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Abstract

Spherical harmonics play a crucial role in theoretical physics since they represent a complete and orthonormal set of functions
on the unit sphere. The spherical harmonics are therefore applied in many different fields of physics including classical field
theory as well as the treatment of quantum many-particle systems. Along with their well-known properties, they are frequently
utilized to evaluate one- and many-particle matrix elements from atomic and nuclear structure theory analytically.

In this paper, we present an extension of tiecRH program to incorporate the behaviour and the properties of the spherical
harmonics. Our new version also supports various useful expansions for these functions, recursion relations as well as the
algebraic evaluation of integrals.2001 Elsevier Science B.V. All rights reserved.
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No. of lines in distributed program, etcca. 22 000 the resources and computer time which is needed for their evalua-
o _ ) tion. Even though a large number of sum rules for the Wigner;
No. of bytes in distributed program, including test data, etc.. symbols is now incorporated in the program (including ¢neph-

541996 ical loop rules for the 3— j symbols), only a selected set of those
o o sum rules, which involve the 9 j symbols, are implemented so
Distribution format: tar gzip file far. Also, we do not support higher— j symbols(n = 12, 15, ...)

) since they are defined in rather different ways in the literature.
Nature of the physical problem

Spherical harmonics are applied in many fields of physics. In clas-
sical electrodynamics, for instance, the spherical harmonics may be
utilized to expand the electro-magnetic field of a charge distribu-

tion in terms of its multipoles. The spherical harmonics also provide | . .
an importantasisin quantum mechanics for classifying one- and ' bé_lsed on data structures Whlc_h are suitable for almqst any com-
many-particle states since they are simultaneous eigenfunctions of plexity of Racah algebra expressions. The present version also sup-

one component and of the square of the orbital angular momentum PO'tS Clebsch-Gordan expansiorisr two or more spherical har-
operator—ir x V. In many-particle physics, the properties of these monics (which depend on the same angular coordinates) into a sum

functions (completeness, orthogonality,) are frequently applied of products qf a single spherical harmonic and the corresponding
to evaluate the spin-angular part of the corresponding matrix ele- number of ngher 3- j symbols. To accelerate the e"a'Pa“O“ of
ments analytically. Racah expression, the code for most sum rules of the Wigrey

symbols(n = 3,6,9), as implemented in the program, have also

Method of solution been improved.

In a previous version of the &LAH program [2], we defined data

structures and a hierarchy of ALE procedures to evaluate and Typical running time

simplify expressions from Racah’s algebra. Our revised program All the examples below take only a few seconds on a Pentium IlI
now also supports the occurrence of spherical harmonics as well as 450 MHz computer.

integrals over the spherical harmonics in such expressions. The eval-

uation follows similar lines as before by utilizing, in addition, the  References

properties, sum rules, and recursion relations for the spherical har- [1] Maple is a registered trademark of Waterloo Maple Inc.
monics. Several sum rules for these functions lead to (new) Wigner [2] S. Fritzsche, Comp. Phys. Commun. 103 (1997) 51;

Unusual features of the program
All commands of the RCAH package are available for interactive
work. As explained in Ref. [2] and Appendix A below, the program

n — j symbols which may be simplified owing to the previous capa- S. Fritzsche, S. Varga, D. Geschke, B. Fricke, Comp. Phys.
bilities of the program. Commun. 111 (1998) 167.

o ) [3] D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quan-
Restrictions onto the complexity of the problem tum Theory of Angular Momentum, World Scientific, Singa-
The definition of the spherical harmonics and the sum rules, which pore, 1988.

have been implemented in the program, mainly refer to the mono-
graph by Varshalovich et al. [3]. There are literally no other lim-
itations on the complexity of individual expressions than those of

LONG WRITE-UP

1. Introduction

Spherical harmonics are applied in many research areas, both in classical and guantum physics. In classical field
theory, for instance, these functions are often used to approximate the potential of a given charge distribution by
its (lowest) multipole moments [1,2]. The spherical harmonics also frequently occur in the quantum mechanics of
one- and many-particle systems. For an electron moving in a central potential, the haripaics) = (9 ¢|lm)
are known to form simultaneous eigenfunctions of the square of the orbital angular momentum operator and of one
of its components [3]. In practical applications of the theory, this gives rise immediately tadtad—spherical
representation

wnlmmzs (r, %, @) = Ry (r) Yy (9, §0)Xm,Y (1)

of the total (one-electron) functions. A similar structure as in (1) even appears in relativistic quantum mechanics
where one starts from Dirac’s equation to describe the motion of spin-1/2 particles. But although several (spinor-)
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components need to be distinguished in this case, all of them still separate into products of radial and spherical
functions including the7,,’s.

The radial-spherical representation (1) of the one-particle wave functions also plays a major role in describing
(interacting)N -particle systems since it enables one to carry out the integration oveMlam@ular coordinates
of the systems analytically. Such techniques of analytical integration have been established for a long time in
the theory of angular momentum (or sometimes called the Racah algebra), but they often result in very complex
expressions which are difficult to deal with manually. Therefore, in order to facilitate an (automatically supported)
manipulation and transformation of such expressions, we developedtreprogram [4,5] during the last years
which has been found helpful in a number of applications. — In a previous version, this program could be applied
already for sum rule evaluations as well as for various numerical computations of standard expressions of Racah’s
algebra.

Our present work extends theaBAH program to incorporate also the knowledge of the analytic behaviour and
properties of the spherical harmonics. To this end, we enlarged our (previous) definitidRaahh expression
(cf. Fig. 1 in Ref. [4]) for taking into account the spherical harmoricaddition tothe Wignern — j symbols.

