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Abstract

In various fields of physical research, the quantum mechanical description of many-particle processes often requires an
explicit transformation of the angular momenta of the subsystems among different coupling schemes. In general, such
transformations are given byrecoupling coefficientswhich, consequently, need to be evaluated over and over again in rather
different investigations. Here, we present an extension to the RACAH program which supports the application and evaluation
of general recoupling coefficients. Compared with a previous version of this program, a considerably faster evaluation has now
been achieved by exploiting graphical rules and by making more efficiently use of the symmetries of the Racah expressions.
Moreover, a set of interactive help pages for most user-relevant commands now facilitate the handling of the RACAH program
and may even support its application in class-room teaching of the theory of angular momentum. 2001 Elsevier Science B.V.
All rights reserved.
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Title of program: RACAH

Catalogue identifier:ADOS

Program Summary URL:http://cpc.cs.qub.ac.uk/summaries/ADOS

Program obtainable from:CPC Program Library, Queen’s Univer-
sity of Belfast, N. Ireland. Users may obtain the program also by

down-loading either thecompressed tar fileracah2000.tgz (for
Unix & Linux) or the zip file racah2000-windows.zip (for
Windows & Macintosh) from our home page at the University of
Kassel (http://www.physik.uni-kassel.de/fritzsche/programs.html)

Licensing provisions:None

Computers for which the program is designed:All computers with
a license of the computer algebra package Maple [1]

✩ This program can be downloaded from the CPC Program Library under catalogue identifier: http://cpc.cs.qub.ac.uk/summaries/ADOS
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Installations: University of Kassel (Germany)

Operating systems under which the program has been tested:AIX,
Linux, Windows

Program language used:Maple V, Releases 3, 4, and 5

Memory required to execute with typical data:6 MB

No. of lines in distributed program, etc.:ca. 22 000

No. of bytes in distributed program, including test data, etc.:
541 996

Distribution format: tar gzip file

Nature of the physical problem
In quantum many-particle physics, the calculation of matrix ele-
ments often requires the evaluation of recoupling coefficients de-
scribing the transformation of different coupling schemes for the
(non-active) particles which are not bound to the operator. Usu-
ally, these coefficients have first to be simplified algebraically be-
fore their actual numerical value can be determined. But although
it is known that recoupling coefficients with any number of (integer
or half-integer) angular momenta can always be reduced to a mul-
tiple sum over products of Wigner 6− j symbols, including proper
phases and square root factors, the process of algebraic simplifica-
tion may become indeed very elaborate. In this process, the graph-
ical rules of Yutsis, Vanagas, and Levinson [2] proved especially
helpful in the past for a reliable evaluation of even complex expres-
sions from Racah’s algebra.

Method of solution
The RACAH program is based on the knowledge of a large set of
sum rules for simplifying typical expressions from Racah algebra
which may include (multiple) summations over dummy indices [3].
For complex and lengthy Racah expressions, the algebraic simpli-
fication may be considerably accelerated if the graphical rules due
to Yutsis et al. [2] are taken into account. Furthermore, a combina-
tion of graphical rules and sum rules enables us to take correctly
into account the phases, weights and the relation of the recoupling
coefficients to other algebraic structures of the theory of angular mo-
mentum. The aim of the present implementation of graphical rules
into the RACAH program is to obtain anoptimumsummation for-
mula in the sense of a minimal number of Wigner 6− j symbols
and/or summation variables. Hereby,graphical rulesare predomi-
nantly used in order to find out about and to simplify those parts in
a recoupling coefficient (or generally in any Racah expression) that
belong together. The implementation of graphical rules even allows
to easily simplify recoupling coefficients which include several ten
angular momenta to an (completely equivalent) sum of products of
Wigner 6− j and/or 9− j symbols, multiplied by proper weights.
Just as in former versions of theRacahprogram [4], the results of
the simplification process will be provided as Racah expressions and
may thus immediately be used for further derivations and calcula-
tions within the theory of angular momentum.

Restrictions onto the complexity of the problem
The complexity of a recoupling coefficient depends not only on the
number of angular momenta but also on the order in which the in-
dividual subsystems are coupled to each other. In thediagrammatic
languageof Yutsis graphs [2], individual diagrams or parts of them
are mainly classified according to “closed cycles” (the so-calledn-
loops,n � 2) contained in them. In the present version of the Racah
program, we implemented all loops withn � 6. However, it will
be possible to simplify the majority of recoupling coefficients with
loops of even a higher order since such loops are normally reduced
to a lower level during the process of simplification. Thus, the lim-
itation to n � 6 hardly matters in practical calculations concerning
atomic and nuclear structures or the scattering of particles. More-
over, graphical assistance is also used to recognize and to resolve
sum rules over the Wigner 6− j and 9− j symbols; this graphical
guidance, however, has not been realized for all sum rules yet.

