheme for the classification of (antisymmetrized) subshell states, the concept of quasispin [6] shows a
number of advantages and has therefore been utilized in recent years.

Below, we briefly recall the most frequently applied classifications of (open) subshell states and their notation.
A rather large number of independent subshell states arise in particular fordogea f shells(l > 2) in LS
coupling and for subshellgzj) with j > 7/2 in jj-coupling, respectively. We also display a compilation of all
subshell states which ensure the ‘access’ to the present extension tadhe Rrogram.
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2.1. LS-coupling

In quasispin notation, a subshell state\oequivalent electronsilV « L S) is written as [6]
Ve QLS), (1)

where Q is the quasispin momentum of the shelland « denotes all additional quantum numbers which are
needed for an unique classification of these states. In practice, such a quantum aumskerto be taken into
account only for subshells with orbital angular momednta3. Table 1 lists the classification of the p-, d- and
f-subshell states both in quasispin and seniority notation together with their groupWalaeldU [8].

The quasispin momentu@ of a given shellnl) and itsz-projectionM o behave like an angular momentum in
guasispin spaced-space). When compared with teeniority classificationQ is simply related to the seniority
quantum number by Q = (20 +1—v)/2 while My = (N — 2/ — 1)/2 depends on the subshell occupation number
N. To facilitate the application of the program to opgrshell states, we also introduce the quantum nunaber
instead of the formal group label® andU in Table 1 which just provides an (arbitrary) ordering of otherwise
degenerate subshell states.

2.2. jj-coupling

An alternative classification of the subshell states of open-shell systems exploits the quasispin cojjcept in
coupling. In this representation, a subshell stat&/ afquivalent electrong:j ¥ «J) with total angular momentum
J is written as

njNaQJ). (2

Again, the quasispin momentu® = (Zj—;’l —v)/2 is related to the seniority quantum numbewhile its z-
componentMg = (N — 21'—2“)/2 depends on the subshell occupation numler~or subshells with angular
momentaj = 1/2, 3/2, 5/2, and 72, a set of two quantum numbers, eith@rand J or v andJ is sufficient to
classify the subshell states for all allowed occupation numNensambiguously. An additional quantum number
a only occurs for the subshell states with> 9/2. For subshells with = 9/2, we use a quantum numher= 0, 1,
or 2 similar as forf-shells inLS-coupling. Table 2 lists the allowed subshell statesjfer1/2, 3/2,5/2, 7/2, and
9/2.

The classification of the subshell states play@wrolein using our present extension to the&xH program.
In Tables 1 and 2, we therefore provide a complete reference to this classification schemes; (reduced) coefficients
and matrix elements can be computed for all of these states as discussed below. These tables also enable the user fc
make cross reference between different notations or to transfer the groupWalagldU (for open f-shell states

in LS-coupling) to the quantum numberas applied in our quasispin or seniority notation.
2.3. Completely reduced matrix elements

The concept of quasispin enables us to exploit the Wigner—Eckart theorgdasijpace for subshell states
lnyNaQI') in much the same way as for the total angular momenta jj-coupling (" = J, y = j) or for L
andS in LScoupling "= LS, y =Is). Let AU denote any spherical tensor with rapland projectionn,, in
the O-space, then the corresponding matrix element between any pair of subshell states can be rewritten as

(NI MollAf 1y o Q' 1" Mp)

= (-2 Mo (_ﬁg - ,S/Q) (yaQIIIA [y’ 0. 3)

Eqg. (3) represents the relation between the (standard) reduced matrix element on the left-hand side and its
completelyreduced counterpatya QI'|||A4Y)|||ya’ Q') of the operatord@¥). As seen from this notation,
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Table 1

Classification of state§]V of N equivalentelectrons in shells with = 0, 1, 2, 3. The (total) subshell orbital angular momentumspin
momentums, seniority quantum number, quasispinQ and the group label® andU are shown. For opelf-shell states, the last column
lists the additional quantum numberas presently be used for a unique classification of the corresponding subshell states

subshell 25+, v 0 25+, v 0 w U w 25+, v 0 w U w
s0ors2 1g 0 1/2 2p 5 0 3F 4 3/2 (211 (21 3
st 25 1 0 2F 3 1 3F 4 3/2 (211 (30) 4
pOorpb 1s 0 3/2 a 5 0 3G 4 3/2 (211 (20) 1
plorp® 2p 1 1 2G 3 1 3G 4 3/2 (211 (21 2
p2orp? 3p 2 1/2 2G 5 0 3G 4 3/2 (211 (30) 3
1g 0 3/2 2y 3 1 3n 2 5/2 (110 (12 1
ip 2 1/2 2y 5 0 3 4 3/2 (211 11 2
p3 4g 3 0 subshellf0 or f14 3H 4 3/2 (211 (21 3
2p 1 1 1g 0 7/2 (000) (00) 1 3H 4 3/2 (211 (30) 4
2p 3 0 subshellf® or £13 37 4 3/2 (212 (20) 1
d% orq10 s 0 5/2 2p 1 3 (100 (10) 1 37 4 3/2 (211 (30) 2
dtord® 2p 1 2 subshellf2 or £12 3k 4 3/2 (211 (21 1
d? ord8 3p 2 3/2 3p 2 5/2 110 11 1 3k 4 3/2 (211 (30) 2
3F 2 3/2 3F 2 5/2 (110 (10) 1 3L 4 3/2 (211 (21 1
is 0 5/2 3H 2 5/2 110 11 1 3m 4 3/2 (211 (30) 1
ip 2 3/2 1g 0 7/2 (000) (00) 1 1g 0 7/2 (000) (00) 1
e} 2 3/2 ip 2 5/2 (200) (20) 1 1g 4 3/2 (220 (22) 2
d3ord’ 4p 3 1 e} 2 5/2 (200 (20) 1 ip 2 5/2 (200 (20) 1
4p 3 1 1 2 5/2 (200) (20) 1 ip 4 3/2 (220 (20) 2
2p 3 1 subshellf3 or f11 ip 4 3/2 (220 (21 3
2p 1 2 45 3 2 111 (00) 1 ip 4 3/2 (220 (22) 4
2p 3 1 4p 3 2 (112 (20) 1 1p 4 3/2 (220 (21 1
a 3 1 4F 3 2 111 (10) 1 ig 2 5/2 (200) (20) 1
2G 3 1 4G 3 2 111 (20) 1 1 4 3/2 (220 (20) 2
2y 3 1 47 3 2 111 (20) 1 e} 4 3/2 (220 (21 3
d% ord® 5p 4 1/2 2p 3 2 (210 (12 1 e} 4 3/2 (220 (22 4
3p 2 3/2 2p 3 2 (210 (20) 1 1y 4 3/2 (220 (21 1
3p 4 1/2 2p 3 2 (210 (21 2 1y 4 3/2 (220 (22) 2
3p 4 1/2 2p 1 3 (100 (10) 1 1 2 5/2 (200) (20) 1
3F 2 3/2 2F 3 2 (210 (21 2 1 4 3/2 (220 (20) 2
3F 4 1/2 2G 3 2 (210 (20) 1 1 4 3/2 (220 (22) 3
3G 4 1/2 2G 3 2 (210 (21 2 1k 4 3/2 (220 (21 1
3H 4 1/2 2y 3 2 (210 11 1 1 4 3/2 (220 (21 1
1g 0 5/2 2y 3 2 (210 (21 2 1 4 3/2 (220 (22 2
is 4 1/2 2y 3 2 (210 (20) 1 Y 4 3/2 (220 (22) 1
ip 2 3/2 2k 3 2 (210 (21 1 subshellf® or £
ip 4 1/2 2y 3 2 (210 (21 1 6p 5 1 110 11 0
1p 4 1/2 subshellf4 or £10 6F 5 1 (110 (10) 0
ig 2 3/2 S 4 3/2 111 (00) 0 SH 5 1 (110 11 0
1 4 1/2 Sp 4 3/2 111 (20) 1 45 3 2 111 (00) 1
1 4 1/2 SF 4 3/2 111 (10) 1 4p 5 1 (211 11 1
d° 6g 5 0 5G 4 3/2 111 (20) 1 4p 5 1 (211 (30) 2
4p 3 1 5] 4 3/2 (112 (20) 1 4p 3 2 (112 (20) 1
4p 5 0 3p 2 5/2 (110 11 1 4p 5 1 (211 (20) 2
4F 3 1 3p 4 3/2 (211 11 2 4p 5 1 (211 (21 3
4G 5 0 3p 4 3/2 (211 (30) 3 4F 3 2 111 (10 1
2g 5 0 3p 4 3/2 (212 (20) 1 4F 5 1 (212 (10) 2
2p 3 1 3p 4 3/2 (211 (21 2 4p 5 1 (211 (21 3
2p 1 2 3F 2 5/2 110 (10) 1 4F 5 1 (211 (30) 4
2p 3 1 3F 4 3/2 (211 (10) 2 4G 3 2 111 (20) 1
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Table 1