Such expressions, in fact, may now include integrals over products of any number of spherical harmonics (and with
different arguments) which will be evaluated and simplified similar to our previous rules. Details on this evaluation
process of typical Racah expressions (including¥hgs) will be described below in Sections 3 and 4.

In the following section, we briefly summarize the properties of the spherical harmonics. The main extensions
of the program and how the properties and sum rules of these functions are implemented in the program is then
described in Section 3. In the next section, several examples show how the program can be utilized to evaluate
integrals and to carry out simple expansions of the spherical harmonics. Two slightly more advanced examples
later point towards the application of theaBaH program to atomic and nuclear theory. Finally, Section 5 gives
a brief outlook on future developments of the@&xH program. In addition, two appendices below list a rather
concise description of the new and extended data structures as well as of all commands at user’s level which have
been modified or added to theaRAH package.

2. Propertiesof the spherical harmonics

The most utilized power of the spherical harmonics is to foroompleteand orthogonal set of functions on
the unit sphere. These two properties are used, for instance, for carrying out multipole expansions for classical
fields and of quantum-mechanical operators, both in two and three dimensions. Together with the known Clebsch—
Gordan expansion for products of spherical harmonics, these properties also facilitate an analytic integration on a
sphere. In order to provide the reader with some guidance for the examples below, here we briefly summarize a
few important properties of these functions.

For a particle in a central field, the spherical harmoniggs (¥, ¢) are known as the eigenfunctions of
the square and of one component of the orbital angular momentum operatot V.. These functions,
therefore, simultaneously obey the two eigenvalue equatfqns,n(ﬂ, ©) = mY;,, (9, ¢) and ﬁzYl,n(ﬁ, @) =
I(L + 1)Y1,, (9, @), or explicitly®

9 .
@Ylm (195 (p) = |mYlm(l97 ¢)a (2)
1 9/ . 9 1 92
Awp)Yim(D, @)= | =—7=(siIN0 — | + —— = |Yin (¥, ¢) = =1 + D) Y1, (¥, @), 3
e siny 99 %) sinfy dg?

whered andg are the polar coordinates (for the solid angigandA (» ) denotes the angular part of the Laplacian
A=r=23/3r(r?3/3r) +r2A.gp).

1 Throughout this article we use atomic units, wheee me=h = 1.



300 T. Inghoff et al. / Computer Physics Communications 139 (2001) 297-313

For a given/ > 0, there exis(2/ + 1) functions according to different’s in the range—! < m <. Both the
spherical harmonics as well as all of their derivatives are single-valued, continuous, and finite functions on the unit
sphere.

The normalized (standard) solutions of Egs. (2) and (3) are

20 +1( —m)!

e LR CLL LS @)

Yim (19’ §0) =

where the function®," (x) are the associated Legendre polynomials

dl+m x2 —1 l am
m/2dx1+m ( S ) _ (_1),n(1_x2)m/2dx_m P(x) (5)
and P;(x) denotes a Legendre polynomial of ordein the definition (4), moreover, the phase has been chosen to

fulfill the symmetryY;s (9, ) = (=1)™Y; (9, ¢). Thisphase conventiois in line with many texts on quantum
mechanics and, in particular, with the monograph of Varshalovich et al. [6] to who we refer for further details.
Unfortunately, however, there are a number of different conventions used in the literature, both for the spherical
harmonics and associated Legendre polynomials as discussed in Ref. [7]. Therefore, the user must take care about
proper phases if parts of the derivation were obtainddpendenof the RacAH program.

le(x) — (_1)In(1_x2)

Symmetry properties.Various symmetry relations of the spherical harmonics concern a sign reversal of the
magnetic quantum number and of the angular arguments as well as the periodicity amdg. From the explicit
form (4), one may find the symmetries
Yim (3, 9) = (=1)"&"Y) (D, ¢) = (=1)" Yipu (=9, )
= &Y (=0, 9) = (=1)" V) _n (9, —¢)
= eZIm(lem(ﬂ’ —90) = Yl,—m (_ﬁa _§0)
= (=1)" "Y1 (=9, —). (6)
For each of these symmetries, there is another relation due to the complex conjugate of a spherical harmonic:
Yim (%, @) = Yf;,, (%, —9).

Orthogonality and completenessThese two properties of the spherical harmonics follow immediately from being
the eigenvectors of the Hermitian angular momentum operaftoesid L. ; they are given by

27 b4

/ d(D/dﬁ Sinl?Y;n(l?, (p)Yl/m/(ﬁ, (p) = 511’6mm/7 (7)
0 0

D Y @)Y (', ¢') = 8(cos? — cos?)s(p — ¢). 8)

I,m

The second relation displays the completeness irithe)-space.

Addition theorem.

I
20+1
Y Y (R20)Yin($22) = Pi(coshr2), ©9)

TT

m=—1

wheref21 = (%1, 1) and 22 = (92, ¢2) define two different directions artido = /(£21, £22) is the angle between
them.
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Clebsch—Gordan expansion.

20+ 12>+ 1
Yllml(ﬁ, ¢)lemz(ﬁ, (P) = \/( Lt 4).:[ 2t )Z(—l)M\/ 2L +1

LM

i I L i I L
(0 0 O)( o _M>YLM(19,¢)~ (10)

This expansion provides a means to simplify products of two and more spherical harmonics with the same angles.
It relates the spherical harmonics to the Wigner j symbols. In the literature, this relationship is frequently
expressed also in terms of so-called Gaunt coefficididas|lomo|lim1), i.e. of integrals of the product of three
spherical harmonics over the unit sphere in 3-dimensional space [8,9].