Unusual features of the program
The evaluation of recoupling coefficients leads to products of
Wigner 6− j symbols which themselves often contain a summa-
tion over dummy indices. In the RACAH program, if appropriate,
these products, too, will be further simplified by applying different
sum rules for the 6−j symbols. Finally, this typically results in even
simpler (algebraic) products of Wigner 6− j and 9− j symbols and
takes off the need to analyze differentpaths of simplificationin or-
der to yield results as compact as possible. Note, however, that only
a limited set of rules involving the Wigner 9− j symbols have been
fully implemented so far.
The RACAH program is designed for interactive work and appropri-
ate for almost any complexity of expressions from Racah algebra.
To support the handling of recoupling coefficients, these coefficients
can be entered as astring of angular momenta, separated by com-
mata, rather similar to their usual mathematical notation. This is a
crucial advantage of the program when compared to previous pro-
gram developments which very often requested a certain input form
for the angular momenta in the recoupling coefficient as well as for
their individual couplings. Our user-friendly input is in line with one
of the basic intentions of the RACAH program: to assist the alge-
braic evaluation as far as possible whereas numerical computations
on lengthy expressions are less supported.

Typical running time
The two examples of the long write-up require about 30 s on a Pen-
tium 450 MHz PC.
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LONG WRITE-UP

1. Needs and applications of recoupling coefficients

When describing quantum many-particle systems, recoupling coefficients play an important role. These
coefficients generally describe the transformation between (two) different coupling schemes of the angular
momenta of the subsystems. Equivalently, they can be considered to describe the change of the many-particle
basis in the product space of the angular momenta which is originally spanned by products of the quantum states
|j1m1〉|j2m2〉 . . . An example1 is〈(

(j1, j2)j5, (j3, j4)j6
)
j7

∣∣ (j1, ((j2, j3)j8, j4)j9
)
j7

〉
, (1)

where the subsystemsj1, . . . , j4 could be coupled also in any other way in the bra- and ket-vectors of the
expression. Them-dependence of the finally obtained quantum state, i.e.|j7,m7〉 in example (1), is usually dropped
from the notation since these coefficients appear to be independent ofm. In practical computations, recoupling
coefficients often include a (very) large number of different integer or half-integer angular momenta in accordance,
for instance, with the number of particles or shells in atoms or nuclei. In general, it can be said that recoupling
coefficients can be found in (almost) all situations where many-particle matrix elements to symmetric quantum
operators are to be simplified by exploiting the rotational symmetry of the overall system [1,2]. Consequently, more
often than not a large number of recoupling coefficients are necessary, which have to be evaluated and calculated
as efficiently as possible.

A very first glance on expression (1) tells us about the strong relation between the evaluation of recoupling
coefficients and the analytical integration over the angular variables of the (sub-)systems. The application of
the techniques of Racah’s algebra therefore not only means notational and computational simplification of great
elegance but these techniques also enable one to reduce a physical problem of 3N spatial (and further spin-)
coordinates to an equivalent problem with onlyN (radial) coordinates. Thus, the efficient and reliable evaluation
of recoupling coefficients also determines which classes of many-particle systems can be modeled and described
quantitatively, too.

Clearly, the evaluation and computation of recoupling coefficients has been the subject of several papers in
the past. Very often research focused on a fast computation of recoupling coefficients in order to support large
numerical studies. One of the first programs is due to Burke [3] who used a tree structure to represent the coupling
of the individual angular momenta and to recognize a selected set of sum rules for products of Clebsch–Gordan
coefficients. Burke’s program was a major step forward when it comes to calculating the level structures of atoms
and nuclei in the seventies but it often yields also expressions which are far from their optimal form. A more
efficient way for simplifying recoupling coefficients, i.e. for finding an equivalent expression with a minimal
number of Wigner 6− j symbols and dummy summation indices, is to use graphical methods as have been
developed and explained by Yutsis, Vanagas, and Levinson [4], El-Baz and Castel [5], and others. These methods
have been used for the evaluation of recoupling coefficients first by Bar-Shalom and Klapisch [6] and later also
by Fack et al. [7]. While Bar-Shalom and Klapisch use a matrix representation (in Fortran 77) to manipulate
recoupling coefficients by means of selected graphical rules, Fack et al. exploit derived data structures (in C) in
order to display the combination of the individual angular momenta and to manipulate them via graphical rules.
— Although these two programs have been found useful fornumericalstudies they are not of much help for the
derivation and application of expressions from Racah’s algebra to new physical problems and examples. In practice,
both programs usually require to initialize certain arrays with arguments which, in this form, do not appear in the
recoupling coefficient itself nor in its derivation.