(Continued.)
25+1p, v 0 w U w | 2S+1lp v 0 W U w | 25+ v 0 W U w
4G 5 1 1) 20 2 2k 5 1 22) @3y 4 3G 6 12 (22) (20 4
4G 5 1 (211 21y 3 2k 5 1 (221) (31 5 3G 6 12 (221 (21 5
4G 5 1 1) @0 4 2r 3 2 210 (21 1 3G 6 12 (22) (30 6
4 5 1 1) @1y 1 2L 5 1 22) 2y 2 3G 6 12 (22) @3y 7
4y 5 1 1) @y 2 2r 5 1 22) @) 3 3H 2 52 (110 @11 1
4 5 1 1) @0 3 2y 5 1 22) @30 1 3H 4 32 (211 1)y 2
47 3 2 (111 (20) 1 2y 5 1 (221 (31 2 3y 4 32 (211 (1) 3
47 5 1 1) 20 2 2N 5 1 22) @y 1 3H 4 32 (211 (30 4
47 5 1 1) @0 3 20 5 1 22) @) 0 3H 6 12 (22) (11 5
4k 5 1 1) @y 1 subshellf® or #8 3H 6 12 (221 (@) 6
4K 5 1 1) @0 2 F 6 1/2 (100 (100 O 3H 6 12 (22) @30 7
4r 5 1 (211 (21 1 5 4 32 A1) (00) 0 3H 6 12 (221 (31 8
4m 5 1 1) @0 O 5p 6 12 (210 @) O 3H 6 12 (22) @) 9
2p 3 2 (210 (12 1 5p 4 32 11D (20) 1 37 4 32 (211 (20) 1
2p 5 1 2y 1y 2 5p 6 12 (210 (20 2 37 4 32 (1) @30 2
2p 5 1 22) @0 3 5D 6 1/2 (210 () 3 37 6 12 (22) (20 3
2p 5 1 22) @3y 4 5F 4 32 A1)y (10 1 37 6 12 (221 (30 4
2p 3 2 210 (20 1 5F 6 1/2 (210 () 2 31 6 1/2 (22) (@3) 5
2p 3 2 (210 (21 2 56 4 32 A1) (20) 1 37 6 12 (221 (31 6
2p 5 1 22) (20 3 56 6 1/2 (210 (0 2 3k 4 32 (211 @)y 1
2p 5 1 22) (21 4 56 6 1/2 (210 () 3 3k 4 32 (211 (B30 2
2p 5 1 22) @) 5 SH 6 12 (210 11 1 3k 6 12 (21 (21 3
2p 1 3 100 (10 1 SH 6 1/2 (210 () 2 3k 6 12 (22) (30 4
2F 3 2 (210 (21 2 51 4 32 11D (20) 1 3k 6 12 (221 (31 5
2p 5 1 22) (10 3 51 6 1/2 (210 (200 2 3k 6 12 (22) (31) 6
2F 5 1 (221 2y 4 Sk 6 12 (210 (21 0 3L 4 32 (211 (1) 1
2p 5 1 22) @0 5 5L 6 12 (10 (21) O 3L 6 12 (21 (1) 2
2p 5 1 22) @) 6 3p 2 52 110 1y 1 3L 6 12 (22) (31 3
2p 5 1 2) @y 7 3p 4 32 1) Ay 2 3m 4 32 (1) @0 1
2G 32 210 (20 1 3p 4 32 (1) (30 3 3m 6 12 (22) (30 2
2G 3 2 (210 (21 2 3p 6 172 (22D 1 4 3m 6 12 (221 (31 3
2G 5 1 2) (20 3 3p 6 1/2 (221 (30 5 3N 6 12 (22) @) O
2G 5 1 22) (21 4 3p 6 1/2 (221 (3) 6 30 6 12 (22) @) O
2G 5 1 22)) @0 5 3p 4 32 (1) (200 1 1s 0 72 (©00 (00 1
2G 5 1 22) @) 6 3D 4 32 (1) () 2 lg 4 32 (220 (22 2
2y 3 2 (210 (12 1 3p 6 172 (22D (20) 3 1g 6 12 (222 (00) 3
2y 3 2 210 2y 2 3D 6 1/2 (221 (2) 4 lg 6 12 (222 (40 4
2y 5 1 21y @11y 3 3D 6 1/2 (221 @3) 5 ip 6 12 (222 (309 O
2y 5 1 22) (21 4 3F 2 52 (110 10 1 ip 2 52 (00 (200 1
2y 5 1 22) @0 5 3F 4 32 (1) 10 2 ip 4 32 (220 (20 2
2y 5 1 (221 (31 6 3F 4 32 (21D (21 3 ip 4 32 (220 (1) 3
2y 5 1 21 @y 7 3F 4 32 (1) (30 4 ip 4 32 (220 (22 4
2y 3 2 (210 (20) 1 3F 6 172 (22D (10) 5 ip 6 12 (222 (20) 5
2y 5 1 22) (20 2 3F 6 12 (22) (2) 6 ip 6 12 (222 (400 6
2y 5 1 22) @0 3 3F 6 1/2 (221 (30 7 5 4 32 (220 @)y 1
2y 5 1 1) @3y 4 3F 6 12 (221 (31) 8 ¥ 6 12 (229 (10 2
2y 5 1 22) @) 5 3F 6 12 (221 (3D 9 3 6 12 (222 (30 3
2k 3 2 (210 (21 1 3G 4 32 (211 (20) 1 3 6 12 (222 40 4
2k 5 1 2) 2y 2 3G 4 32 (1) () 2 e} 2 52 (200 (20 1
2K 5 1 22) @0 3 3G 4 32 (1) (30 3 e 4 32 (220 (20 2
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Table 1
(Continued.)