There are also known a number of other expansions of the spherical harmonics in terms of special functions
(Wigner D-functions, Jacobi and Gegenbauer polynomials) as well as of the hypergeometric and trigonometric
functions which have been found useful for several applications.

Multipole expansions. The completeness of the spherical harmonics can be used to represent any arbitrary
function f (9, ¢) in the L2 Hilbert space of the unit sphere in 3-dimensional space into a series

oo+

F@0) =YY" fin¥im (@, 9), (11)

=0 m=-1I
where the coefficients

2 ke

Fim = qusfd@ SO}, (O, D) £(O, &)

are often called theultipolesof this function. Such a representation is useful, in particulgf(if, ¢) is a ‘nearly’
spherical symmetric function so that it can be replaced approximately by a finite sum over its lowest multipoles:
L
Similarly to the 2-dimensional expansion (11), one may definespifeerical multipole moments,, for any
function F (r, 9, ¢) in three dimensions

I /d?’r/ rYE @, oFG 9, 9. (12)

These spherical moments are used, for instance, in electrostatics to describe the poteriatsideof a localized
charge distribution (r). If the potential is taken to satisfy appropriate boundary conditionsY{i(e — oco) — 0],
it can be written as
oo+l
LOEDY Z T 1 o Vim0, 9),
=0 m=-1
where one just need to replag&r) — p(r) in the spherical moments (12).
In quantum mechanics, the same expansion is used also to define the multipole om@;{@tﬁrfé( Yiq (9, ) for
describing, for instance, the interactions of atoms and molecules with the radiation field.
To complete this section of the properties of the spherical harmonics, we finally give the expansion of the
Coulomb repulsion as it occurs in atomic and molecular structure for each pair of electrons. By using the addition
theorem from above, the Coulomb operator becomes

oo+l i oo+l l

")
=y Z 1 +1 = Vi (01 00 Vi W92, 92 = Y Y —=2Chy (919D Cim(P2.92)  (13)

|r2—r1| =0 m——1 I=0m—1">
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with r— (r.) is the smaller (larger) radius ef andr,, respectively. The second lirkefinesthe ‘modified’ or
‘renormalized’ spherical harmonicg,, (9, ¢) = /4r /(2 + 1) Y, (9, ¢) which are also supported by thex@aH
program.

3. Implementation and extensionsto the RACAH program

Different lanes were pursued in the past to simplify and evaluate expressions from the theory of angular
momentum. With the RcaH program [4,5], we focused on the development of symbolic techniques. By using
well defined data structures within the framework oARLE V and a hierarchical order for the large set of required
procedures, we were able to treat all parts of typical expressions from Racah’s algebra as logical objects throughout.
The various commands of theaRAH program can be used either for interactive work or as the basic elements in
order to built up procedures at some higher level of the hierarchy.

In order to deal with spherical harmonics in Racah expressions and for accelerating their evaluation process, a
number of new procedures has been added to the program during the last two years. From the set of procedures,
which were already available in the previous version, in particular the two comnRRaaksh_set () and
Racah_eval uat e() have been improved considerably. The procedvaeah_set (), for instance, now
supports to enter a whole Racah expression within a single line and, thus, facilitates the handling of complex
expressions. Moreover, to achieve a faster simplification of recoupling coefficients, the user may now also select
different ‘routes’ for the evaluation like a set of ‘graphichdbp rules as will be described in an accompanying
manuscript. The implementation of such graphical rules, however, has accelerated the time for evaluation by more
than two orders of magnitude in certain cases.

Apart from modifications on (a few previously) available procedures, several new commands deal with the
representation and the properties of the spherical harmonics. Typical Racah expressions, which were first defined
for the Wignern — j symbols only, may now also contain (any product of) the spherical harmonics as well as
integrals over these functions, defined on the unit sphere. For this purpose, we specified several new data structures
like YI mori nt in order to handle single spherical harmonics or the domain of integration for a given angle. In the
present implementation, the spherical harmonics are now treated equivalently to the Wigner symbols and, thus, the
internalYl mlists became part of thepr oduct list of a given Racah expression. For details on the definition of all
data structures, we refer to Ref. [4] and Appendix A below (new data types). To facilitate the further development
of the RacaH program, we already specified the data t@bermfor representing the reduced matrix elements of
the rotation operator. These functions are not yet supported by most of the procedures but will be treated similar to
the other two data types, i.enj andYl m

Of course, the spherical harmonics and their integrals on a unit sphere require also to define (continuous) angles;
see the list structur@ng in Appendix A. In order to specify the integration over a particular domain of such angles,
in addition, we specified the structur@t which occurs — equivalently to any (discrete) summation variable —
in theRsunmat i onset of a given Racah expression. Teetstructure of this particular type hereby reflects the
overallassumptiorof the program that all sums and integrals can be interchanged with each other.

The implementation of the spherical harmonics also affects the hierarchy in evaluating the various parts of a
Racah expression. Racah_eval uat e() , the simplification now always starts with an analysis of the sum and
integration rules for the spherical harmonics. As shown in Section 2, this may result in Kronecker od&igac
factors as well as in a number of (new)-3j symbols [cf. Eg. (10)]. These additional factors are then simplified in
a later step, similar to our previous work. If, moreover, the keywoog is selected foRacah_eval uat e(),
only a special set ofoop rulesfor the Wigner 3— j symbols will be tested explicitly. The implementation
of these rules and their application to complex recoupling coefficients will be discussed in an accompanying
paper [10].