1 The simplification of this expression is shown in Section 4.
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In most cases, the two programs of Bar-Shalom and Klapisch [6] and Fack et al. [7] lead safely to products
of Wigner 6− j symbols when simplifying general recoupling coefficients. However, these programs do not
check whether these (final) expressions may be simplified even further. A first step into this direction was
made by Fack et al. by analyzing differentpathsin the simplification process and by choosing that path which
allows the best contraction of the entire expression. Thus, the programs of Bar-Shalom and Klapisch [6] and
Fack et al. [7] allow an efficient numerical computation of recoupling coefficients but they are not very helpful
when it comes to the manipulation and evaluation of expressions from the theory of angular momentum. This,
namely, would require the support and applicability of algebraic transformations. Lima [8] was the first to follow
this thought within a program. His implementation of algebraic manipulations in Fortran 77, however, makes a
symbolic treatment of Racah expressions rather difficult and will therefore probably not lead to a large number of
applications.

The great advantage of Yutsis’ graphical representation of the coupling of angular momenta is that it reveals
internal relations which are otherwise difficult to see in the respective algebraic expressions. Using these graphical
rules, namely, any recoupling coefficient (or Racah expression) may be represented as a single diagram which may
be transformed and simplifiedgraphicallystep by step. For evaluating recoupling coefficients, the so-calledloop-
rules, an important subset of the Yutsis graphs, play the most crucial role. In terms of the underlying sum rule, each
n-loop represents (a sum of) products ofn Wigner 3− j symbols in which two(j,m) pairs are coupled to different
neighbors so that finally a closed loop withn vertices is obtained. By applying these loop rules to the evaluation of
recoupling coefficients, a stepwise application will then lead to weighted products of Wigner 6− j symbols or to
sums of such products, respectively. In the present extension of the RACAH program, we implemented alln-loops
with n � 6 in order to be able to evaluate even complex recoupling coefficients fast and reliably. In RACAH, we
make use of a graphical approach for the easy to recognize ring structures in order to find out whether a given rule
is partof the overall Racah expression or not. For simplifying this part, however, we then use (as previously) a sum
rule evaluation to take care about the correct weight and phase relations in the total expression. This guarantees
not only the correct simplification of recoupling coefficients (which,per definition, obey correct phase relations)
but also of general Racah expressions occurring in any other derivation when applying Racah algebra techniques.
For a fast evaluation of such expressions it is most important to seebeforehandwhether the application of a certain
loop rule will be useful or not.

The implementation of graphical loop-rules and the improved handling of the symmetries of the Racah
expressions remedies one of the major weaknesses of a former version of the RACAH program [9]. With this
previous version it, indeed, could take a lot of time to check all allowed symmetries of lengthy Racah expressions.
Our new implementation reduces typical time requirements by about two orders of magnitude, so that it is possible
to simplify even extended Racah expressions rather efficiently. Following the original intention of the RACAH

package [10], we have emphasized the algebraic simplification of recoupling coefficients and related expressions
as needed for theoretical derivations. Thus, the RACAH program should be applied before numerical calculations
are to be carried out. Thenumericalevaluation of Racah expressions has also slightly been improved in the present
version. There is, however, no intention to compete with specifically designed and therefore more appropriate
routines in other computer languages. Pure numerical computations are nowadays supported by many (numerical)
libraries on a large variety of different platforms.

In the following section, we will briefly repeat and summarize the loop-rules as the by far most important
subset of graphical rules for evaluating recoupling coefficients. In this section, we will also explain how they
are implemented in the RACAH program. A short account of the overall structure, some new features and the
distribution of the program will then be given in Section 3. This will include a number ofhelp pagesfor many user-
relevant commands in order to support the interactive work with the program. In Section 4, finally, two examples
of recoupling coefficients elucidate the simple handling of the program. A brief comparison with the program of
Fack et al. [7] shows that the RACAH program often finds a more compact expression for extended recoupling
coefficients.
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2. Use of graphical rules

Yutsis et al. [4] have found and developed a graphical equivalent for the algebra of the rotation group since, for
complex expressions of the Racah algebra, a diagram is much easier to grasp (than the algebraic notation of the
expression itself). A graphical representation of such expressions may therefore not only serve the manipulation and
simplification of such expressions very effectively, but may even make it possible to find new algebraic relations
within the theory of angular momentum. This is why Yutsis’ graphs have found their way into many applications of
this theory. For the simplification of recoupling coefficients in the following it will be sufficient to know and apply
the graphical loop rules. We will briefly repeat this important subset of Yutsis’ graphical rules together with their
representation in terms of Wignern − j symbols in the following section. These graphical rules were discussed
rather elaborately by El-Baz and Castel [5] and more concisely by Varshalovich et al. [11]. The latter, however,
omitted the rules for phases and weights. Information about the phases and weights can be included graphically,
when the branches of the diagrams are marked with arrows and the vertices are labeled with a+ or − where the
sign describes the orientation of the angular momenta at the vertex. Yutsis’ graphs are generally invariant under
any transformation conserving the order of the edges around the vertex.

