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Abstract

Spherical harmonics play a crucial role in theoretical physics since they represent a complete and orthonormal set of functions
on the unit sphere. The spherical harmonics are therefore applied in many different fields of physics including classical field
theory as well as the treatment of quantum many-particle systems. Along with their well-known properties, they are frequently
utilized to evaluate one- and many-particle matrix elements from atomic and nuclear structure theory analytically.

In this paper, we present an extension of the RACAH program to incorporate the behaviour and the properties of the spherical
harmonics. Our new version also supports various useful expansions for these functions, recursion relations as well as the
algebraic evaluation of integrals. 2001 Elsevier Science B.V. All rights reserved.
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PROGRAM SUMMARY

Title of program: RACAH

Catalogue identifier:ADOR

Program Summary URL:http://cpc.cs.qub.ac.uk/summaries/ADOR

Program obtainable from:CPC Program Library, Queen’s Univer-
sity of Belfast, N. Ireland. Users may obtain the program also by
down-loading either thecompressed tar-fileracah2000.tgz (for
Unix & Linux) or the zip-file racah2000-windows.zip (for
Windows & Macintosh) from our home page at the University of
Kassel (http://www.physik.uni-kassel.de/fritzsche/programs.html)

Licensing provisions:None

Computer for which the program is designed and others on which it
is operable: All computers with a license of the computer algebra
package Maple [1]

Installations: University of Kassel (Germany)

Operating systems under which the program has been tested:AIX,
Linux, Windows

Program language used:Maple V, Releases 3, 4, and 5

Memory required to execute with typical data:6 MB

✩ This program can be downloaded from the CPC Program Library under catalogue identifier: http://cpc.cs.qub.ac.uk/summaries/ADOR
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E-mail address:s.fritzsche@physik.uni-kassel.de (S. Fritzsche).
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No. of lines in distributed program, etc.:ca. 22 000

No. of bytes in distributed program, including test data, etc.:
541 996

Distribution format: tar gzip file

Nature of the physical problem
Spherical harmonics are applied in many fields of physics. In clas-
sical electrodynamics, for instance, the spherical harmonics may be
utilized to expand the electro-magnetic field of a charge distribu-
tion in terms of its multipoles. The spherical harmonics also provide
an importantbasisin quantum mechanics for classifying one- and
many-particle states since they are simultaneous eigenfunctions of
one component and of the square of the orbital angular momentum
operator−ir × ∇. In many-particle physics, the properties of these
functions (completeness, orthogonality,. . .) are frequently applied
to evaluate the spin-angular part of the corresponding matrix ele-
ments analytically.

Method of solution
In a previous version of the RACAH program [2], we defined data
structures and a hierarchy of MAPLE procedures to evaluate and
simplify expressions from Racah’s algebra. Our revised program
now also supports the occurrence of spherical harmonics as well as
integrals over the spherical harmonics in such expressions. The eval-
uation follows similar lines as before by utilizing, in addition, the
properties, sum rules, and recursion relations for the spherical har-
monics. Several sum rules for these functions lead to (new) Wigner
n− j symbols which may be simplified owing to the previous capa-
bilities of the program.

Restrictions onto the complexity of the problem
The definition of the spherical harmonics and the sum rules, which
have been implemented in the program, mainly refer to the mono-
graph by Varshalovich et al. [3]. There are literally no other lim-
itations on the complexity of individual expressions than those of

the resources and computer time which is needed for their evalua-
tion. Even though a large number of sum rules for the Wignern− j
symbols is now incorporated in the program (including thegraph-
ical loop rules for the 3− j symbols), only a selected set of those
sum rules, which involve the 9− j symbols, are implemented so
far. Also, we do not support highern− j symbols(n= 12,15, . . .)
since they are defined in rather different ways in the literature.

Unusual features of the program
All commands of the RACAH package are available for interactive
work. As explained in Ref. [2] and Appendix A below, the program
is based on data structures which are suitable for almost any com-
plexity of Racah algebra expressions. The present version also sup-
ports Clebsch–Gordan expansionsfor two or more spherical har-
monics (which depend on the same angular coordinates) into a sum
of products of a single spherical harmonic and the corresponding
number of Wigner 3− j symbols. To accelerate the evaluation of
Racah expression, the code for most sum rules of the Wignern− j
symbols(n = 3,6,9), as implemented in the program, have also
been improved.

Typical running time
All the examples below take only a few seconds on a Pentium III
450 MHz computer.
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LONG WRITE-UP

1. Introduction

Spherical harmonics are applied in many research areas, both in classical and quantum physics. In classical field
theory, for instance, these functions are often used to approximate the potential of a given charge distribution by
its (lowest) multipole moments [1,2]. The spherical harmonics also frequently occur in the quantum mechanics of
one- and many-particle systems. For an electron moving in a central potential, the harmonicsYlm(ϑ,ϕ)= 〈ϑϕ|lm〉
are known to form simultaneous eigenfunctions of the square of the orbital angular momentum operator and of one
of its components [3]. In practical applications of the theory, this gives rise immediately to theradial–spherical
representation

ψnlmlms (r,ϑ,ϕ)=Rnl(r)Ylm(ϑ,ϕ)χms (1)

of the total (one-electron) functions. A similar structure as in (1) even appears in relativistic quantum mechanics
where one starts from Dirac’s equation to describe the motion of spin-1/2 particles. But although several (spinor-)



T. Inghoff et al. / Computer Physics Communications 139 (2001) 297–313 299

components need to be distinguished in this case, all of them still separate into products of radial and spherical
functions including theYlm’s.

The radial-spherical representation (1) of the one-particle wave functions also plays a major role in describing
(interacting)N -particle systems since it enables one to carry out the integration over the 2N angular coordinates
of the systems analytically. Such techniques of analytical integration have been established for a long time in
the theory of angular momentum (or sometimes called the Racah algebra), but they often result in very complex
expressions which are difficult to deal with manually. Therefore, in order to facilitate an (automatically supported)
manipulation and transformation of such expressions, we developed the RACAH program [4,5] during the last years
which has been found helpful in a number of applications. — In a previous version, this program could be applied
already for sum rule evaluations as well as for various numerical computations of standard expressions of Racah’s
algebra.