A further extension of the Racah program improves the support of sums of (different) Racah expressions. Such
Racah sums naturally occur for the derivatives of Racah expressions with respect to angular (and other continuous)
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variables and for the use of recursion relations for the Wigner j symbols and spherical harmonics. To
combine two Racah expressions into a sirfgéeahsum i.e. toaddthem in a mathematical sense, the command
Racah_plus() can be invoked. The procedure Racah_add(), in contrast, alkwgaimsome parts to a previously
defined Racah object. For instance, the multiplication Baaahsumwith some factor is simply achieved by
invoking Racah_addictor,c,Racahsum).

As previously, the source code of the®aH program will be distributed in ASCII format; it is mainly based on
Release 5 of the MPLE framework. Although emphasize was paid to preserve the compatibility of the program
also to earlier releases of ApLE, this downward compatibility cannot always be ensured completely. By providing
the source code, however, the user may adjust the program to his own needs.

The full package is provided by a compressed tarrfideah2000. t gz of ther acah root directory. This
directory includes the source, the fikacah- conmand. ps as well as sever&lelppages in the subdirectoly b.

The fileRacah- conmand. ps contains a quick reference of all user-relevant commands of AmaR program
similar to Appendix B below. The full source (including the help pages) can be read from the root directory by

> read racahl oad;

at the beginning of each MrPLE session. The program currently contains more than 160 procedures from which,
however, only about 10 have to be known at user’s level.

Although the RRcAH program allows a fast and reliable handling of the theory of angular momentum, we shall
conclude this section with a brief warning. In standard applications, namely, it often appears difficult to recognize
(mathematically) erroneous expressions which, in course of the evaluation, may lead to senseless or even wrong
results. Therefore, the user must take care that all angular momentum quantum numbers represent integer or half-
integer values and that they fulfill proper coupling conditions. For example, the coupling of two half-integer values
always results in an integer angular momentum and according rules have to be valid for the coupling of other
angular momenta.

4. Examples

To illustrate the present extension and to provide a few test cases, we show several examples below which do
not require to type in much information. These examples concern the analytic integration for a product of spherical
harmonics on a unit sphere and their expansion in powers of the sin or cos functions. Two other examples later
display how the properties of the spherical harmonics can be utilized to evaluate matrix elements from atomic
structure and collision theory.

The symmetries (6) and the orthogonality (7) of the spherical harmonics abestienown properties for this
set of functions. They are often utilized for the analytic integration over products of such functions. To evaluate an
integral like

2 T
/dgo/dz? SiNO Vi (=0, ) Y1 — 11 (9, —¢) (14)
0 0

we simply enter

> exprl := Racah_set(int,phi,0,2*Pi,int,theta,
0, Pi,factor,sin(theta),
YIm(l,m-theta, phi), YIm(L,-Mtheta, -phi)):
> Racah_print (exprl):
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e ——
2 Pi Pi
/ /
| o
| dphi | dt het a
| I
/ /
0 0
sin(theta)

Y {l,m (-theta, phi)
Y {L,-M (theta,-phi)

> Racah_eval uat e(exprl):
> Racah_print(%:

>
M

(-1)
delta(l,L) delta(M-m

Note that in the expression above we can also omit the boundaries (on the sphere) for the integration over the
standard intervals & ¢ < 27 and 0< 6 < 7. Generally, if the boundaries are omitted or if a solid anglés
specified, the integration over these standard intervals is always assumed indhe Brogram. However, to
avoid any ambiguity of the expressions, we recommend to specify the boundaries explicitly if the integrals over the
(polar) angle®r and¢ are described separately.

Several applications of the spherical harmonics benefit from the explicit representation of these functions in
powers of the sin or cos function. A variety of such expansions are supported by the procedure Racah_expand() as
in the following example fol> _1 (¥, ¢)

> Racah_expand(Ylm2,-1,theta, phi);

1/2
30 cos(theta) sin(theta) exp(-I phi)

An equivalent expression in terms of powers of(8if2) is obtained by

> Racah_expand(YI m 2, -1, t het a, phi, hal f _theta, Sin);

1/2 2 4
30 sin(1/2 theta) (1 - 3 sin(1l/2 theta) + 2 sin(1/2 theta) ) exp(-1 phi)

Pi cos(1/2 theta)

The use of other allowedleywordsfor selecting a proper expansion, for instance for products of spherical
harmonics, is described in Appendix B.

In applying many-body perturbation theory to atomic and molecular systems, large effort has often to be devoted
to the evaluation of the matrix elements of symmetric one- and two-particle operators usimagdititespherical
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representation (1) of the one-electron orbital functions. In the following examples, we use the nonrelativistic
notation

(s)

1
la) = |nglamam;>’)y = ;Pnala(”)Ylama(ﬁ, @)mef)

to specifyspin-orbitalswith well defined spin and orbital angular momentum quantum numbers.
Let us first consider the matrix elements of the multipole operefigr= r* i, (9, ¢) which are given explicitly
by

(alMyy|b) = B f dr Py,1, (F)r* Py, () / dy / d9 Sind Y, (0, 9)Yig (9, ) Yiym, (0, ).