The evaluation and simplification of Racah expressions can be accelerated considerably when using their
graphical representation. This, namely, facilitates to recognize which rule can be applied and which part of
the overall expression should be treated first. Yet, the application of graphical rules is by far not simple and
mistakes creep in quite easily when lengthy expressions are to be dealt with. In Section 4, we will demonstrate the
simplification of a rather complex recoupling coefficient for which phase errors are likely to occur in its graphical
evaluation. This example also illustrates the significance of such computer-algebraic tools with respect to the theory
of the angular momentum.

2.1. Loop rules

Recoupling coefficients may be simplified completely by means of the so-calledloop rules. The step-by-step
reduction of then-loops withn = 2,3, . . . leads finally to a weighted sum of products of Wigner 6− j symbols.
Any simplification of such a loop gives rise to a contribution to the final expression, also including Kronecker
and triangular deltas (forn = 2). Here, the triangular deltaδ(abc) reflects the coupling of angular momenta; it
is δ(abc) = 1 if a, b and c satisfy the triangular condition andδ(abc) = 0 otherwise. For a given recoupling
coefficient, and more generally for any Racah expression as defined in Ref. [10], the following loop rules [cf.
Varshalovich et al. [11, Section 12]] are applied in the RACAH program. In contrast to previous works by Bar-
Shalom and Klapisch [6], however, we do not include arrows and sign labels into these graphs. This information is
part of the corresponding sum rule and will not be influenced by our implementation of the loop rules below.

Rule I: The 2-loop orbubble, Varshalovich et al. [11, Eq. (12.1:3)].

with C1 = (−1)S1[a]δ(apq)δabδmamb and[a, b, . . .] ≡ (2a + 1)(2b + 1) . . . . This rule displays graphically one
of the orthogonality properties as known for the Wigner 3− j symbols. The straight line on the right-hand side
is equivalent to the angular momentum state|a ma〉 .
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Rule II: The 3-loop ortriangle, Varshalovich et al. [11, Eq. (12.1:6)].

with

C2 = (−1)S2

{
a b c

r p q

}

and a remaining ‘graph’ on the right-hand side which displays the Wigner symbol
(

a b c
ma mb mc

)
.

Rule III: The 4-loop orsquare, Varshalovich et al. [11, Eq. (12.1:10)].

with

C3 = (−1)S3[x]
{

a x d

s p q

}{
c x b

s r q

}
.

Rule IV: The 5-loop orpentagon, Varshalovich et al. [11, Eq. (12.1:15)].

with

C4 = (−1)S4[x, y]
{

a b x

r p q

}{
x e y

t r p

}{
y c d

s t r

}
.

Rule V: The 6-loop orhexagon, Varshalovich et al. [11, Eq. (12.1:29)].
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with

C5 = (−1)S5[x, y, z]
{

a b x

r p q

}{
x c y

s p r

}{
y f z

u s p

}{
z d e

t u s

}
.

In these rules, the (integer) phasesS1, . . . , S5 depend on the sequence of the angular momenta in the Wigner 3−j

symbols; we omit these details, since for the simplification of the given Racah expression itself the respective sum
rules [cf. Varshalovich et al. [11, Section 12.2]] are applied in the RACAH program. On the right-hand side of the
rules III–V, the skeletons refer to products of two, three, or four Wigner 3− j symbols, respectively, which implies
a summation over the magnetic quantum numbermx,my, . . . of the corresponding connecting linesx, y, . . . . For
a proof of the rules I–V we refer to the text of El-Baz and Castel [5].

Yutsis et al. [4] provide a number of further (graphical) rules to split complex diagrams along two or three
common branches into parts which can be treated independently. Such additional rules as well as theinterchange of
lineshave not been implemented in the RACAH program so far. They might increase the efficiency of the program,
if lots, say some 10 or even 100, of individual angular momenta appear in a single Racah expression. Expressions
such as these, however, are beyond our intentions and are actually rather rare.

2.2. Representation and evaluation of recoupling coefficients

A simplification of a Racah expression is achieved by identifying the (graph on the) left-hand side of one of the
rules and byreplacingthis part by the expression from the right-hand side. This procedure needs to be done until
the whole graph is reduced to theidentical coupling, i.e. a triangular deltaδ(j1, j2, j3) since the remaining angular
momenta must satisfy, of course, the triangular inequality. In this way, any (valid) recoupling coefficient can be
represented by a weighted sum of Wigner 6− j symbols where the weight takes the form

(−1)S
∏
i

(2ji + 1)1/2

with S being a proper phase factor and theji ’s are intermediate angular momenta in the successive coupling of
the subsystems. For applying the loop rules I–V, a recoupling coefficient is considered to becompletelyevaluated
when no further 3− j symbol occurs or, in the case of a general Racah expression, does contribute to any of the
given loops. — Apart from the loop rules, an additional evaluation of the products of Wignern − j symbols is
achieved later by making use of about 20 other rules to simplify an expression as far as possible in terms of the
Wigner 6− j and/or 9− j symbols.