25+, 0 w U w | 2ty 0 14 U w | 2Ly 0 w U w
1g 4 32 (220 (21 3 4F 5 1 (211 30 4 2F 7 0 (222 (40 10
ig 4 32 (220 (22 4 4F 7 0 (220 )y 5 2G 3 2 (210 (20 1
e} 6 12 (222 (200 5 4G 3 2 (111 20 1 2G 3 2 210 (21 2
e} 6 172 (222 (30) 6 4G 5 1 (211 (20) 2 2G 5 1 (221 (20) 3
1 6 12 (222 (40 7 4G 5 1 (212 @y 3 2G 5 1 22) (2 4
e} 6 172 (222 (40) 8 4G 5 1 (211 (30 4 2G 5 1 (221 (30) 5
1y 4 32 (220 (2D 1 4G 7 0 (220 200 5 2G 5 1 (22) @31 6
e 4 32 (220 (22 2 4G 7 0 (220 @) 6 2G 7 0 222 (20 7
1y 6 12 (222 (30 3 4G 7 0 (220 22 7 2G 7 0 (222 (30 8
1y 6 12 (222 (40 4 4q 5 1 (212 an 1 2G 7 0 (222 40 9
1 2 5/2 (200 (20) 1 4H 5 1 (221) (21 2 2G 7 0 (222 (40) 10
1 4 32 (220 (200 2 4q 5 1 (222 30 3 2y 3 2 (210 (1D 1
1 4 32 (220 (22 3 4y 7 0 (220 2y 4 2y 3 2 210 (21 2
1 6 12 (222 (200 4 Ay 7 0 (220 22 5 2y 5 1 (22) (11 3
1 6 12 (222 (30 5 47 3 2 (111 20 1 2y 5 1 (22) (2 4
1 6 12 (222 (40) 6 45 5 1 (211 (20) 2 2y 5 1 (212 (30) 5
1 6 12 (222 40 7 47 5 1 (212 30 3 2y 5 1 (22) (@31) 6
1k 4 32 (220 (2D 1 47 7 0 (220 200 4 2y 5 1 22) @3y 7
1x 6 12 (222 (30 2 47 7 0 (220 22 5 2y 7 0 (222 (30 8
1k 6 12 (222 (40 3 4K 5 1 (212 @y 1 2y 7 0 (222 40 9
1 4 32 (220 (21 1 4K 5 1 (211 (30) 2 2y 3 2 (210 (20) 1
1z 4 32 (220 (22 2 Ak 7 0 (220 @y 3 2y 5 1 22) (20 2
1 6 12 (222 (40) 3 ar 5 1 (211 (21 1 2y 5 1 (222 (30) 3
3 6 12 (222 (400 4 4L 7 0 (220 @y 2 2y 5 1 (22) (31 4
1y 6 12 (222 (30 1 4L 7 0 (220 22 3 2y 5 1 (22) @) 5
1y 6 12 (222 (400 2 4y 5 1 (211 30 O 2y 7 0 (222 (200 6
Y 4 32 (220 (22 1 AN 7 0 (220 22 0 2y 7 0 (222 (30 7
Y 6 172 (222 (40) 2 2g 7 0 (222 (00) 1 2y 7 0 (222 (40) 8
1o 6 12 (222 40 O 2g 7 0 (222 40 2 2y 7 0 (222 40 9
subshellf? 2p 3 2 (210 any 1 2K 3 2 (210 (2D 1
8g 7 0 (000 (©0 O 2p 5 1 (221 any 2 2k 5 1 (220 (2) 2
6p 5 1 (110 @1n o0 2p 5 1 (221 30 3 2K 5 1 220 (30 3
6p 7 0 (200 (20) 0 2p 5 1 (221) (31 4 2k 5 1 (222 (31 4
Ja 5 1 (110 @10 0 2p 7 0 (222 B0 5 2k 5 1 2) @) 5
6G 7 0 (200 (20) 0 2p 3 2 (210 (20) 1 2k 7 0 (222 (30) 6
7 5 1 119 @11y o 2p 3 2 (210 @y 2 2k 7 0 (222 40 7
61 7 0 (200 (200 O 2p 5 1 (221 20 3 2, 3 2 (210 (21 1
45 3 2 (112 (00) 1 2p 5 1 (221) (21 4 2y 5 1 (222 (21 2
45 7 0 220 (22 2 2p 5 1 (221 @) 5 2L, 5 1 20 @31y 3
4p 5 1 (211 (12 1 2p 7 0 (222 (20) 6 2y 7 0 (222 (40) 4
4p 5 1 (1) @30 2 2p 7 0 (222 40 7 2y 7 0 (222 40 5
4D 3 2 11y 0 1 2F 1 3 (100 10 1 2y 5 1 22) (30 1
4p 5 1 1) (20 2 2p 3 2 (210 @y 2 2y 5 1 (22) 31y 2
4D 5 1 1) @1y 3 2F 5 1 (221 10 3 2y 7 0 222 (30 3
4p 7 0 (220 (20) 4 2p 5 1 (221 (21 4 2y 7 0 (222 (40) 4
4D 7 0 (220 (21 5 2F 5 1 (221 B0 5 2N 5 1 22) 3D 1
4D 7 0 (220 (22 6 2F 5 1 (221 @) 6 2N 7 0 (222 4o 2
4p 3 2 11y 10 1 Ba 5 1 (221 @y 7 20 5 1 22 @) 0
4F 5 1 (1) 10 2 2F 7 0 (222 10 8 20 7 0 (222 40 O
4F 5 1 (222) (21 3 2p 7 0 (222 (30) 9
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Table 2
Classification of subshell stat¢s]V of N equivalentelectrons withj = 1/2, 3/2,5/2,7/2, and 2. The seniority quantum number the
subshell angular momenturh the subshell quasispi@ and the additional quantum number(for subshells withj = 9/2 only) are displayed