We can apply the RcaH program to evaluate the angular part of this matrix element, similar to the example above,
and obtain

> expr2 := Racah_set (i nt, Orega, Yl ncc(l a, ma, Orega), Yl m k, q, Onega) ,
Yl (1 b, nb, Onega) ) ;

> Racah_eval uat e(expr2):

> Racah_print(%:

--->
ma

(-1

1/2 1/2 1/2
(2 1a + 1) (2 k + 1) (2 1b + 1)

w3j (1a, k,Ib,0,0,0)

w3j (la, k,1b,-m,q, m)

or, equivalently

o (Ve k WNY2 (10 &k B\ L k1
() (56 %) () )

In this example, we have used the solid an@lavith its (preassumed) integration domain over the full unit sphere;
moreover, the short fornyl ncc corresponds to a complex conjugated spherical harmonic. In expression (15),
the notation[a, b, c,...] = (2a + 1)(2b + 1)(2c + 1)... is used as often found in the literature about angular
momentum theory.

The complexity of the expressions rapidly increases if two-particle operators or products of operators occur in
the derivation. For instance, the matrix elements of the instantaneous Coulomb repulsion, Eq. (13), between each
pair of electrons is
<ab Cd> = (sz(f)m?)amzs)m,(;) Z Rk(ab, cd)

k

ri2

xy / f 421422V, (QUY] (22 Chg (RDCL, (20 Viom, (20 Vigmy (22),  (16)
q
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where, again, the radial integral

k
R¥(ab,cd) = [ | dridra P P < p P
(ab,cd) = r1dr2 P, (1) Py, (r2) nele (1) Py, (r2)
st
>

and the spin contributions can be evaluated separately. Following similar lines for the angular (double) integral of
expression (16) as before, we find

-- o>

SUM q}

(q + mb + ma)
(-1

1/2 1/2 1/2 1/2
(2 1b + 1) (21d + 1) (21a+1) (21c + 1)

w3j (k, b, 1d,0,0,0)
w3j (k, b, 1d,-q,-nb, nd)
w3j (k,1a,lc,0,0,0)

w3j (k,la,lc,q,-nm,nt)

or, for the overall angular matrix element

P 12(k Lo L\ (k I la k Iy Iy ko1, I
> D la I e, 1d] (0 0o 0)lo o o)lg —m mi)ly —my m) @D

kq

which can be directly compared with various textbooks on atomic theory [11].

The last two examples can be extended easily also to other operators of nuclear and atomic structure theory.
Beside of these two important fields of applications, however, our present extension ofdhe Rrogram may
go well beyond these research areas.

5. Summary and outlook

Since its first publication in 1997, theARAH package [4] has grown extensively over the last few years.
Recent developments to this program concerned the analytic evaluation of Racah expressions by exploiting the
sum rules and orthogonality properties of the Wigmer j symbols [5], the implementation of standard quantities
for simplifying many-electron matrix elements as well as an implementation of graphical rules [10]. All these
developments enlarged the range of applications for theaAR program and, thus, made it attractive to a broader
community. With the present work on spherical harmonics, we now provide a powerful version which may have
applications far beyond atomic theory (our own field of interest which motivated these developments originally).

Till now, however, most of the implemented quantities like the Wigner;j3symbols or the spherical harmonics
are definedwith respect to a given quantization axis. Although this axis can be chosen appropriately for some
given task, it must bapecifiedfor all the subsystems together. But there are many other applications in which
different directions need to lifistinguishedrom each other. In such cases, one often wishes to rotate the physical
states and/or the reference frame before the expressions can be further evaluated. In order to carry out such
transformations, the matrix elements of the rotation operator, i.e. the so-called Viligha@ictions are frequently
required. These functions can be considered as a generalization of the spherical harmonics and, in fact, may be



T. Inghoff et al. / Computer Physics Communications 139 (2001) 297-313 307

used as a representation of the rotation group. They depend on three angles (for instance, the Euleriangles

as necessary to characterize an arbitrary rotation in space. In the further developmentaf sAlredRogram, we

intent to incorporate these functions and to make use of their analytically known properties as well as of their close
relation to the Wignen — j symbols and the spherical harmonics.

Another useful concept of theoretical physics, which is built on the spherical harmonics, is the construction of
tensor spherical harmoniclé},@(sz), of various ranks. These tensor functions have a wide range of applications,
particularly in relativistic theory, in order to describe electrofs=(1/2; spin spherical harmonics), photons
(S = 1; vector spherical harmonics), or other fermions and bosons (with higheSspitle currently investigate
how and to which extent these functions can be incorporated into AlmaiR program, of course, including the
knowledge about their properties. Similarly, one may also think towards a more efficient use of hyperspherical
harmonics [15,16], well beyond their present applications for two- and three-particle systems.
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Appendix A. New and extended data structures

The definition of proper data structures may facilitate an efficient symbolic manipulation of complex
(mathematical) objects. Similar as in Ref. [4], here we provide a short description of the new and extended
structures as they are utilized for the internal representation of Racah expressions. In order to specify the integration
over a (continuousfilomain of an angle, we now provide the particular list structinet as an additional
component oRsumrat i onset . For this definition, we assume that all summations and integrations commute
with each other and, therefore, can be carried out independently. Moreover, two derived data types for spherical
harmonics and for the Wignelf,-l’;, (B) functions have been introduced which became part oRghreoduct list of
Racahexpr . In order to facilitate internally the recognition of the different substructures of a Racah expression,
these logical objects typically start with afentifierto which a 1 is attached.