Our present work extends the RACAH program to incorporate also the knowledge of the analytic behaviour and
properties of the spherical harmonics. To this end, we enlarged our (previous) definition of aRacah expression
(cf. Fig. 1 in Ref. [4]) for taking into account the spherical harmonicsin addition tothe Wignern− j symbols.
Such expressions, in fact, may now include integrals over products of any number of spherical harmonics (and with
different arguments) which will be evaluated and simplified similar to our previous rules. Details on this evaluation
process of typical Racah expressions (including theYlm’s) will be described below in Sections 3 and 4.

In the following section, we briefly summarize the properties of the spherical harmonics. The main extensions
of the program and how the properties and sum rules of these functions are implemented in the program is then
described in Section 3. In the next section, several examples show how the program can be utilized to evaluate
integrals and to carry out simple expansions of the spherical harmonics. Two slightly more advanced examples
later point towards the application of the RACAH program to atomic and nuclear theory. Finally, Section 5 gives
a brief outlook on future developments of the RACAH program. In addition, two appendices below list a rather
concise description of the new and extended data structures as well as of all commands at user’s level which have
been modified or added to the RACAH package.

2. Properties of the spherical harmonics

The most utilized power of the spherical harmonics is to form acompleteand orthogonal set of functions on
the unit sphere. These two properties are used, for instance, for carrying out multipole expansions for classical
fields and of quantum-mechanical operators, both in two and three dimensions. Together with the known Clebsch–
Gordan expansion for products of spherical harmonics, these properties also facilitate an analytic integration on a
sphere. In order to provide the reader with some guidance for the examples below, here we briefly summarize a
few important properties of these functions.

For a particle in a central field, the spherical harmonicsYlm(ϑ,ϕ) are known as the eigenfunctions of
the square and of one component of the orbital angular momentum operator−ir × ∇r. These functions,
therefore, simultaneously obey the two eigenvalue equationsL̂zYlm(ϑ,ϕ) = mYlm(ϑ,ϕ) and L̂2Ylm(ϑ,ϕ) =
l(l + 1)Ylm(ϑ,ϕ), or explicitly1

∂

∂ϕ
Ylm(ϑ,ϕ)= imYlm(ϑ,ϕ), (2)

�(ϑ,ϕ)Ylm(ϑ,ϕ)≡
[

1

sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
+ 1

sin2ϑ

∂2

∂ϕ2

]
Ylm(ϑ,ϕ)= −l(l + 1)Ylm(ϑ,ϕ), (3)

whereϑ andϕ are the polar coordinates (for the solid angleΩ) and�(ϑ,ϕ) denotes the angular part of the Laplacian
�≡ r−2∂/∂r(r2∂/∂r)+ r−2�(ϑ,ϕ).

1 Throughout this article we use atomic units, wheree=me = h̄= 1.
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For a givenl � 0, there exist(2l + 1) functions according to differentm’s in the range−l � m � l. Both the
spherical harmonics as well as all of their derivatives are single-valued, continuous, and finite functions on the unit
sphere.

The normalized (standard) solutions of Eqs. (2) and (3) are

Ylm(ϑ,ϕ)=
√

2l + 1

4π

(l −m)!
(l +m)!P

m
l (cosϑ)eimϕ, (4)

where the functionsPml (x) are the associated Legendre polynomials

Pml (x) = (−1)m
(
1− x2)m/2 dl+m

dxl+m
(x2 − 1)l

2l l! = (−1)m
(
1− x2)m/2 dm

dxm
Pl(x) (5)

andPl(x) denotes a Legendre polynomial of orderl. In the definition (4), moreover, the phase has been chosen to
fulfill the symmetryY ∗

lm(ϑ,ϕ)= (−1)mYl,−m(ϑ,ϕ). Thisphase conventionis in line with many texts on quantum
mechanics and, in particular, with the monograph of Varshalovich et al. [6] to who we refer for further details.
Unfortunately, however, there are a number of different conventions used in the literature, both for the spherical
harmonics and associated Legendre polynomials as discussed in Ref. [7]. Therefore, the user must take care about
proper phases if parts of the derivation were obtainedindependentof the RACAH program.

Symmetry properties.Various symmetry relations of the spherical harmonics concern a sign reversal of the
magnetic quantum numberm and of the angular arguments as well as the periodicity inϑ andϕ. From the explicit
form (4), one may find the symmetries

Ylm(ϑ,ϕ) = (−1)me2imϕYl,−m(ϑ,ϕ)= (−1)mYlm(−ϑ,ϕ)
= e2imϕYl,−m(−ϑ,ϕ)= (−1)mYl,−m(ϑ,−ϕ)
= e2imϕYlm(ϑ,−ϕ)= Yl,−m(−ϑ,−ϕ)
= (−1)me2imϕYlm(−ϑ,−ϕ). (6)

For each of these symmetries, there is another relation due to the complex conjugate of a spherical harmonic:
Ylm(ϑ,ϕ)= Y ∗

lm(ϑ,−ϕ).

Orthogonality and completeness.These two properties of the spherical harmonics follow immediately from being
the eigenvectors of the Hermitian angular momentum operatorsL̂2 andL̂z; they are given by

2π∫
0

dϕ

π∫
0

dϑ sinϑY ∗
lm(ϑ,ϕ)Yl′m′(ϑ,ϕ)= δll′δmm′ , (7)

∑
l,m

Y ∗
lm(ϑ,ϕ)Ylm(ϑ

′, ϕ′)= δ(cosϑ − cosϑ ′)δ(ϕ − ϕ′). (8)

The second relation displays the completeness in the(ϑ,ϕ)-space.

Addition theorem.

l∑
m=−l

Y ∗
lm(Ω1)Ylm(Ω2) = 2l + 1

4π
Pl(cosθ12), (9)

whereΩ1 ≡ (ϑ1, ϕ1) andΩ2 ≡ (ϑ2, ϕ2) define two different directions andθ12 = � (Ω1,Ω2) is the angle between
them.
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Clebsch–Gordan expansion.