subshell v J Q w subshell v J o w

[1/21° or [1/2]2 0 0 12 3 5/2 1 0

[1/2)} 1 1/2 0 3 7/2 1 0

3 9/2 1 0

(3/21° or [3/214 0 0 1 3 11/2 1 0

(3/21* or [3/2]3 1 3/2 1/2 3 13/2 1 0

[3/2)2 0 0 1 3 15/2 1 0

2 2 0 3 17/2 1 0

3 21/2 1 0

(5/21° or [5/2]® 0 0 32 [9/21* or [9/2]® 0 0 5/2 0

(5/21* or [5/2]° 1 5/2 1 2 2 32 0

[5/2]2 or [5/2]* 0 0 32 2 4 32 0

2 2 12 2 6 32 0

2 4 12 2 8 32 0

[5/2)3 1 5/2 1 4 0 1/2 0

3 3/2 0 4 2 12 0

3 9/2 0 4 3 1/2 0

4 4 1/2 1

[7/21° or [7/218 0 0 2 4 4 12 2

(7/21* or [7/2]7 1 7/2 3/2 4 5 1/2 0

[7/21% or [7/218 0 0 2 4 6 1/2 1

2 2 4 6 12 2

2 4 1 4 7 1/2 0

2 6 1 4 8 1/2 0

[7/213 or [7/2]° 1 7/2 3/2 4 9 12 0

3 3/2 1/2 4 10 12 0

3 5/2 1/2 4 12 12 0

3 9/2 1/2 [9/21° 1 9/2 2 0

3 11/2 1/2 3 3/2 1 0

3 15/2 1/2 3 5/2 1 0

[7/214 0 0 2 3 7/2 1 0

2 2 1 3 9/2 1 0

2 4 1 3 11/2 1 0

2 6 1 3 13/2 1 0

4 2 0 3 15/2 1 0

4 4 0 3 17/2 1 0

4 5 0 3 21/2 1 0

4 8 0 5 1/2 0 0

5 5/2 0 0

[9/21° or [9/2]10 0 0 52 0 5 7/2 0 0

[9/21 or [9/2]° 1 9/2 2 0 5 9/2 0 0

[9/2]2 or [9/2]8 0 0 52 0 5 11/2 0 0

2 2 32 0 5 13/2 0 0

2 4 32 0 5 15/2 0 0

2 6 32 0 5 17/2 0 0

2 8 32 0 5 19/2 0 0

19/213 or [9/2]7 1 9/2 2 0 5 25/2 0 0
3 3/2 1 0
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the completely reduced matrix element is independent of the occupation ndhdfehe corresponding subshell
state; the dependence ohis contained inM o and occurs on the right-hand side as projection of the quasispin

only within the Wigner 3- j symbol(_ﬁg my ,3; ) Thus, by applying the quasispin method to the calculation

of matrix elements of tensor operators between different subshell states, it is often more efficient to exploit the

completely reduced matrix elements instead of the reduced ones. For these quantities, the size of the tabulations

are typically much smaller if compared with those of the standard coefficients and reduced matrix elements [9,10].
In the formalism of second quantization, it is possible to express the CFP by the completely reduced matrix

elements of the electron creation and annihilation operators [cf. Egs. (9) and (13) in Appendix A]. These completely

reduced matrix elements of the operatét”) in second quantization are often called the reduced coefficients of

fractional parentage (RCFP). The reduced matrix elements of the double #&Hs6¢ in jj-coupling or of the

triple tensorw *a¥ks) in LS-coupling can also be represented as a weighted sum of Wigagr §/mbols and the

RCFPs, including a summation over all the intermediate terms of the corresponding shells. Moreover, the RCFPs

are closely related to the submatrix elements of the unit teri&étsor U® and V&V, respectively. The given

reduced coefficients and matrix elements are therefore useful also for the traditional approaches which are based

on the CFPs and the submatrix elements of the unit terigétsand v «D.

3. Additional proceduresto the RACAH package

The RacaH package [1] has been designed originally for simplifying expressions from the theory of angular
momentum. Emphasize was paid for developing an interactive and user-friendly tool which neither requires a
detailed knowledge about the group-theoretical background which leads to these expressions nor about techniques
for their simplification. Our previous set ofAR AH procedures concerned both, numerical computations as well as
the simplification of complex expressions due to the use of graphical and sum rules velirepdiicationmeans
to reduce the number of summation variables, integrals, and/or Wigrej symbols. In the future, moreover,
we will consider also the properties of the spherical harmonics and of further entities from the angular momentum
theory. In this work, we extent the features of thedAH program byaddingthe knowledge about a number of
important standard quantities in the evaluation of matrix elements.

Table 3
Additional commands to the &ZAH package. A detailed description of these procedures are listed in Appendix B below. See Section 3 and
in-line commands for further information about the internal representation of the RCFP and the individual subshell states for open shells

Racah_cfp() Calculates a CFPL&- or jj-coupling.

Racah_rcfp() Returns a RCFPL& or jj-coupling.

Racah_reduced_T() Calculates a reduced matrix element of the ogEf4tdn jj-coupling.
Racah_reduced_U() Calculates a reduced matrix element of the opéf&tan LS-coupling.
Racah_reduced_V() Calculates a reduced matrix element of the ope&fatdiin LS-coupling.
Racah_reduced_W() Calculates a completely reduced matrix element of either the op&fatsbs) in

LS-coupling orw®a%i) in jj-coupling.

Racah_set_coupling_scheme() Definesthe current classification and coupling scheme for the evaluation of the
standard quantities in this program.




228 G. Gaigalas et al. / Computer Physics Communications 135 (2001) 219-237

As discussed above, the reduced coefficients and matrix elements of spherical tensor operators are closely related
to the theory of angular momentum. This stimulated the present extension which creates a fast access to these
guantities in different classification and coupling schemes. We currently support the computation of the RCFP and
the completely reduced matrix elementsgf’ak;)) and wkskiks) as well as of the CFP and the reduced matrix
elements off ©, y® and v *D . Table 3 shows a brief overview of the additional procedures which are relevant
to the user; these procedures are based on our previous developments [1]. In total, 18 new procedures have been
added to the RcAH program in the present work. Since all coefficients are evaluated directly to their numerical
(algebraic and floating-point) values, no additional data structures had to be defined for the present work.

One procedure, namely Racah_set_coupling_scheme(), differs from our previous rules [1] in that it ‘assigns’ a
(string) value to the global variabRacah_save_coupl i ng_schene which specifies the currently defined
coupling scheme and the choice of quantum numbers to classify the individual subshell states. The ‘value’ of
this variable also specifies how the quantum numbers for the reduced coefficients and matrix elements are to
be interpretedto ensure a large flexibility of the program. The command Racah_set _coupling_scheme() must
therefore be invoked before any other quantity can be evaluated. In the present version, we support the classification
schemesLS_quasispinLS_seniority jj_quasispin and jj_seniority; the current selection can be overwritten
interactively at any time by a call to this procedure.