ang Short-hand notation for describing appropriate coordinates on a unit sphere, i.e. either the (polar} angles
ande, or the solid angle2 [= (9, ¢)], or a single (polar) anglg. The internal list representation is
ang := [angt, theta phi],
ang := [angf, Omegd, or
angs := [angt, betd.

dmm Short-hand notation for the reduced matrix eIedef;lt#, (B). The internal list representation is
dmm:= [djmnt, j, m, m’, angd.
int Notation to specify the integration over a continuous variable as well as the domain of integration. The
integration variable must not appear to be constant or as a discrete index in any of theAMigngmmbols in the

corresponding Racahexpr. Moreover, the domain of integration must not depend on other integration variables
nor summation indices.

int := [intF, variable lower_limit, upper_limi§ or
inty := [intt, variablg.
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The second form may be used either if the boundaries of the integration follow uniquely from the structure of
the Racah expression or in order to denote a symbolic integration over the full range of this (angular) variable.

tdelta A short-hand notation to describe either a Kronecker dglta,, a Dirac delta functior(¢ — ¢’), or
a triangular delta(j1, j»2, j3) which depend on two variables or two or three angular momenta, respectively. The
triangular delta reflects proper coupling conditions ant{js, j», j3) = 1, if j1, j2, andj3 fulfill the triangular
condition and evaluates to zero otherwise. All of these delta factors are internally represented by a list where
a keyword as first operand characterizes the particular specification.

tdelta, := [deltat, j1, j2],
tdeltg := [diract, ¢, ¢’], or
tdelta := [trianglet, j1, jo, jal.
YIm Short-hand notation for a spherical harmoHig (¢, ¢) or Y;,,(£2). The internal list representation is

Yim := [ylmi, [, m, angd.

See the data structusang above for the internal specification of the angbeandg (or £2, respectively).

Appendix B. New commandsto the RAcAH package

In this appendix, we describe all new and revised procedures of Aka R program which are of interest for
the user and which support an efficient work. Again, we follow the style oMaple Handboolby Redfern [12]
which provides not only a quick reference but also sufficient information about the individual commands. For the
most important commands, help pages are now available and are incorporated within the framewark Bf M
Racah_animate3d(YIm, I, m)

Plots the real part of the spherical harmoHig (9, ) in polar coordinates and rotates it around tkeexis.
Output: A Maple pLOT3D data structure is returned.

Additional information: The procedure plot§;,, (¢, ¢) in polar coordinates for all integer argumemnis < /.
& Additional arguments from the Mapf#ot() procedure (likenunpoi nt s,styl e, ...) are also allowed.

See also: Racah_plot(), Racah_plot3d().
Racah_diff(wexpr,var)
Calculates the derivative of wexpr with respect to var.

Output: A Racahexpr or a Racahsum is returned if the differentiation was successful and an empty/I[st
otherwise.

Argument options. (wexpr, var, n) to calculate theith derivative with respect to the variable var.

Additional information: wexpr can be either of typglm, Racahexpr, or Racahsum. & A differentiation with
respect to a discrete variable (quantum number) is not allowed; the procedure terminates with an appropriate
ERRORMessage in this case. Also, derivati\%&s (x — xp) of Dirac’s delta function are not supported by the
present versior If, mathematically, the differentiation yields zero, a message is printed aodiaexpression
returned.



T. Inghoff et al. / Computer Physics Communications 139 (2001) 297-313 309

Racah_evaluate(wexpr)

Attempts to simplify wexpr which can be either of typej, YIm, Racahexpr, or Racahsum.

Output: A Racahexpr (or Racahsum) is returned if the simplification was successful ad &][list otherwise.

Argument options. (wexpr, / oop) to apply only the subset of the fast (graphical) loop rules and the sum
rules which are known for the spherical harmoni&s( wexpr, ful I) to evaluate wexpr until no further
simplification can be achieved by the progra(.wexpr , . . ., Regge) to enforce the procedure to utilize the
extended set of symmetries of the Wigner j symbols due to Regg& (wexpr, . .., speci al val ues)
to look, in addition, forspecial valuesf the Wignem — j symbols or spherical harmonics within wexpr.

Additional information: A Racahexpr is considered to tsmplified if the number of summation indices,
index range equations, Wignar— j symbols and/or the number of spherical harmonics is reduced in the
overall expressiond One or several of the keywords above may occur at the same time as suitable for the
user.& If wexpr is of typewnj or YIim, it is first converted to @&acahexpr for which then the procedure
Racah_evaluateRacahexpr() is invoked.& If no simplification was possible, an emptyyLL] list is returned.
However, if the keywordull is applied or if wexpr is of typeRacahsum, the procedure always returns an
equivalent expressios When wexpr is of typ&acahsum, the procedure evaluates each term individually. No
attempt is presently made to recognize equivalent or similar terms of the Racahsum which could be combined
into a single termé In practice, the procedure attempts three main ‘routes’ of simplification:

(i) Use of the graphical loop rules for all (sums of) products of Wigner 8symbols.
(i) Use of various (additional) sum and integration rules for the Wigner j symbols and the spherical
harmonics which are found in the literature.
(iif) Check forspecial valuegor the Wignem — j symbols if the keywordpecialvaluess provided.

& While special valuesilways apply to individual Wigner — j symbols and spherical harmonics, the methods

in steps (i) and (ii) require to analyze the whole Racahexpr carefully, including the summation indices and
integration variables, the overall phase as well as dependencies of the remaining parts of a Ragsahézpr.

of important special values can be found in Refs. [6,8]The simplification of complex Racahexpr can be
both, very time- and memory-consuming.