Yl1m1(ϑ,ϕ)Yl2m2(ϑ,ϕ) =
√
(2l1 + 1)(2l2 + 1)

4π

∑
LM

(−1)M
√

2L+ 1

×
(
l1 l2 L

0 0 0

)(
l1 l2 L

m1 m2 −M
)
YLM(ϑ,ϕ). (10)

This expansion provides a means to simplify products of two and more spherical harmonics with the same angles.
It relates the spherical harmonics to the Wignern − j symbols. In the literature, this relationship is frequently
expressed also in terms of so-called Gaunt coefficients〈l3m3|l2m2|l1m1〉, i.e. of integrals of the product of three
spherical harmonics over the unit sphere in 3-dimensional space [8,9].

There are also known a number of other expansions of the spherical harmonics in terms of special functions
(WignerD-functions, Jacobi and Gegenbauer polynomials) as well as of the hypergeometric and trigonometric
functions which have been found useful for several applications.

Multipole expansions. The completeness of the spherical harmonics can be used to represent any arbitrary
functionf (ϑ,ϕ) in theL2 Hilbert space of the unit sphere in 3-dimensional space into a series

f (ϑ,ϕ) =
∞∑
l=0

+l∑
m=−l

flmYlm(ϑ,ϕ), (11)

where the coefficients

flm =
2π∫
0

dΦ

π∫
0

dΘ sinΘY ∗
lm(Θ,Φ)f (Θ,Φ)

are often called themultipolesof this function. Such a representation is useful, in particular, iff (ϑ,ϕ) is a ‘nearly’
spherical symmetric function so that it can be replaced approximately by a finite sum over its lowest multipoles:
f (ϑ,ϕ)� ∑L

0 flmYlm(ϑ,ϕ).
Similarly to the 2-dimensional expansion (11), one may define thespherical multipole momentsalm for any

functionF(r,ϑ,ϕ) in three dimensions

alm ≡
∫

d3r ′ r ′lY ∗
lm(ϑ

′, ϕ′)F (r ′, ϑ ′, ϕ′). (12)

These spherical moments are used, for instance, in electrostatics to describe the potentialV (r) outsideof a localized
charge distributionρ(r). If the potential is taken to satisfy appropriate boundary conditions [i.e.V (r → ∞)→ 0],
it can be written as

V (r) =
∞∑
l=0

+l∑
m=−l

4π

2l + 1

alm

rl+1Ylm(ϑ,ϕ),

where one just need to replaceF(r)→ ρ(r) in the spherical moments (12).
In quantum mechanics, the same expansion is used also to define the multipole operatorsM̂kq = rkYkq(ϑ,ϕ) for

describing, for instance, the interactions of atoms and molecules with the radiation field.
To complete this section of the properties of the spherical harmonics, we finally give the expansion of the

Coulomb repulsion as it occurs in atomic and molecular structure for each pair of electrons. By using the addition
theorem from above, the Coulomb operator becomes

1

|r2 − r1| =
∞∑
l=0

+l∑
m=−l

4π

2l + 1

rl<

rl+1
>

Y ∗
lm(ϑ1, ϕ1)Ylm(ϑ2, ϕ2)=

∞∑
l=0

+l∑
m=−l

r l<

rl+1
>

C∗
lm(ϑ1, ϕ1)Clm(ϑ2, ϕ2) (13)
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with r< (r>) is the smaller (larger) radius ofr1 and r2, respectively. The second linedefinesthe ‘modified’ or
‘renormalized’ spherical harmonicsClm(ϑ,ϕ)= √

4π/(2l + 1)Ylm(ϑ,ϕ) which are also supported by the RACAH

program.

3. Implementation and extensions to the RACAH program

Different lanes were pursued in the past to simplify and evaluate expressions from the theory of angular
momentum. With the RACAH program [4,5], we focused on the development of symbolic techniques. By using
well defined data structures within the framework of MAPLE V and a hierarchical order for the large set of required
procedures, we were able to treat all parts of typical expressions from Racah’s algebra as logical objects throughout.
The various commands of the RACAH program can be used either for interactive work or as the basic elements in
order to built up procedures at some higher level of the hierarchy.

In order to deal with spherical harmonics in Racah expressions and for accelerating their evaluation process, a
number of new procedures has been added to the program during the last two years. From the set of procedures,
which were already available in the previous version, in particular the two commandsRacah_set() and
Racah_evaluate() have been improved considerably. The procedureRacah_set(), for instance, now
supports to enter a whole Racah expression within a single line and, thus, facilitates the handling of complex
expressions. Moreover, to achieve a faster simplification of recoupling coefficients, the user may now also select
different ‘routes’ for the evaluation like a set of ‘graphical’loop rules as will be described in an accompanying
manuscript. The implementation of such graphical rules, however, has accelerated the time for evaluation by more
than two orders of magnitude in certain cases.

Apart from modifications on (a few previously) available procedures, several new commands deal with the
representation and the properties of the spherical harmonics. Typical Racah expressions, which were first defined
for the Wignern − j symbols only, may now also contain (any product of) the spherical harmonics as well as
integrals over these functions, defined on the unit sphere. For this purpose, we specified several new data structures
like Ylm orint in order to handle single spherical harmonics or the domain of integration for a given angle. In the
present implementation, the spherical harmonics are now treated equivalently to the Wigner symbols and, thus, the
internalYlm lists became part of theRproduct list of a given Racah expression. For details on the definition of all
data structures, we refer to Ref. [4] and Appendix A below (new data types). To facilitate the further development
of the RACAH program, we already specified the data typedlmm for representing the reduced matrix elements of
the rotation operator. These functions are not yet supported by most of the procedures but will be treated similar to
the other two data types, i.e.wnj andYlm.