The RacaH program will be distributed as the source filacah3 which contains both, the full source of
the program as well as the RCFPs and the subshell terms from Tables 1 and 2 in a compact format. The two
commands Racah_set rcfp_jj() and Racah_set rcfp_LS() are available to return individual RCFPs, which form the
basic elements of the present extensiofjj-iandLS-coupling, respectively. These coefficients are stored internally
in MAPLE lists using the format

[Q1l, J 1, Q2, J 2, weight, nom den]
for subshells withj < 7/2 and
[wl1l, Q1, J 1, w2, Q2, J 2, weight, nom den]
for subshells withj = 9/2 in jj-coupling as well as
[Q1, L1, S1, Q2, L 2, S 2, wight, nom den]
for all shells with/ < 2 and
[wi1l, Q1, L1, S1, w2, Q2, L 2, S 2, weight, nom den]
for f shells inLS-coupling, respectively. In this representation, the value of a RCFP is simply given by weight

/520, Similarly, the required subshell states are returned as (list of) lists from the procedures Racah_set_term_jj()

and Racah_set_term_LS().
The source acah3 presently contains approximately 140 procedures in alphabetic order. To utilize the code
interactively, the whole program can be loaded by

> read racah3;

at the beginning of each MPLE session. In a later version, we will slightly modify the form of the distribution
since we intent to include also a number of help pages and worksheets within the framewoxkic.M

4. Examples
To illustrate the use of the present extension, we first calculate two reduced matrix elements of the single-particle

operatorw k«kiks) We also show, how a tabulation of all non-zero coefficients of fractional parentgegeounpling
for subshells withj = 9/2 can easily be generated for later use in numerical applications.
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Let us consider the computation of the completely reduced matrix eleth@nL1S1|||W %a%1%) |11 02L2S5).
We evaluate this matrix element irf5-coupling using quasispin notation for the quantum numbges 1, k; =
2,ks=0,1=101=1,L1=1,85=1/2,0,=0, Lo =2, andS, = 1/2. For this, we enter

> Racah_set _coupli ng_schene(LS_quasi spin);
> W:= Racah_reduced W1,2,0,1,1,1,1/2,0,2,1/2);

W :=9.486832985

Note that in order to obtain a different accuracy of this result, it would simply be enough to change the value of
the MAPLE variableDi gi t s.

Different representations of the final results are supported by the program. For instance, one may wish to use
the seniority scheme, instead of quasispin notation, for classifying the subshell states of equivalent electrons and
to obtain the results in a prime—number representation. This is achieved by

> Racah_set _coupling schene(LS seniority);
> W:= Racah_reduced W1,2,0,1,1,1,1/2,3,2,1/2, prine);

W:=[1,1,21].

In this representation, the value of the completely reduced matrix element is given due to the integer powers of (up
to 11) prime numbers

[ao, a1, a2, a3, as, as, as, a7, as, ag, a1o, a11l

which represent the (real) value

11 1/2
ao(pr”) : (4)
i=1

wherep1 =2, p2=3, p3=5,p4=7, ps =11, pe = 13, p7 =17, pg =19, pg = 23, p10 =29, p11=31. In
the MAPLE output, alltrailing zeros are omitted and need not to be incorporated in the evaluation of expression
(4). Thus, the result W= [1, 1, 2, 1] above is just equivalent to the valua/2 x 5= 9.486832985. The same
(algebraic) result would be obtained by using the keyvalggtbraicinstead oforime.

As second example, we ‘prove’ the relation (13) from Appendix A numerically. For this, we consider the left-
and right-hand-side of Eq. (13) separately for the quantum numberg/2, N =4,nu =2,J =2,v' =1, and
J' =7/2. Again, we use seniority notation for the CEPYavJ||j¥ ~1(a/v' Q' J’) j) on the left-hand side

> Racah_set _coupling_schene(jj_seniority);
> left := Racah_cfp(7/2,4,2,2,1,7/2, algebrai};

left:=1/3v/3
To obtain the value from the right-hand side

(—DNHeMo /5 1 o'\ .

W<_MQ 1/2 M/Q)(J“Qfllla Ilj o' Q' J") 5)
we have, in addition, the quantum numbeds= ((2j +1)/2 - v)/2=1, Mg = (N — (2j +1)/2)/2 =0,
Q' =3/2,andM), = —1/2.

> right := Racah_rcfp(7/2,2,2,1,7/2, al gebraic);
> W3jr := Racah_set(w3j,1,1/2,3/2,0,1/2,-1/2);
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j 1= 9/2; Racah_set coupling_scherme(jj_quasispin);
for Nfroml to 5 do
I print("CFP for 9/2 subshell with occupation N =", N);

ML := (N- 5) / 2 MR := (N- 6) /| 2
if type(MA,integer) then

terml_jj := Racah_subshell _termjj(j,Q.int);
tern2 _jj := Racah_subshell _termjj(j,Q halfint);
elif not type(MQL,integer) then
terml jj := Racah_subshell _termjj(j,Q halfint);
tern2_jj := Racah_subshell _termjj(j,Q.int);
fi;
#
for i from1l to nops(terml_jj) do
for m from1 to nops(tern2_jj) do
wl =terml_jj[i][2]; QL :=terml_jj[i][3]; J1 :=ternl_ jj[i][4];
w2 c=tern jj[m[2]; Q@ :=tern2 jj[m[3]; J2:=tern2 jj[n[4];
nul := (2*j+1) / 2 -2 * Q; nu2 := (2*j+1) / 2 - 2 * Q;
if not abs(MQL) > QL and not abs(M®R) > @ then
result _p := Racah _cfp(9/2, N wl, QL, J1, w2, @,J2, prine);
result ;= Racah_cfp(9/2,Nwl, Q,J1, w2, Q,J2);
if result_p[l] <> 0 then
[ print(wl, nul,J1, w2, nu2,J2, ‘=", result,result_p);
fi;
fi;
od;
od;

od;

Fig. 1. MAPLE code for generating a compilation of all non-zero CFR-4ooupling and quasispin notation for subshells wijta 9/2. See the
text for explanation and theEBTRUN OuTPUT for the first lines of the results.

> right
> right

right:= 1/30v/10x 6 x 5.

This test case can be seen as a simple example to establish (new) ‘relations’ among the standard quantities in
the evaluation of matrix elements for open-shell configurations. Although, of course, such a humerical treatment
will not proveany analytic relation it may help to obtain further hints on such symmetries. We therefore hope that
our present tool will help to point towardewrelations which have not yet been found by other, group-theoretical
studies.

For several entities, as discussed above, extensive compilations have been published over the years and have beer
implemented in various ways in atomic structure programs. Even though some of these implementations are not
very efficient, modification on these standard quantities and their internal use is often very tedious and error-prone.
The present extension of theaBAH program now provides a much simpler way to generate just those ‘tables’
which are most appropriate for a given class of applications. To emphasiZketitility in the representation of
such quantities, our final example generates a tabulation of all non-zero @jFébupling and quasispin notation

right * Racah_conput e(w3jr, al gebraic);
right * (-1)"(4+1+0) / sqrt(4*(2*2+1));
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for subshells withj = 9/2. Fig. 1 shows the MPLE code which has to be entered interactively; the first few lines
of the corresponding output are displayed in tlessTRUN OUTPUT below.