It has now become obvious that the evaluation of a given recoupling coefficient is a multi-stage process wherein
the smaller cycles are always to be evaluated first. While a singlebubble, i.e. a loop of two angular momenta,
leads to nothing more than a Kronecker delta and may therefore be simplified directly, a 3-loop already provides
an additional Wigner 6− j symbol as a non–vanishing factor to the (final) summation formula. In the graphical
representation, the ‘replacement’ of a 2- or 3-loop is equivalent to ‘redrawing’ the graph without the loop by
joining the remaining lines of the two (three) vertices. This joining of lines (forn > 2) may by itself generate loops
of lower levels in its neighbourhood. After the reduction of any cycle of ordern, it should therefore always be
checked whether newn = 2,3, . . . , n − 1 cycles have been produced.

Similar steps for simplifying recoupling coefficients, briefly summarized above, have already been used with
only slight variations in some previous programs [6–8]. Fack et al. [7] additionally take into consideration a decision
according to whichn-loop is to be treated first (if there are several loops with the samen) in order to obtain a more
concise expression. In the RACAH program, such a decision is of minor importance since the program automatically
checks further sum rules for the 6− j and/or 9− j symbols. With the help of these additional rules the program
is able to produce always the same degree of simplification, even if it takes an extra step. This can be seen as a
compromise allowing to exploit the Racah program also for other structures like spherical harmonics or for the
reduced matrix elements of the rotation operator.
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Forn � 4, the correspondingn-loops may also be simplified via aninterchange operationof two proper angular
momenta which, too, introduce an additional 6− j symbol and summation index. An example for interchanging
two angular momenta in the case of two 5-loops are shown by Fack et al. who also demonstrated that a wrong
interchange may produce a totally undesirable result. — The probability of 5-loops and higher loops to occur can
be estimated with the help of the graph theory. As briefly discussed by Fack et al. [7], for example, 5-loops cannot
occur in any graphical representation of recoupling coefficients unless (at least) 21 angular momenta are combined
while 6-loops need at least 36 angular momenta. But even for a ‘re-coupling’ of so many angular momenta, it is
first of all n-loops of lower levels(n � 4) that we certainly have to deal with in most practical applications.

2.3. Implementation ofn-loops in theRACAH program

There are different possibilities to implementgraphical rulesin a computer program. One that is widely used
is to represent each graph by a single matrix whose rows denote the vertices and the columns the branches of the
graph. Then a matrix element will be 0 or 1 according to whether the branch is connected to the vertex or not [6].
When applying an even larger set of values for the matrix elements, they may carry information also about the
phases of the vertices or the branches. In such a representation of diagrams, an evaluation of the graph corresponds
to (lengthy) operations on the matrices.

In the RACAH program, in contrast, the Wignern − j symbols are used as the basic data structures which
are internally comprised into (so-called) Racah expressions, containing all the necessary information about the
summation indices, the range of summation as well as phases and weight factors. In the present version, it was
our intention to stick to this flexible data structure, in order to allow the use of the RACAH program also for the
simplification of very general Racah expressions, which may not have the structure of a recoupling coefficient
in the strict sense. Therefore, we internally represent any recoupling coefficient as Racah expression and use the
respective graphical rules, in order to facilitate the detection of itsconnected parts.

To explain our implementation in some more detail let us refer to some individual commands of the RACAH

package. There are first of all the proceduresRacah_searchforloopoftwow3j(),Racah_searchforloopofthreew3j(),
. . . , which aim to identify the respectiven-loops in the overall expression. These procedures, in particular, use
internal MAPLE functions for manipulating sets, here being applied to the quantum numbers of the Wigner symbols
in order todetectthose parts which are graphically connected with each other. They return a set ofn Wigner
3 − j symbols which might fulfill a correspondingn-loop. The confirmation of such aguessand the actual
simplification, however, is done by the according sum rule procedure [cf. Ref. [9, Table A.1]. Fig. 1 shows the
compact implementation of this graphical-assisted simplification in the commandRacah_usesumrulesloop inside
the RACAH program.

As seen from this figure, the current selection of the Wigner 3− j symbols is kept internally up to the moment
that the simplification process returns to the search for bubbles (2-loops). A final result is returned from this
procedure only if no further loop rule can be applied. After each step of simplification, all obtained Kronecker- and
triangular deltas are evaluated as far as possible.