Of course, the spherical harmonics and their integrals on a unit sphere require also to define (continuous) angles;
see the list structureang in Appendix A. In order to specify the integration over a particular domain of such angles,
in addition, we specified the structureint which occurs — equivalently to any (discrete) summation variable —
in theRsummationset of a given Racah expression. Thesetstructure of this particular type hereby reflects the
overallassumptionof the program that all sums and integrals can be interchanged with each other.

The implementation of the spherical harmonics also affects the hierarchy in evaluating the various parts of a
Racah expression. InRacah_evaluate(), the simplification now always starts with an analysis of the sum and
integration rules for the spherical harmonics. As shown in Section 2, this may result in Kronecker or Diracdelta
factors as well as in a number of (new) 3− j symbols [cf. Eq. (10)]. These additional factors are then simplified in
a later step, similar to our previous work. If, moreover, the keywordloop is selected forRacah_evaluate(),
only a special set ofloop rules for the Wigner 3− j symbols will be tested explicitly. The implementation
of these rules and their application to complex recoupling coefficients will be discussed in an accompanying
paper [10].

A further extension of the Racah program improves the support of sums of (different) Racah expressions. Such
Racah sums naturally occur for the derivatives of Racah expressions with respect to angular (and other continuous)
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variables and for the use of recursion relations for the Wignern − j symbols and spherical harmonics. To
combine two Racah expressions into a singleRacahsum, i.e. toadd them in a mathematical sense, the command
Racah_plus() can be invoked. The procedure Racah_add(), in contrast, allows tosubjoinsome parts to a previously
defined Racah object. For instance, the multiplication of aRacahsum with some factorc is simply achieved by
invoking Racah_add(factor,c,Racahsum).

As previously, the source code of the RACAH program will be distributed in ASCII format; it is mainly based on
Release 5 of the MAPLE framework. Although emphasize was paid to preserve the compatibility of the program
also to earlier releases of MAPLE, this downward compatibility cannot always be ensured completely. By providing
the source code, however, the user may adjust the program to his own needs.

The full package is provided by a compressed tar fileracah2000.tgz of the racah root directory. This
directory includes the source, the fileRacah-command.ps as well as severalhelppages in the subdirectorylib.
The fileRacah-command.ps contains a quick reference of all user-relevant commands of the RACAH program
similar to Appendix B below. The full source (including the help pages) can be read from the root directory by

> read racahload;

at the beginning of each MAPLE session. The program currently contains more than 160 procedures from which,
however, only about 10 have to be known at user’s level.

Although the RACAH program allows a fast and reliable handling of the theory of angular momentum, we shall
conclude this section with a brief warning. In standard applications, namely, it often appears difficult to recognize
(mathematically) erroneous expressions which, in course of the evaluation, may lead to senseless or even wrong
results. Therefore, the user must take care that all angular momentum quantum numbers represent integer or half-
integer values and that they fulfill proper coupling conditions. For example, the coupling of two half-integer values
always results in an integer angular momentum and according rules have to be valid for the coupling of other
angular momenta.

4. Examples

To illustrate the present extension and to provide a few test cases, we show several examples below which do
not require to type in much information. These examples concern the analytic integration for a product of spherical
harmonics on a unit sphere and their expansion in powers of the sin or cos functions. Two other examples later
display how the properties of the spherical harmonics can be utilized to evaluate matrix elements from atomic
structure and collision theory.

The symmetries (6) and the orthogonality (7) of the spherical harmonics are thebestknown properties for this
set of functions. They are often utilized for the analytic integration over products of such functions. To evaluate an
integral like

2π∫
0

dϕ

π∫
0

dϑ sinϑYlm(−ϑ,ϕ)YL,−M(ϑ,−ϕ) (14)

we simply enter

> expr1 := Racah_set(int,phi,0,2*Pi,int,theta,
0,Pi,factor,sin(theta),
Ylm(l,m,-theta,phi),Ylm(L,-M,theta,-phi)):

> Racah_print(expr1):
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--->
2 Pi Pi

/ /
| |
| dphi | dtheta
| |

/ /
0 0

sin(theta)

Y_{l,m} (-theta,phi)

Y_{L,-M} (theta,-phi)

> Racah_evaluate(expr1):
> Racah_print(%):

--->
M

(-1)

delta(l,L) delta(M,-m)

Note that in the expression above we can also omit the boundaries (on the sphere) for the integration over the
standard intervals 0� φ � 2π and 0� θ � π . Generally, if the boundaries are omitted or if a solid angleΩ is
specified, the integration over these standard intervals is always assumed in the RACAH program. However, to
avoid any ambiguity of the expressions, we recommend to specify the boundaries explicitly if the integrals over the
(polar) anglesϑ andϕ are described separately.

Several applications of the spherical harmonics benefit from the explicit representation of these functions in
powers of the sin or cos function. A variety of such expansions are supported by the procedure Racah_expand() as
in the following example forY2,−1(ϑ,ϕ)

> Racah_expand(Ylm,2,-1,theta,phi);

1/2
30 cos(theta) sin(theta) exp(-I phi)

1/4 ---------------------------------------
1/2

Pi

An equivalent expression in terms of powers of sin(ϑ/2) is obtained by

> Racah_expand(Ylm,2,-1,theta,phi,half_theta,Sin);

1/2 2 4
30 sin(1/2 theta) (1 - 3 sin(1/2 theta) + 2 sin(1/2 theta) ) exp(-I phi)

1/2 ----------------------------------------------------------------------------
1/2

Pi cos(1/2 theta)

The use of other allowedkeywordsfor selecting a proper expansion, for instance for products of spherical
harmonics, is described in Appendix B.

In applying many-body perturbation theory to atomic and molecular systems, large effort has often to be devoted
to the evaluation of the matrix elements of symmetric one- and two-particle operators using theradial-spherical
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representation (1) of the one-electron orbital functions. In the following examples, we use the nonrelativistic
notation

|a〉 ≡ |nalamam(s)a 〉 = 1

r
Pnala (r)Ylama (ϑ,ϕ)χm(s)a

to specifyspin-orbitalswith well defined spin and orbital angular momentum quantum numbers.
Let us first consider the matrix elements of the multipole operatorM̂kq = rkYkq(ϑ,ϕ) which are given explicitly

by

〈a|M̂kq |b〉 = δ
m
(s)
a m

(s)
b

·
∫

dr Pnala (r)r
kPnblb (r)

∫
dϕ

∫
dϑ sinϑY ∗

lama
(ϑ,ϕ)Ykq(ϑ,ϕ)Ylbmb (ϑ,ϕ).