See also: Racah_usesumrules().

Racah_expand(YIm,wexpr)

Expands any spherical harmonig, (9, ¢), which is contained in wexpr, into a power series of the trigonometric
functions of?.

Output: A Racahexpr is returned.

Argument options. ( Y m 1, mtheta, phi) toreturnthe corresponding expansion for a single spherical har-
monic Yy, (9, ¢). & (YIm|, mtheta, phi, Sin) to return an expansion in terms of powers of &in
& (YIml,mtheta, phi, hal f_t het a) to return an expansion in terms of powers of %osA sim-
ilar expansions in terms of 3%1 is returned if the keywordbin is given additionally.& ( & ebschCor -
dan, wexpr) to carry out a full Clebsch—-Gordan expansion of all products of spherical harmonics which
are contained in wexp# ( & ebschGor dan, wexpr , n,) to perform a Clebsch—Gordan expansion of all
products of spherical harmonics with the same angular dependéngg until each of these products only
containsn, spherical harmonicse ( nul ti pol e, f, t het a, phi) to carry out the multipole expansion of
the scalar functionf (¢, ¢). & (nul ti pol e, f, t het a, phi, | may to carry out the multipole expansion
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of the scalar functiory (9, ¢) up to the (finite) ordet max. & (t ensor, theta, phi, 11,12, L, M to re-
turn the expansion of the irreducible tensor product of two spherical harmprip®, ¢) ® Y, (9, @)} Lm.

& (tensor,theta,phi,lq, 1211213 ...,L, M toreturn the expansion of the irreducible tensor
product of three or more spherical harmonifs;, (¥, ¢) Y1, (¥, )}, @ - -} L.

Additional information: The default is an expansion in term of powers of(@9s

Racah_integrate(Racahexpr)

Carries out the analytical integration which only affects the individambr of the Racahexpr.

Output: A Racahexpr is returned if an analytic integration has been carried out successfully and an empty [
list otherwise.

Argument options. ( Racahsum to attempt the angular integration for each term independentRadahsum
is returned.

Additional information: This procedure is equivalent to invoke theaBLE procedureant() for the factor of the
Racahexpr; it is checked, however, that the integration variables and the boundaries do not occur elsewhere in
the overall expression.

Racah_plot(YIm, |, m)
Plots a 2d projection of the spherical harmoHig (¢, ¢).
Output: A Maple pLOT data structure is returned.

Additional information: The functionY;,, (¢, 0) is plotted in polar coordinates for all integer arguments< /.
& Additional arguments from the Mapjot() procedure (likeaunpoi nt s, st yl e, ...) are also allowed. High
values ofl, for instance, require to increase the number of plot points to aboapoi nt s=500. Maple’s
default fornunpoi nt s is 49.

See also: Racah_animate3d(), Racah_plot3d().
Racah_plot3d(YIm, |, m)

Plots the real part of the spherical harmoHig (¢, ¢) in polar coordinates.
Output: A Maple pLOT3D data structure is returned.

Additional information: The real part of the functiof, (%, ¢) is plotted in polar coordinates for all integer
argumentgm| < /. & Additional arguments from the Maplgot3d() procedure (likenunpoi nt's, styl e,
...) are also allowed. High values of for instance, require to increase the number of plot points to about
nunpoi nt s=2000. Maple’s default fomunpoi nt s is 625.

See also: Racah_animate3d(), Racah_plot().

Racah_plus(Racahexpry, ..., Racahexpr,)

Concatenates the expressions Racahexpr, Racahexpy together into a singl®acahsum.

Output: A Racahsum is returned.
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Argument options. ( Racahsum, ...) toinclude one or more Racah expressions of fgpeahsum into the
concatenation.

Additional information: From a mathematical viewpoint, the returned Racahsum represents the sum of all given
Racah expressions.

Racah_recursionforYIm(nrule, YIm)

Applies a recursion relation to the spherical harmonic YIm. The type of recursion is specifiedibieties or
keywordnrule.

Output: A Racahsum which contains two or more Racahexpr is returned.

Additional information: The parameter nrule, which specifies the type of recursion, can be either an integer
n = 1,2 or one of the allowed keywordd &t ep, nst ep}. This sequence correspondsio= 1 andn = 2,
respectively& The applied recursion relations are based on the monograph of Varshalovich and coworkers
(Ref. [6, Egs. 5.7.1-2)).

Racah_set(keyword(argsy), ..., keyword (args,))
Enters one or more Racah expressions or parts of it into the (internal Maple) representatacatiexpr.

Output: A Racahexpr is returned.

Argument options. ( Racahexpr(wnj 1, ...,wnj,, YIm, ...,Ylm,),...) toenterthe Wignen —
j symbolswnj ; and the spherical harmoni¥$ m into a singleRacahexpr.
& (d ebschGordan(j 1, M, j 2, p,j 3, M), ...) toenterthe Clebsch—-Gordan coefficient
(jim1, jama|jams).
& (recoupling(" <(... ((ini2)j12ia)is. )il .. (ipipit..) i’>),...) toen-
ter a recoupling coefficienid (w3 (j 1,] 2,j 3, m, M, M), ...) to enter a Wigner 3- j symbol.
d(wW6(j1,j2003]4islie), -..) toenteraWigner6 jsymbol.
S(W9(jrjaisiaisielrisie),...) toenteraWigner9 jsymbol.
S(YIml,mtheta, phi),...)or (Y n(l,mQOrega), ...) toentera spherical harmonig, (3, ¢)
orY;,(£2). & (d nfl,mtheta, phi),...) or(dn{l,mOnega),...) toentera modified spher-
ical harmonicCy,, (¢, ¢) or C;,,($2). & The keywordsY! nr, d nt, Yl ncc, C nce, conj ugateYl m
or conj ugat el mmay be used to enter the complex conjugate dfja or Cj,, function, respectively.
& (phase(p),...) toadd aphase-1)”. & (delta(mn),...),(dirac(x,X),...),or(tri-

angle(j1,j2,j3),...) toenter a Kronecker deltd,,, a Dirac delta functiord(x — X), or a triangular

delta factors (1, j2, ja).