Even though the test and evaluation of the correct phase and weight of the overall expression is carried out
by sum rule evaluation, thegraphically guidedsimplification still accelerates the process considerably, since the
individual sum rules can now be applied very selectively. A similar, graphically based simplification could also be
implemented (in principle) for all other sum rules of the RACAH program. In practical calculations, however, it
is first of all the loop rules that are used, while other sum rules are applied much less often. Such sum rules for
Wigner 6− j and/or 9− j symbols are, e.g., needed, if the products of Wigner 6− j symbols, as they arise from
the application of the loop rules I–V, are to be further simplified.

Of course, the algebraic simplification of a recoupling coefficient does not depend on the later application of
the produced (summation) formula. The results from any successful evaluation can therefore simply be used to
calculate recoupling coefficients over and over again for different angular momenta by using, for instance, the
subs() command from MAPLE.
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Racah_usesumrulesloop := proc(Racahexpr)
#
# This procedure ’detects’ simple loop rules involving the Wigner 3-j symbols,
# which can be evaluated very fast.
# A Racah expression is returned if the simplification was successful and a
# [NULL] list otherwise.
.
.
.
looprules := [[1,Racah_searchforloopofonew3j, Racah_usesumrulesforonew3jloop],

[2,Racah_searchforloopoftwow3j, Racah_usesumrulesfortwow3jloop],
[3,Racah_searchforloopofthreew3j,Racah_usesumrulesforthreew3jloop],
[4,Racah_searchforloopoffourw3j, Racah_usesumrulesforfourw3jloop],
[5,Racah_searchforloopoffivew3j, Racah_usesumrulesforfivew3jloop],
[6,Racah_searchforloopofsixw3j, Racah_usesumrulesforsixw3jloop]];

#
changed := false; complete := false; null := true; i := 1;
if nops(Racahexprold[6]) < looprules[i][1] + 1 then

complete := true;
fi;
# wnjpos := [2,3,...];
wnjpos := [seq(j,j=2..looprules[i][1]+1)];
while not complete do

if nops(wnjpos) < looprules[i][1] then
# new rule
wnjpos := [seq(j,j=2..looprules[i][1]+1)];

fi;
wnjpos := looprules[i][2](Racahexprold,wnjpos);
if wnjpos <> [NULL] then

if type(wnjpos[1],list) then
# here, looprules[i][1] >= 5 !
Racahexprnew := looprules[i][3](Racahexprold,wnjpos,symmetry);
wnjpos := sort(wnjpos[1]);

elif nops(wnjpos) > looprules[i][1] then
wnjpos := [seq(wnjpos[j],j=1..looprules[i][1])];
Racahexprnew := looprules[i][3](Racahexprold,wnjpos,symmetry);

else
Racahexprnew := looprules[i][3](Racahexprold,wnjpos);

fi;
if Racahexprnew <> [NULL] then

Racahexprold := Racah_simplifydeltas(Racahexprnew);
changed := true; null := false; i := 1;
wnjpos := [seq(j,j=2..looprules[i][1]+1)];

fi;
wnjpos := subsop(looprules[i][1]=wnjpos[looprules[i][1]]+1,wnjpos);

else
if changed then

i := 1;
changed := false;

else
i := i + 1;

fi;
if i > nops(looprules) then

complete := true;
else

wnjpos := [seq(j,j=2..looprules[i][1]+1)];
fi;

fi;
od;
if null then RETURN([NULL]) fi;
Racahexprold

end:

Fig. 1. Detection and evaluation of (graphical)n-loops in the RACAH program.
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3. Additional features and distribution of the RACAH program

There is no need to highlight once more the advantages of our computer-algebraic approach to the Racah algebra;
an earlier version of the RACAH program [9] already supported the (not always) efficient computation and algebraic
evaluation of expressions from the theory of angular momentum. In this previous work, we also demonstrated the
use and syntax of the program by means of a few (simple) examples. The (overall about 160) commands of the
RACAH program are organized in a hierarchical structure where each procedure can be used for interactive work
and at the same time (simple as a language element) for the building up of commands at some higher level of the
hierarchy. Each procedure handles the input and output (on the basis of a predefined flexible data structure) as
logical objects which can — in principle — have an arbitrary complexity. Our previous set of RACAH procedures
concerned both, numerical computations and the simplification of Racah expressions due to the use of recursion
relations and sum rules where asimplificationmeans to reduce the number of summation variables, integrals,
Wigner n − j symbols and/or spherical harmonics. In order to support a large variety of applications in rather
different fields of physics, great importance was attached to the definition of an underlying data structure which is
flexible and powerful enough for these purposes.