We can apply the RACAH program to evaluate the angular part of this matrix element, similar to the example above,
and obtain

> expr2 := Racah_set(int,Omega,Ylmcc(la,ma,Omega),Ylm(k,q,Omega),
Ylm(lb,mb,Omega));

> Racah_evaluate(expr2):
> Racah_print(%):

--->
ma

(-1)

1/2 1/2 1/2
(2 la + 1) (2 k + 1) (2 lb + 1)

1/2 ---------------------------------
1/2

Pi

w3j(la,k,lb,0,0,0)

w3j(la,k,lb,-ma,q,mb)

or, equivalently

(−1)ma
( [la, k, lb]

4π

)1/2(
la k lb
0 0 0

)(
la k lb

−ma q mb

)
. (15)

In this example, we have used the solid angleΩ with its (preassumed) integration domain over the full unit sphere;
moreover, the short formYlmcc corresponds to a complex conjugated spherical harmonic. In expression (15),
the notation[a, b, c, . . .] = (2a + 1)(2b + 1)(2c + 1) . . . is used as often found in the literature about angular
momentum theory.

The complexity of the expressions rapidly increases if two-particle operators or products of operators occur in
the derivation. For instance, the matrix elements of the instantaneous Coulomb repulsion, Eq. (13), between each
pair of electrons is〈

ab

∣∣∣∣ 1

r12

∣∣∣∣cd〉 = δ
m
(s)
a m

(s)
c
δ
m
(s)
b m

(s)
d

∑
k

Rk(ab, cd)

×
∑
q

∫ ∫
dΩ1 dΩ2Y

∗
lama
(Ω1)Y

∗
lbmb
(Ω2)Ckq(Ω1)C

∗
kq (Ω2)Ylcmc (Ω1)Yldmd (Ω2), (16)
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where, again, the radial integral

Rk(ab, cd) =
∫ ∫

dr1 dr2Pnala (r1)Pnblb(r2)
rk<

rk+1
>

Pnclc (r1)Pnd ld (r2)

and the spin contributions can be evaluated separately. Following similar lines for the angular (double) integral of
expression (16) as before, we find

--->
SUM{q}

(q + mb + ma)
(-1)

1/2 1/2 1/2 1/2
(2 lb + 1) (2 ld + 1) (2 la + 1) (2 lc + 1)

w3j(k,lb,ld,0,0,0)

w3j(k,lb,ld,-q,-mb,md)

w3j(k,la,lc,0,0,0)

w3j(k,la,lc,q,-ma,mc)

or, for the overall angular matrix element∑
kq

(−1)ma+mb+q [la, lb, lc, ld ]1/2
(
k la lc
0 0 0

)(
k lb ld
0 0 0

)(
k lb ld

−q −mb md

)(
k la lc
q −ma mc

)
(17)

which can be directly compared with various textbooks on atomic theory [11].
The last two examples can be extended easily also to other operators of nuclear and atomic structure theory.

Beside of these two important fields of applications, however, our present extension of the RACAH program may
go well beyond these research areas.

5. Summary and outlook

Since its first publication in 1997, the RACAH package [4] has grown extensively over the last few years.
Recent developments to this program concerned the analytic evaluation of Racah expressions by exploiting the
sum rules and orthogonality properties of the Wignern− j symbols [5], the implementation of standard quantities
for simplifying many-electron matrix elements as well as an implementation of graphical rules [10]. All these
developments enlarged the range of applications for the RACAH program and, thus, made it attractive to a broader
community. With the present work on spherical harmonics, we now provide a powerful version which may have
applications far beyond atomic theory (our own field of interest which motivated these developments originally).

Till now, however, most of the implemented quantities like the Wigner 3− j symbols or the spherical harmonics
aredefinedwith respect to a given quantization axis. Although this axis can be chosen appropriately for some
given task, it must bespecifiedfor all the subsystems together. But there are many other applications in which
different directions need to bedistinguishedfrom each other. In such cases, one often wishes to rotate the physical
states and/or the reference frame before the expressions can be further evaluated. In order to carry out such
transformations, the matrix elements of the rotation operator, i.e. the so-called WignerD-functions are frequently
required. These functions can be considered as a generalization of the spherical harmonics and, in fact, may be
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used as a representation of the rotation group. They depend on three angles (for instance, the Euler anglesα,β, γ )
as necessary to characterize an arbitrary rotation in space. In the further development of the RACAH program, we
intent to incorporate these functions and to make use of their analytically known properties as well as of their close
relation to the Wignern− j symbols and the spherical harmonics.

Another useful concept of theoretical physics, which is built on the spherical harmonics, is the construction of
tensor spherical harmonics,YLSJM(Ω), of various ranks. These tensor functions have a wide range of applications,
particularly in relativistic theory, in order to describe electrons (S = 1/2; spin spherical harmonics), photons
(S = 1; vector spherical harmonics), or other fermions and bosons (with higher spinS). We currently investigate
how and to which extent these functions can be incorporated into the RACAH program, of course, including the
knowledge about their properties. Similarly, one may also think towards a more efficient use of hyperspherical
harmonics [15,16], well beyond their present applications for two- and three-particle systems.
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Appendix A. New and extended data structures

The definition of proper data structures may facilitate an efficient symbolic manipulation of complex
(mathematical) objects. Similar as in Ref. [4], here we provide a short description of the new and extended
structures as they are utilized for the internal representation of Racah expressions. In order to specify the integration
over a (continuous)domain of an angle, we now provide the particular list structureint as an additional
component ofRsummationset. For this definition, we assume that all summations and integrations commute
with each other and, therefore, can be carried out independently. Moreover, two derived data types for spherical
harmonics and for the Wignerd(j)

mm′(β) functions have been introduced which became part of theRproduct list of
Racahexpr. In order to facilitate internally the recognition of the different substructures of a Racah expression,
these logical objects typically start with anidentifierto which a ‡ is attached.