We need not to explain much about this code in Fig. 1. Following the definition of the coupling scheme and the
notation in the first line, we initiate a loa§ =1, ..., 5 to cycle, in turn, through all allowed occupation numbers
up to a half-filled shell. In dependence 8y, of the daughter states, we assign a list of all appropriate subshell
terms in the definition of the CFP to theA¥LE listterml_j j andtern2_jj for the bra- and ket-functions,
respectively, These two list then also carry all required quantum numbers to set up the tabulation owing to a call
to the procedure Racah_cfp(). The results are printed, along with the quantum numbers, both as floating-point
numbers as well as in a prime-number representation. Only non-zero coefficients are printed to screen.

In conclusion, we provide a set of additional procedures to theAR program which facilitates the handling
of standard entities for evaluating many-particle matrix elements. Special emphasize has been paid to support
different notations and coupling schemes as frequently applied in atomic and nuclear structure theory. We hope our
developments will encourage further work in finding more efficient computational schemes for open-shell atoms
either by our groups or by others. All basic entities are now accessible in the frameworcafPor can easily
be adopted to the needs of the user within a few lines of code. In the past, similar attempts were hampered by a
rather tedious access to these reduced coefficients and matrix elefagatsilations [8,11] which are often based
on different conventions.

Apart from further developments in atomic structure theory, the present extension tat¢hel Rrogram may
influence also the work in neighboring fields like nuclear structure and the scattering of particles and light at
composite systems. In these fields, numerical studies are often based on similar entities which could be incorporated
as well in the framework of the &ZAH package.
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Appendix A: Definitions and basic relations

All quantities, which we consider in this work, can be defined in terms of the reduced coefficients of fractional
parentag€ya QI'|||a”|||ya’ Q' T"") where we have = Is andI” = LSin LS-coupling andy = j andl” = J in
ji-coupling. Below, we provide the definition of the CFP and of the completely reduced matrix eleiérits:)
andw ¢ Owing to the presently supported coupling schemes of the individual angular momenta, this appendix
is divided into two parts foL.S- andjj-coupling, respectively.

The quasispin momentui® and itsz-component are defined &= %(% —v)andMg = %(N - %), where
N is the number of particles in the given shell af2d= [/, s] in LS-coupling ors2 = [j] in jj-coupling. Here, the
notation[a, b, ...] = (2a + 1)(2b + 1) - - - is used throughout this appendix. In addition to the basic definitions, we
also list several important relations which are fulfilled by the reduced and completely reduced matrix elements of
the standard operatofs$d), U®), v &b andw *ak) wherek,, = k;k, in LS-coupling andk, = k; in jj-coupling.

Several phase conventions among the quantities can be found in the literature. Therefore, the user must pay
attention to the phase and designation of these quantities if he needs to compare the results fraonthe R
program with tabulated data. The CFP and RCFP are defined as in Refs. [9,10], exploiting the quasispin formalism.
This definition simplifies the transformation among different coupling schemes, i.e. in goingLfeno jj-
coupling or vice versa [12], particularly if subshell states with occupation humtdess; + 1/2 are involved
in the transformation.
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Different definitions also appear for the reduced matrix elements of the unit opététoKarazija et al. [11],
for instance, tabulate the submatrix elements

(NaSLIUP V' S'L), (6)
while Nielson and Koster [8] and Cowan [3] list
(NaL|lUPINa'L), ()

even though by using the same notation as in expression (6). The relation between these reduced matrix elements
is given by

((NaSLIUP|INa'S'L') = 8(S, SH)V2S + D)(INaL| | UP|INe'L). (8)

In RACAH, we follow the work of Karazija et al. [11] by exploiting the relation (11) to generate the reduced matrix
elements ot/ ¥) from those of the operatd¥ *1k2ks)

For all further details on the quasispin concept and the definition of standard operators in atomic structure theory,
we refer the reader to Rudzikas [6] and to Gaigalas et al. [9,10]. These references also summarize the properties of
the corresponding coefficients and matrix elements bolfsirandjj-coupling, respectively.

A.1. LS-coupling

Coefficients of fractional parentage
Na LS|V Y Q'L S
(_l)N+Q—MQ 1/2 /
=it (oito T2 ary ) (eQESI e QL'S), (©)
Completely reduced matrix elementsipfatiks):

(aQLS|[|W*akk) 1o’ Q' L' S")
= (—1)QHLASHO LS gtk /T T

Z q q kg L1 Kk s s kg
X
W' QLS o 0 0 L'LL" s s s”

x (la QLS| |a(qls)|||la//Q//L//S//)(la//Q//L//S//| | |a(qls)| | |la/Q/L/S’). (10)

Reduced matrix elements Gf%:
(_1)Q—MQ+1( Q 1 Q/ )
VIK] —Mg 0 Mg
NaLSIUR NN L'SY =1 x 1aQLS||W™O||ld' Q'L'S) if k = even, (11)

m(laQLS|||W(OkO)|||la/Q’L/S/) if k= odd.

Reduced matrix elements Bf¢D:

= _(aQLS|[|WO0||1e/Q'L'S") if k = even,
2/10, k]

NaLS|VEI NG LSy = (—1)Q—MQ+1< 0 1 Q’) (12)
2/Tk] —Mg 0 Mg
x (la QLS|||W 0|11/ Q'L S") if k= odd.
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A.2. jj-coupling

Coefficients of fractional parentage

(N a1V Q' TN )
_w( 0 12 ¢

T (i 12 i) GNP Q'S (19

Completely reduced matrix elementsipfati):

GaQJ Wk ja’ 0' 1)

:(_1)Q+J+Q/+J/+kq+kjm Z { q 49 ke }{ JoJ ki }

VT SR N A AN
x (jaQJ|la“P||ja” Q"I (ja" Q"I 1la“D || jo' Q'J). (14)

Reduced matrix elements Bf9:

(_1)Q—MQ+1< 0 1 Q’)

2/1k] Mg 0 My
GNadIT®NY Ty =1 x (e |IWW||ja’ Q') if k = even, (15)

ﬁuwﬂ||W<°’<>|||ja’Q/J’) if k = odd.

Appendix B: Additional commandsto the RACAH package

For a quick reference, here we briefly explain the new procedures taabeHRpackage. We only present those
procedures in detail which are important for interactive work. The description of these procedures follows the style
of The Maple Handboohky Redfern [13]. All arguments must be given as integers or half-integers as appropriate
for the coupling of angular momenta.

e Racah_cfp(j,N,Q1,J1,Q2,%)

Returns the coefficient of fractional parentdg& Q1J1||j¥ ~1(Q2J2) j) for subshells with angular momenta
Jj=1/2,3/2,5/2 and 72 using the quasispin notationjincoupling.

Output: A (floating-point) number is returned.