The RACAH program has been found valuable for both, an occasional use like quick computations on standard
expressions as well as for research work which, in fact, exploits the techniques of Racah algebra. In particular,
it helps to overcome the difficulties with lengthy expressions from the theory of angular momentum which
often hampered the study of quantum many-particle systems in the past. By now including a graphically guided
manipulation of Racah expressions, a much faster simplification of elaborate expressions is achieved which will
influence the future application of the package. Although about 13 new procedures have been added to the
RACAH program to facilitate the evaluation of recoupling coefficients, only the two commandsRacah_set() and
Racah_evaluate() need to be explained to the user. A short description of the extended features of these commands
are found in an accompanying paper [12, Appendix B]. In Section 4, in addition, we show two examples for the
application of these commands for evaluating recoupling coefficients.

Apart from research, we expect the RACAH program to find application in classes when teaching the theory of
angular momentum. Often, an interactive help is useful and, of course, in line with modern concepts in software
design. This is the reason why from now on interactive help pages for most commands that are relevant for the user
will be added to any further version of the RACAH program. We will make use of the internal MAPLE support for
creating an interactive help [ofINTERFACE_HELP() in MAPLE V] to provide the user with a uniform framework
similar to that of the internal MAPLE functionality. In the present version, we provide 8 help pages; this is just a
first implementation and is to be developed in the future.

For the distribution of the revised RACAH program, we refer to our work on spherical harmonics [12]. As
before, the source code of the program is distributed in ASCII format and can be obtained anonymously via the
world wide web.2 Together with the source code we now also distribute the fileRacah-command.ps which
contains a quick reference to all user-relevant commands of the Racah program following the style ofThe Maple
Handbookby Redfern [13] as well as a list of the individual data structures as they frequently occur in the input
and output of many commands.

4. Examples

Recoupling coefficients result very easily in rather elaborate expressions if angular momenta of several or even of
a large set of subsystems are involved. Fack et al. [7] defined a list of recoupling coefficients of different complexity,
which is very suitable for testing and comparing the various programs. We take two examples from this list in order
to briefly illustrate the application of the RACAH program. These two examples may as well serve as test cases for

2 http://www.physik.uni-kassel/fritzsche.

http://www.physik.uni-kassel/fritzsche
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the installation of the program. In the following, we assume the RACAH program to be loaded into an interactive
MAPLE session.

Since the evaluation of recoupling coefficients is a very frequent task when studying quantum many-particle
systems we provide a simplifiedinput (command) to release the need for rewriting the progressive coupling of
the angular momenta of these coefficients. With the commandRacah_set(), it is possible to enter the recoupling
coefficients in their mathematical standard format. This is a major advantage in comparison to all previous programs
which often requires the recoupling coefficients to be described by coupling trees and the relevant quantum numbers
to be provided in rather different formats.

A first example concerns the recoupling coefficient (1) which has been used also by Bar-Shalom and Klapisch [6]
and Fack et al. [7], denoted asG1 in the latter case. Using the commandRacah_set(), we can enter and evaluate
this coefficient simply by

> G1 := Racah_set(recoupling(‘<((j1,j2)j5,(j3,j4)j6)j7|
(j1,((j2,j3)j8,j4)j9)j7>‘)):

> G1 := Racah_evaluate(G1,loop):

Racah_usesumrulesforthreew3jloop
Racah_usesumrulesforthreew3jloop
Racah_usesumrulesfortwow3jloop

> Racah_print(G1):

--->
(j9 - j4 + j6 - j3 - j7 - j1)

(-1)

1/2 1/2 1/2 1/2
(2 j9 + 1) (2 j8 + 1) (2 j6 + 1) (2 j5 + 1)

w6j(j9,j2,j6,j3,j4,j8)

w6j(j7,j5,j6,j2,j9,j1)

which is, of course, identical to the result by Bar-Shalom and Klapisch. In the first line above, the program would
terminate with anERRORmessage if the input of the given recoupling coefficient (string) appears to be inconsistent.
The brief report on screen fromRacah_evaluate() shows that twotrianglesand onebubblehas been recognized
and, in turn, removed from the expression. These steps immediately lead to the result produced above, without
needing a further simplification of the product of the two Wigner 6− j symbols.