ang Short-hand notation for describing appropriate coordinates on a unit sphere, i.e. either the (polar) anglesϑ

andϕ, or the solid angleΩ [≡ (ϑ,ϕ)], or a single (polar) angleβ . The internal list representation is

ang1 := [ang‡, theta,phi],
ang2 := [ang‡,Omega], or

ang3 := [ang‡,beta].

dmm Short-hand notation for the reduced matrix elementsd
(j)

mm′(β). The internal list representation is

dmm:= [djmm‡, j,m,m′,ang].
int Notation to specify the integration over a continuous variable as well as the domain of integration. The

integration variable must not appear to be constant or as a discrete index in any of the Wignern−j symbols in the
corresponding Racahexpr. Moreover, the domain of integration must not depend on other integration variables
nor summation indices.

int1 := [int‡,variable, lower_limit,upper_limit] or

int2 := [int‡,variable].



308 T. Inghoff et al. / Computer Physics Communications 139 (2001) 297–313

The second form may be used either if the boundaries of the integration follow uniquely from the structure of
the Racah expression or in order to denote a symbolic integration over the full range of this (angular) variable.

tdelta A short-hand notation to describe either a Kronecker deltaδj1,j2, a Dirac delta functionδ(ϕ − ϕ′), or
a triangular deltaδ(j1, j2, j3) which depend on two variables or two or three angular momenta, respectively. The
triangular delta reflects proper coupling conditions and isδ(j1, j2, j3)= 1, if j1, j2, andj3 fulfill the triangular
condition, and evaluates to zero otherwise. All of these delta factors are internally represented by a list where
a keyword as first operand characterizes the particular specification.

tdelta1 := [delta‡, j1, j2],
tdelta2 := [dirac‡, ϕ,ϕ′], or

tdelta3 := [triangle‡, j1, j2, j3].
Ylm Short-hand notation for a spherical harmonicYlm(ϑ,ϕ) or Ylm(Ω). The internal list representation is

Ylm := [ylm‡, l,m,ang].
See the data structureang above for the internal specification of the anglesϑ andϕ (orΩ , respectively).

Appendix B. New commands to the RACAH package

In this appendix, we describe all new and revised procedures of the RACAH program which are of interest for
the user and which support an efficient work. Again, we follow the style of theMaple Handbookby Redfern [12]
which provides not only a quick reference but also sufficient information about the individual commands. For the
most important commands, help pages are now available and are incorporated within the framework of MAPLE.

Racah_animate3d(Ylm, l, m)

Plots the real part of the spherical harmonicYlm(ϑ,ϕ) in polar coordinates and rotates it around thez-axis.

Output: A Maple PLOT3D data structure is returned.

Additional information: The procedure plotsYlm(ϑ,ϕ) in polar coordinates for all integer arguments|m| � l.
♣ Additional arguments from the Mapleplot() procedure (likenumpoints, style, . . . ) are also allowed.

See also: Racah_plot(), Racah_plot3d().

Racah_diff(wexpr, var)

Calculates the derivative of wexpr with respect to var.

Output: A Racahexpr or a Racahsum is returned if the differentiation was successful and an empty [NULL ] list
otherwise.

Argument options: (wexpr,var,n) to calculate thenth derivative with respect to the variable var.

Additional information: wexpr can be either of typeYlm, Racahexpr, or Racahsum. ♣ A differentiation with
respect to a discrete variable (quantum number) is not allowed; the procedure terminates with an appropriate
ERRORmessage in this case. Also, derivativesdn

x.n
δ(x − x0) of Dirac’s delta function are not supported by the

present version.♣ If, mathematically, the differentiation yields zero, a message is printed and aNULL expression
returned.
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Racah_evaluate(wexpr)

Attempts to simplify wexpr which can be either of typewnj, Ylm, Racahexpr, or Racahsum.

Output: A Racahexpr (or Racahsum) is returned if the simplification was successful and a [NULL ] list otherwise.

Argument options: (wexpr,loop) to apply only the subset of the fast (graphical) loop rules and the sum
rules which are known for the spherical harmonics.♣ (wexpr,full) to evaluate wexpr until no further
simplification can be achieved by the program.♣ (wexpr,...,Regge) to enforce the procedure to utilize the
extended set of symmetries of the Wignern− j symbols due to Regge.♣ (wexpr,...,specialvalues)
to look, in addition, forspecial valuesof the Wignern− j symbols or spherical harmonics within wexpr.

Additional information: A Racahexpr is considered to besimplified if the number of summation indices,
index range equations, Wignern − j symbols and/or the number of spherical harmonics is reduced in the
overall expression.♣ One or several of the keywords above may occur at the same time as suitable for the
user.♣ If wexpr is of typewnj or Ylm, it is first converted to aRacahexpr for which then the procedure
Racah_evaluateRacahexpr() is invoked.♣ If no simplification was possible, an empty [NULL ] list is returned.
However, if the keywordfull is applied or if wexpr is of typeRacahsum, the procedure always returns an
equivalent expression.♣ When wexpr is of typeRacahsum, the procedure evaluates each term individually. No
attempt is presently made to recognize equivalent or similar terms of the Racahsum which could be combined
into a single term.♣ In practice, the procedure attempts three main ‘routes’ of simplification:

(i) Use of the graphical loop rules for all (sums of) products of Wigner 3− j symbols.
(ii) Use of various (additional) sum and integration rules for the Wignern − j symbols and the spherical

harmonics which are found in the literature.
(iii) Check forspecial valuesfor the Wignern− j symbols if the keywordspecialvaluesis provided.