Argument options: (j,N,Q1,41,Q2,%, {algebraic...}) to return the CFP in algebraic form for subshells with
j=1/2,3/2,52 and 72. & (j,N,Q1,J1,Q2,%, {prime ...}) to return the CFP in a prime-number repre-
sentation& (j,N,v1,J1,v2,b,{seniority ...}) to return the CFR ¥ v1J1||j¥~1(v2J2)j) using the seniority
notation if the coupling schenjg seniority has not been specified explicitid (9/2,N,w1,Q1,J1,W2,Q2,p,
{...}) to return the value of the CFRiNw1Q1J1||j¥ " 1(w202J2) ) for j = 9/2 and for the additionally
specified quantum numberts; 2 = 0, 1, or 2 [cf. Table 2]& (I,N,Q1,L1,51,Q2,L2,S, {...}) to return the
CFP(IN Q1L181|/IN~1(Q2L2S82)1) in LS-coupling for subshells with= 0, 1 and 2 using the quasispin no-
tation in LS-coupling.& (I,N,v1,L1,51,v2,L2,, {...}) to return the CFRIN v1 L1511V ~1(v2L282)0) using
seniority notation inLS-coupling.& (3,N,wq,Q1,L1,51,w2,Q2,L2, $,{...}) to return the value of the CFP
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(fNw101L181]| FN"Y(w202L255) f) for subshell with orbital angular momentu= 3 and for the addi-
tionally specified quantum numberg 2 =0, ..., 10 using the quasispin notationli®-coupling [cf. Table 1].

Additional information: The list and number of arguments depend on the definition of the under-
lying classification and coupling scheme which has to be defined before by calling the procedure
Racah_set coupl i ng_schene() . The current definition of the coupling scheme is kept in the global
variableRacah_save_coupl i ng_schene. & A set of keywords can be provided in any order as the last
argument; the currently support&dywordsare algebraic prime, andsenioritywherealgebraicand prime

must be used exclusively. The keywasdniority ‘overwrites’ the currently defined classification scheme.

& The calculation of the CFPs is based on a list of RCFP which is stored inteudityr details of the prime
number representation sBacah_cal cul ate_prine().

Seealso: Racah_set _coupl i ng_schene().

Racah_rcfp(j,Q1,J1,Q2,%)

Returns the reduced coefficient of fractional parentgig@: J1|||a?”|||j Q2J2) for subshells with angular
momentaj = 1/2, 3/2,5/2 and 72 injj-coupling.

Output: A (floating-point) number is returned.

Argument options: (j,Q1,J1,Q2,%, {algebrai¢) to return the RCFP in algebraic fornd (j,Q1,41,Q2,%,
{primeg}) to return the RCFP in a prime-number representa®(9/2,wi,Q1,J1,W2,Q2,1,{. . .}) to return the
RCFP (jw10Q1J1||la“?||| jw202J>2) for subshells withj = 9/2 and for the additionally specified quantum
numberswi 2 =0,...,2. & (,Q1,L1,51,Q2,L2,,{...}) to return the RCFRIQ1L151]||a"|||l Q2L2S?)
for shells with/ =0,...,2 in LS-coupling. & (3,w1,Q1,L1,51,W2,Q2,L2,S, {...}) to return the RCFP
(fw1Q1L181|||a'?"9||| fwaQ2L2S2) for subshell with orbital angular momentuin= 3 and for the
additionally specified quantum numbess > =0, ..., 10.

Additional information: The list and number of arguments depend on the definition of the underlying cou-
pling scheme which has to be defined before by calling the proc&adureh_set _coupl i ng_schene().

The current definition of the coupling scheme is kept in the global variBatsah_save_coupl i ng_
schene. & One of the keywordsilgebraicor prime can be provided as last argument given within a set
structure.

Seealso: Racah_set _coupl i ng_schene().

Racah_reduced_T(k,,M 0,Q1,31,Q2,%)

Returns the reduced matrix eIeme(rthlleQ||T(k)||jQ2J2MQ) for subshells with angular momenta
Jj=1/2,3/2,5/2 and 72 using the quasispin notationjjncoupling.

Output: A (floating-point) number is returned.

Argument options: (k,j,M 0,Q1,J1,Q2,%, {algebraic...}) to return the reduced matrix element in algebraic
form. & (k,jM0,Q1,41,Q2,%, {prime, ...}) to return the reduced matrix element in a prime-number repre-
sentationd (k,j,N,v1,d,v2,J,{seniority, .. .}) to return the reduced matrix element’ vy J1||T® || jNvaJ2)
using seniority notation if the coupling schefpeseniorityhas not been specified expliciti. (k,9/2,Mg, w1,
Q1,d1,W2,Q2,%, {. . .}) to return the reduced matrix elemefitwi Q11 Mo||T®|| jw2Q2J2M ) for subshells
with orbital angular momentum = 9/2 and for the additionally specified quantum numhets =0, 1, or

2 using quasispin notation jjrcoupling.
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Additional information: The reduced matrix elements of the operatéf are only defined itj-coupling.

& The list and number of arguments depend on the definition of the underlying classification and coupling
scheme which has to be defined before by calling the proceRacah_set coupl i ng_schene().

The current definition of the coupling scheme is kept in the global variBattah_save_coupl i ng_
schene. & A set of keywords can be provided in any order as the last argument; the currently supported
keywordsare algebraic prime and seniority where algebraic and prime must be used exclusively. The
keyword seniority ‘overwrites’ the currently defined classification scheeThe calculation of the CFP

is based on a list of RCFP which is stored internally.

Seealso: Racah_set _coupl i ng_schene().

Racah_reduced_U(k,,M ,Q1,L1,S1,Q2,L2,S)

Returns the reduced matrix eleme@t’ Q1L151Mo||U®||IN Q2L25:Mp) of the unit tensorU® for
subshells with orbital angular momerita: O, 1, and 2 using quasispin notationLif-coupling.

Output: A (floating-point) number is returned.

Argument options: (k,,Mo,Q1,L1,S1, Q2,L2,S.{algebraic...}) to return the reduced matrix element in
algebraic formé (k,|,M ,Q1,L1,51,Q2,L2,S,{prime, .. .}) to return the reduced matrix element in a prime-
number representatio (k,I,N,v1,L1,S1,v2,L2,5,{seniority,...}) to return the reduced matrix element
(INv1L1S1|[UR|IN v, Lo Sp)using seniority notation if the coupling schemeS_seniorityhas not been
specified explicitly.& (k,3,Mg,w1, Q1,L1,S1,w2,Q2,L2,5.{...}) to return the reduced matrix element
(fNw1Q1L1S1Mo||UP|| fNwa02L282M ) for shells with orbital angular momentuin= 3 and for the
additionally specified quantum numbesg > =0, ..., 10 using quasispin notation.

Additional information: The reduced matrix elements of the operdiéf are only defined in.S-coupling.

& The list and number of arguments depend on the definition of the underlying classification and coupling
scheme which has to be defined before by calling the procdgacah_set coupl i ng_schene().