Fack et al. [7] also list several much more advanced examples like

F8 = 〈(
((j1, j2)j9, j3)j10, (((j4, j5)j11, j6)j12, (j7, j8)j13)j14

)
j15

∣∣(
((j1, j4)j16, j7)j17, (((j2, j5)j18, (j8, j3)j19)j20, j6)j21

)
j15

〉
(2)

which describes the coupling of eight (interacting) subsystems. The evaluation of this coefficient also follows the
lines above and yields

--->
SUM{j,j22,j23,j24,j25}

(2 j - j1 - j2 - j4 - j5 - j6 - j8 + 2 j9 + j13 - j15 + 2 j18 + j19
(-1)

+ 2 j20 + 2 j24)
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1/2 1/2 1/2 1/2 1/2
(2 j21 + 1) (2 j20 + 1) (2 j19 + 1) (2 j18 + 1) (2 j17 + 1)

1/2 1/2 1/2 1/2 1/2
(2 j16 + 1) (2 j14 + 1) (2 j13 + 1) (2 j12 + 1) (2 j11 + 1)

1/2 1/2
(2 j10 + 1) (2 j9 + 1) (2 j + 1) (2 j22 + 1) (2 j23 + 1) (2 j24 + 1)

(2 j25 + 1)

w6j(j22,j2,j4,j5,j11,j18)

w6j(j16,j9,j22,j2,j4,j1)

w6j(j15,j16,j23,j7,j21,j17)

w6j(j24,j13,j3,j8,j19,j7)

w6j(j12,j25,j24,j3,j13,j14)

w6j(j15,j25,j9,j3,j10,j14)

w6j(j9,j15,j25,j23,j22,j16)

w9j(j7,j24,j19,j23,j25,j22,j21,j12,j)

w6j(j19,j22,j,j11,j20,j18)

w6j(j21,j12,j,j11,j20,j6)

i.e. ∑
j,j22,j23,j24,j25

(−1)2j−j1−j2−j4−j5−j6−j8+2j9+j13−j15+2j18+j19+2j20+2j24

×[j, j22, j23, j24, j25][j9, j10, j11, j12, j13, j14, j16, j17, j18, j19, j20, j21]1/2

×
{

j22 j2 j4
j5 j11 j18

}{
j16 j9 j22
j2 j4 j1

}{
j15 j16 j23
j7 j21 j17

}{
j24 j13 j3
j8 j19 j7

}

×
{

j12 j25 j24
j3 j13 j14

}{
j15 j25 j9
j3 j10 j14

}{
j9 j15 j25
j23 j22 j16

}

×
{

j19 j22 j

j11 j20 j18

}{
j21 j12 j

j11 j20 j6

}{
j7 j24 j19
j23 j25 j22
j21 j12 j

}
. (3)

Internally, the program recognizes successively seven individualn-loops withn1, n2, . . . , n7 = 5,3,5,4,3,3,2
which results in a product of 11 Wigner 6− j symbols with 5 dummy summation indices. In a subsequent step
a sum rule for four Wigner 6− j symbols is detected, and the remaining expression consists of 9 Wigner 6− j

symbols and one Wigner 9− j symbols with 5 summations over dummy indices, see Eq. (3).
For the coefficientF8, Fack et al. find a weighted product of 12 Wigner 6− j symbols with 6 remaining

summation indices instead. However, no algebraic result is given for any of these more complex expressions.
Even though their programNEWGRAPH makes a decision which loop is to be evaluated first, they do not exploit
other sum rules than the loop rules withn � 4 and the interchange operation.

We also tested all further examples from Fack et al. [7], i.e.G2 andG4 as well asF0–F9. In all of these examples,
the RACAH program produces a final formula which is at least as good but typically slightly more compact than
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obtained byNJGRAFor NEWGRAPH. Each of these recoupling coefficients is simplified within a few seconds up to
about 20 s forG4. Even though these CPU times are not competitive with the (numerical) evaluation of recoupling
coefficients by other programs, the RACAH program well fulfills all practical requirements for interactive work
with the theory of angular momentum.

In conclusion, we present an extension of the RACAH program which supports the manipulation and algebraic
simplification of recoupling coefficients in the framework of MAPLE V. By applying the graphical rules of Yutsis
et al. [4], a much faster evaluation of elaborate expressions has been achieved, while keeping the flexibility of the
RACAH program with respect to the variety and complexity of the expressions. This makes RACAH a program for
the efficient exploitation of the rotation symmetry in the description of quantum many-particle systems which is
accessible not only to few experts but to many others which are working in science. All that is needed is a valid
MAPLE license.

Since MAPLE is based on aninterpreter languagefor carrying out manipulations, RACAH cannot compete with
NJGRAF or NEWGRAPH in processing time. This disadvantage is more than compensated for by the algebraic
transformation of Racah expressions, the much more user-friendly handling of such expressions, and the broader
applicability of the RACAH program. Our efforts first of all concern the algebraic manipulation of Racah algebra
expressions. Beside of numerous sum rules we also implemented successfully further important functions of the
rotation group [14]. A further development is intended towards the implementation of the reduced matrix elements
of the rotation operator as well as towards the spin and vector spherical harmonics. But already by the present
version of the RACAH program, we made a big step forward in evaluating matrix elements in many-particle physics.
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