& (integration(variable,lower limt,upper_lint),...) toenteradomain ofintegration;
the boundaries may also be omitted.( sunmat i on(ndx1, ..., ndx,),...) toenter summation in-
dices (the names ngxnust not be equal to one of the allowed keyworde).f act or, f,...) to append a

factor f.

Additional information: A notation likewnj 1,...,wnj , indicates that there can be any number of these data
structures in the parameter lisk. Above all the explained argument options may also be givekesnord,
args, ..., keyworg, args). & To combine two or several Racah objects together, one may use the argument
sequence: (Racahobject. . ,Racahobjegt). Allowed Racah objects are the data tyjr@s Racahexpr, tdelta,
wnj, or YIm. & For Clebsch—Gordan coefficients, we use the phase convention of Condon and Shortley for the
conversion into 3- j symbols, i.e.

. . . — (-1 J1—Jjot+m3 J1 J2 J3 )
(jima, jomgz|jzmz) = (=1) <m1 ma s
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& All j; andm; must be integer or half-integer constants or expressions and have to fulfill the conditions of
angular coupling.

Racah_usesumrules(Racahexpr)

Attempts to simplifyRacahexpr by using various sum rules which are known for products of Wigner;
symbols ¢ = 6, 9) in this expression.

Output: A Racahexpr is returned if the simplification was successful andiaL] list otherwise.

Argument options. ( Racahexpr, Regge) to apply also all symmetric forms due to Regge [14] to the Wigner
n — j symbols. This optional argument, however, can result in a very time- and memory-consuming evaluation
process.

Additional information: The command invokes a set of procedures which classifgtine rulesdue to groups
of products of Wignen — j symbols as indicated by the names of the corresponding subproceduféss
modular structure easily allows to add further rules for simplificat#nThe procedure considers all basic
symmetric forms of the Wignet — j symbols and ‘compares’ them with the internal representation of the
corresponding sum rules If a simplification due to one of the sum rules is found, this rule is applied and the
simplified Racahexpr is returned. The procedure does not automatically search for further simplifications by the
same rule, but this could be easily done by applying the same procedure again to the result of the previous step.
& Sum rules for Wigner 3- j symbols are applied by the proced®acah_usesumrulesloop() while those for
the spherical harmonics are treatedAacah_usesumrulesYIm().

See also: Racah_evaluate(), Racah_usesumrulesloop(), Racah_usesumrulesYIm().

Racah_usesumr ulesloop(Racahexpr)

Attempts to simplifyRacahexpr by utilizing a selected set ddop rules which frequently occur for products
of two or more Wigner 3- j symbols.

Output: A Racahexpr is returned if the simplification was successful andiaL] list otherwise.

Argument options. ( Racahexpr, Regge) to apply also all symmetric forms due to Regge [14] for the Wigner
3 — j symbols. This optional argument, however, can result in very time- and memory-consuming evaluation
process.

Additional information: The command invokes a set of individual procedures which classiflothgerulesby
the number of Wigner 3- j symbols (the so-called-loops withn =1, ..., 6) as indicated by the names of the
corresponding subprocedure.This modular structure easily allows to add further rules for simplification.
& The procedure considers all basic symmetric forms of the Wigner;j3symbols and ‘compares’ them
with the internal representation of the corresponding sum l#.a simplification due to one of these rule
is found, this rule is applied and the simplified Racahexpr is returned. Before the procedure looks for further
loop rules, the expression is simplified by calling the procedraeah_simplifydeltas(). & The procedure
calls the subproceduré&acah_searchforloopofnw3j() to check whether a loop rules might be applicable and
Racah_usesumrulesfornw3jloop() to simplify the Racah expression. At present, loop rules ef1, 2, 3, 4, 5,
or 6 Wigner 3— j symbols can be recognized and simplified propekh2ue to the rapidly growing complexity,
the present version does not look for Regge symmetries-foops withn > 5.

See also: Racah_evaluate(), Racah_usesumrules(), Racah_evaluate().
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Racah_usesumrulesYIm(Racahexpr)

Attempts to simplifyfRacahexpr by using a selected set of frequently occurring sum and integration rules for
products of two or more spherical harmonics.

Output: A Racahexpr is returned if the simplification was successful andialL] list otherwise.

Additional information: The command invokes a set of procedures which classifystme rulesdue to the
number of spherical harmonics in the products as indicated by the names of the corresponding subprocedures.
& This modular structure easily allows to add further rules for simplifica#.he procedure considers all
basic symmetric forms of the spherical harmonics and ‘compares’ them with the internal representation of the
corresponding sum rules If a simplification due to one of the sum rules is found, this rule is applied and the
simplified Racahexpr is returned. Before the procedure looks for further sum rules, the expression is simplified
by calling the procedurRacah_simplifydeltas().

See also: Racah_evaluate(), Racah_usesumrules(), Racah_evaluate().
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