The current definition of the coupling scheme is kept in the global varidattah_save coupl i ng_
scheme. & A set of keywords can be provided in any order as the last argument; the currently supported
keywordare algebraic prime, and seniority wherealgebraic and prime must be used exclusivelg The
calculation of the CFP is based on a list of RCFP which is stored internally.

Seealso: Racah_set _coupl i ng_schene().

Racah_reduced_V(k,,M ,Q1,L1,51,Q2,L2,S)

Returns the reduced matrix elemeht Q1 L151 My ||V *D||IN 0,128, M o) for subshells with orbital angular
momentd = 0, 1 and 2 using quasispin notationli8-coupling.

Output: A (floating-point) number is returned.

Argument options: (k,,Mo,Q1,L1,S1, Q2,L2,S,{algebraic...}) to return the reduced matrix element in
algebraic formé (k,|,M ,Q1,L1,51,Q2,L2,S,{prime, .. .}) to return the reduced matrix element in a prime-
number representatiod (k,I,N,v1,L1,51,v2,L2,5,{seniority,...}) to return the reduced matrix element
(INviL1S1||[VED 1IN vy L,85) using seniority notation if the coupling schemeS_seniorityhas not been
specified explicitly. & (k,3,Mg,w1,Q1,L1,51,w2,Q2,L2,S {...}) to return the reduced matrix element
(fNw1Q1L1S1Mo||VED || fNwaQ2L252M ) for subshell with orbital angular momentuis= 3 and for
the additionally specified quantum numbers, =0, ..., 10 using quasispin notation.

Additional information: The reduced matrix elements of the operatéf? are only defined it.S-coupling.
& The number and sequence of arguments depends on the definition of the coupling scheme which has to be
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defined before by calling the procedure liRacah_set coupl i ng_schene() . This definition is kept

in the global variabléracah_save_coupl i ng_schene. & A set of differentkeywordscan be provided

as the last argument. The currently suppokegwordsarealgebraic algebraic prime, andsenioritywhere
algebraicandprime must be used exclusivelg The list and number of arguments depend on the definition

of the underlying classification and coupling scheme which has to be defined before by calling the procedure
Racah_set coupling_schene().

Seealso: Racah_set _coupl i ng_schene().

Racah_reduced_W(K,,K;,j,Q1,31,Q2,%)

Returns the reduced matrix elemeépQ1.J1|||W %%)||| j 02J>) for subshells with angular momenta= 1/2,
3/2,5/2 and 72 using quasispin notation jjrcoupling.

Output: A (floating-point) number is returned.

Argument options: (k,,K;,j,Q1,41,Q2,%, {algebraic...}) to return the reduced matrix element in al-
gebraic form. & (k,,K;,j,Q1,51,Q2,%, prime ...) to return this reduced matrix element in a prime-
number representationd (k,,K;,9/2,wi,Q1,J1,W2,Q2,%, {...}) to return the reduced matrix element
(G w1Q1J1|||W ek ||| j waQ2J2) for subshells withj = 9/2 and for the additionally specified quantum
numbersw; » =0, 1, or 2 using quasispin notationjjacoupling.& (K, .k Ks,1,Q1,L1,$1,Q2,L2,, {...}) to
return the reduced matrix eleme@Q,L1S1|||W%*%)|||1Q2L2S5) for subshells withl = 0, 1 and 2 using
quasispin notation ihS-coupling.& (K4 ,k;,Ks,3,w1,Q1,L1,51,w2,Q2,L2,$.{. . .}) to return the reduced matrix
element(f w1 Q1L1S1|||W*ekiks) ||| £ waQ2L2S5) for subshells with orbital angular momenture: 3 and
for the additionally specified quantum numbers, =0, .. ., 10 using quasispin notation Lt5-coupling.

Additional information: The list and number of arguments depend on the definition of the under-
lying classification and coupling scheme which has to be defined before by calling the procedure
Racah_set _coupling_schene() .& A set of differentkkeywordscan be provided as the last argument.
The currently supportekeywordsarealgebraic prime andsenioritywherealgebraicandprimemust be used
exclusively. The keywordeniority‘overwrites’ the currently defined classification scheme.

Seealso: Racah_set _coupl i ng_schene().

Racah_set_coupling_scheme(jj_quasispin
‘Defines’ the global framework to use quasispin notatiojj-coupling.
Output: A NULL expression is returned.

Argument options. (LS_quasispipto set the global framework to use quasispin notatiobh$coupling.
& (jj_seniority) to set the global framework to use seniority notatiofj inoupling.& (LS_seniority to set
the global framework to use seniority notatiorLif-coupling.

Additional information: The currently defined coupling scheme and notation is kept in the global variable
Racah_save_coupl i ng_schene. No default value is provided for this variable and, thus, this procedure
mustbe called before any of the other procedures can be invoked.
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TEST RUN OUTPUT

"CFP for 9/2 subshells with occupation N =" 1

0O 1 992 0 0 0 = .9999999998 [1]

"CFP for 9/2 subshells with occupation N =" 2

0O O O 0 1 9/2 = .9999999994 [1]

o 2 2 0 1 92 = 1 [1]

o 2 4 0 1 92 = 1. [1]

0O 2 6 0 1 9/2 = .9999999997 [1]

0O 2 8 0 1 9/2 = .9999999996 [1]

"CFP for 9/2 subshells with occupation N =" 3

o 3 32 0 2 4 = .8528028655 [1, 3, 0, O, O, -1]

0o 3 32 0 2 6 = -.5222329679 [-1, O, 1, O, O, -1]

0O 3 52 0 2 2 = .5270462768 [1, -1, -2, 1]

0O 3 52 0 2 4 = -.4438126822 [-1, -1, -1, O, O, -1, 1]
0O 3 52 0 2 6 = -.7247430754 [-1, 2, -2, O, O, -1, 1]
o 3 7/2 0 2 2 = .7247430753 [1, 2, -2, O, O, -1, 1]

o 3 72 o0 2 4 = .3739787960 [1, 2, O, 1, O, -1, -1]

0O 3 72 0 2 6 = .4494665749e-1 [1, O, -2, -1, 0, -1]
o 3 72 0 2 8 = -.5769463865 [-1, 1, O, -1, 1, -1, -1, 1]
o 1 992 0 O 0 = .5163977794 [1, 2, -1, -1]

o 1 992 0 2 2 = -.2886751345 [-1, -2, -1]

o 1 92 0 2 4 = -.3872983346 [-1, -2, 1, -1]

0o 1 992 0 2 6 = -.4654746682 [-1, -2, -1, -1, O, O, 1]
o 1 92 0 2 8 = -.5322906475 [-1, -2, -1, -1, O, O, O, 1]
o 3 992 o0 2 2 = .1811857689 [1, -2, -2, 0O, O, -1, 1]
0O 3 992 0 2 4 = -.6544628930 [-1, -2, O, 1, 2, -1, -1]