♣ While special valuesalways apply to individual Wignern− j symbols and spherical harmonics, the methods
in steps (i) and (ii) require to analyze the whole Racahexpr carefully, including the summation indices and
integration variables, the overall phase as well as dependencies of the remaining parts of a Racahexpr.♣ A list
of important special values can be found in Refs. [6,13].♣ The simplification of complex Racahexpr can be
both, very time- and memory-consuming.

See also: Racah_usesumrules().

Racah_expand(Ylm,wexpr)

Expands any spherical harmonicYlm(ϑ,ϕ), which is contained in wexpr, into a power series of the trigonometric
functions ofϑ .

Output: A Racahexpr is returned.

Argument options: (Ylm,l,m,theta,phi) to return the corresponding expansion for a single spherical har-
monic Ylm(ϑ,ϕ). ♣ (Ylm,l,m,theta,phi,Sin) to return an expansion in terms of powers of sinϑ .
♣ (Ylm,l,m,theta,phi,half_theta) to return an expansion in terms of powers of cosϑ

2 . A sim-
ilar expansions in terms of sinϑ2 is returned if the keywordSin is given additionally.♣ (ClebschGor-
dan,wexpr) to carry out a full Clebsch–Gordan expansion of all products of spherical harmonics which
are contained in wexpr.♣ (ClebschGordan,wexpr,nu) to perform a Clebsch–Gordan expansion of all
products of spherical harmonics with the same angular dependence(ϑ,ϕ) until each of these products only
containsnu spherical harmonics.♣ (multipole,f,theta,phi) to carry out the multipole expansion of
the scalar functionf (ϑ,ϕ). ♣ (multipole,f,theta,phi,lmax) to carry out the multipole expansion



310 T. Inghoff et al. / Computer Physics Communications 139 (2001) 297–313

of the scalar functionf (ϑ,ϕ) up to the (finite) orderlmax. ♣ (tensor,theta,phi,l1,l2,L,M) to re-
turn the expansion of the irreducible tensor product of two spherical harmonics{Yl1(ϑ,ϕ) ⊗ Yl2(ϑ,ϕ)}LM .
♣ (tensor,theta,phi,l1,l2,l12,l3, ...,L,M) to return the expansion of the irreducible tensor
product of three or more spherical harmonics{{Yl1(ϑ,ϕ)⊗ Yl2(ϑ,ϕ)}l12 ⊗ · · ·}LM .

Additional information: The default is an expansion in term of powers of cos(ϑ).

Racah_integrate(Racahexpr)

Carries out the analytical integration which only affects the individualfactor of the Racahexpr.

Output: A Racahexpr is returned if an analytic integration has been carried out successfully and an empty [NULL ]
list otherwise.

Argument options: (Racahsum) to attempt the angular integration for each term independently. ARacahsum
is returned.

Additional information: This procedure is equivalent to invoke the MAPLE procedureint() for the factor of the
Racahexpr; it is checked, however, that the integration variables and the boundaries do not occur elsewhere in
the overall expression.

Racah_plot(Y lm, l, m)

Plots a 2d projection of the spherical harmonicYlm(ϑ,ϕ).

Output: A Maple PLOT data structure is returned.

Additional information: The functionYlm(ϑ,0) is plotted in polar coordinates for all integer arguments|m| � l.
♣ Additional arguments from the Mapleplot() procedure (likenumpoints,style, . . .) are also allowed. High
values ofl, for instance, require to increase the number of plot points to aboutnumpoints=500. Maple’s
default fornumpoints is 49.

See also: Racah_animate3d(), Racah_plot3d().

Racah_plot3d(Y lm, l, m)

Plots the real part of the spherical harmonicYlm(ϑ,ϕ) in polar coordinates.

Output: A Maple PLOT3D data structure is returned.

Additional information: The real part of the functionYlm(ϑ,ϕ) is plotted in polar coordinates for all integer
arguments|m| � l. ♣ Additional arguments from the Mapleplot3d() procedure (likenumpoints, style,
. . . ) are also allowed. High values ofl, for instance, require to increase the number of plot points to about
numpoints=2000. Maple’s default fornumpoints is 625.

See also: Racah_animate3d(), Racah_plot().

Racah_plus(Racahexpr1, . . . , Racahexprn)

Concatenates the expressions Racahexpr1, . . . , Racahexprn together into a singleRacahsum.

Output: A Racahsum is returned.
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Argument options: (Racahsum1, ...) to include one or more Racah expressions of typeRacahsum into the
concatenation.

Additional information: From a mathematical viewpoint, the returned Racahsum represents the sum of all given
Racah expressions.

Racah_recursionforYlm(nrule,Ylm)

Applies a recursion relation to the spherical harmonic Ylm. The type of recursion is specified by theintegeror
keywordnrule.

Output: A Racahsum which contains two or more Racahexpr is returned.

Additional information: The parameter nrule, which specifies the type of recursion, can be either an integer
n = 1,2 or one of the allowed keywords {lstep, mstep}. This sequence corresponds ton = 1 andn = 2,
respectively.♣ The applied recursion relations are based on the monograph of Varshalovich and coworkers
(Ref. [6, Eqs. 5.7.1–2]).

Racah_set(keyword1(args1), . . . , keywordn(argsn))
Enters one or more Racah expressions or parts of it into the (internal Maple) representation of aRacahexpr.

Output: A Racahexpr is returned.

Argument options: (Racahexpr(wnj1, ...,wnjn,Ylm1, ...,Ylmm),...) to enter the Wignern−
j symbolswnji and the spherical harmonicsYlmi into a singleRacahexpr.
♣ (ClebschGordan(j1,m1,j2,m2,j3,m3),...) to enter the Clebsch–Gordan coefficient
〈j1m1, j2m2|j3m3〉.
♣ (recoupling(‘<(...((j1,j2)j12,j3)j123...)j|(...(j′

1,j
′
2)j

′
12...) j′ >‘),...) to en-

ter a recoupling coefficient.♣ (w3j(j1,j2,j3,m1,m2,m3), ...) to enter a Wigner 3− j symbol.
♣ (w6j(j1,j2,j3,j4,j5,j6), ...) to enter a Wigner 6− j symbol.
♣ (w9j(j1,j2,j3,j4,j5,j6,j7,j8,j9),...) to enter a Wigner 9− j symbol.
♣ (Ylm(l,m,theta,phi),...) or(Ylm(l,m,Omega),...) to enter a spherical harmonicYlm(ϑ,ϕ)
or Ylm(Ω). ♣ (Clm(l,m,theta,phi),...) or (Clm(l,m,Omega),...) to enter a modified spher-
ical harmonicClm(ϑ,ϕ) or Clm(Ω). ♣ The keywordsYlm*, Clm*, Ylmcc, Clmcc, conjugateYlm,
or conjugateClm may be used to enter the complex conjugate of aYlm or Clm function, respectively.
♣ (phase(p),...) to add a phase(−1)p. ♣ (delta(m,n),...), (dirac(x,X),...), or (tri-
angle(j1,j2,j3),...) to enter a Kronecker deltaδmn, a Dirac delta functionδ(x − X), or a triangular
delta factorδ(j1, j2, j3).
♣ (integration(variable,lower_limit,upper_limit),...) to enter a domain of integration;
the boundaries may also be omitted.♣ (summation(ndx1, ...,ndxm),...) to enter summation in-
dices (the names ndxi must not be equal to one of the allowed keywords).♣ (factor,f,...) to append a
factorf .

Additional information: A notation likewnj1, . . . ,wnjn indicates that there can be any number of these data
structures in the parameter list.♣ Above all the explained argument options may also be given as (keyword1,
args1, . . . , keywordn, argsn). ♣ To combine two or several Racah objects together, one may use the argument
sequence: (Racahobject1, . . . ,Racahobjectn). Allowed Racah objects are the data typesint, Racahexpr, tdelta,
wnj, or Ylm. ♣ For Clebsch–Gordan coefficients, we use the phase convention of Condon and Shortley for the
conversion into 3− j symbols, i.e.

〈j1m1, j2m2|j3m3〉 = (−1)j1−j2+m3

(
j1 j2 j3
m1 m2 m3

)
.
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♣ All ji andmi must be integer or half-integer constants or expressions and have to fulfill the conditions of
angular coupling.

Racah_usesumrules(Racahexpr)

Attempts to simplifyRacahexpr by using various sum rules which are known for products of Wignern− j
symbols (n= 6,9) in this expression.

Output: A Racahexpr is returned if the simplification was successful and a [NULL ] list otherwise.

Argument options: (Racahexpr,Regge) to apply also all symmetric forms due to Regge [14] to the Wigner
n− j symbols. This optional argument, however, can result in a very time- and memory-consuming evaluation
process.

Additional information: The command invokes a set of procedures which classify thesum rulesdue to groups
of products of Wignern − j symbols as indicated by the names of the corresponding subprocedures.♣ This
modular structure easily allows to add further rules for simplification.♣ The procedure considers all basic
symmetric forms of the Wignern − j symbols and ‘compares’ them with the internal representation of the
corresponding sum rule.♣ If a simplification due to one of the sum rules is found, this rule is applied and the
simplified Racahexpr is returned. The procedure does not automatically search for further simplifications by the
same rule, but this could be easily done by applying the same procedure again to the result of the previous step.
♣ Sum rules for Wigner 3− j symbols are applied by the procedureRacah_usesumrulesloop() while those for
the spherical harmonics are treated byRacah_usesumrulesYlm().

See also: Racah_evaluate(), Racah_usesumrulesloop(), Racah_usesumrulesYlm().

Racah_usesumrulesloop(Racahexpr)

Attempts to simplifyRacahexpr by utilizing a selected set ofloop rules which frequently occur for products
of two or more Wigner 3− j symbols.

Output: A Racahexpr is returned if the simplification was successful and a [NULL ] list otherwise.

Argument options: (Racahexpr,Regge) to apply also all symmetric forms due to Regge [14] for the Wigner
3 − j symbols. This optional argument, however, can result in very time- and memory-consuming evaluation
process.

Additional information: The command invokes a set of individual procedures which classify theloop rulesby
the number of Wigner 3− j symbols (the so-calledn-loops withn= 1, . . . ,6) as indicated by the names of the
corresponding subprocedures.♣ This modular structure easily allows to add further rules for simplification.
♣ The procedure considers all basic symmetric forms of the Wigner 3− j symbols and ‘compares’ them
with the internal representation of the corresponding sum rule.♣ If a simplification due to one of these rule
is found, this rule is applied and the simplified Racahexpr is returned. Before the procedure looks for further
loop rules, the expression is simplified by calling the procedureRacah_simplifydeltas(). ♣ The procedure
calls the subproceduresRacah_searchforloopofnw3j() to check whether a loop rules might be applicable and
Racah_usesumrulesfornw3jloop() to simplify the Racah expression. At present, loop rules ofn = 1, 2, 3, 4, 5,
or 6 Wigner 3− j symbols can be recognized and simplified properly.♣ Due to the rapidly growing complexity,
the present version does not look for Regge symmetries forn-loops withn� 5.

See also: Racah_evaluate(), Racah_usesumrules(), Racah_evaluate().
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Racah_usesumrulesYlm(Racahexpr)

Attempts to simplifyRacahexpr by using a selected set of frequently occurring sum and integration rules for
products of two or more spherical harmonics.

Output: A Racahexpr is returned if the simplification was successful and a [NULL ] list otherwise.

Additional information: The command invokes a set of procedures which classify thesum rulesdue to the
number of spherical harmonics in the products as indicated by the names of the corresponding subprocedures.
♣ This modular structure easily allows to add further rules for simplification.♣ The procedure considers all
basic symmetric forms of the spherical harmonics and ‘compares’ them with the internal representation of the
corresponding sum rule.♣ If a simplification due to one of the sum rules is found, this rule is applied and the
simplified Racahexpr is returned. Before the procedure looks for further sum rules, the expression is simplified
by calling the procedureRacah_simplifydeltas().

See also: Racah_evaluate(), Racah_usesumrules(), Racah_evaluate().
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