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Abstract

Transformation matrices between different coupling schemes are required, if a reliable classification of the level structure
is to be obtained for open-shell atoms and ions. While, for instance, relativistic computations are traditionally carried out in
jj -coupling, aLSJcoupling notation often occurs much more appropriate for classifying the valence-shell structure of atoms.
Apart from the (known) transformation of single open shells, however, further demand on proper transformation coefficients
has recently arose from the study of opend- andf -shell elements, the analysis of multiple-excited levels, or the investigation
on inner-shell phenomena. Therefore, in order to facilitate a simple access toLS↔ jj transformation matrices, here we present
an extension to the RACAH program for the set-up and the transformation of symmetry-adapted functions. A flexible notation is
introduced for defining and for manipulating open-shell configurations at different level of complexity which can be extended
also to other coupling schemes and, hence, may help determine anoptimumclassification of atomic levels and processes in the
future.
 2002 Elsevier Science B.V. All rights reserved.
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Nature of the physical problem
For open-shell atoms and ions, a reliable classification of the level
structure often requires the knowledge of theLS–jj transformation
matrices in order to find the main components of the wave functions
as well as their proper spectroscopic notation. Apart from the trans-
formation of individual (sub-)shell states, matrices of much larger
complexity arise for the transformation of symmetry-adapted con-
figuration state functions which are constructed from the coupling
of two or more open shells.

Method of solution
LS–jj transformation matrices are provided for all (sub-)shell
states with orbital angular momental � 3 in the framework of the
RACAH program [2]. These matrices are then utilized to transform
symmetry-adapted configuration state functions (CSF), including
the coupling of two open shells. Moreover, a simple notation is
introduced to handle such symmetry functions interactively and to
transform even atomic states which are given as a superposition of
CSF.

Restrictions onto the complexity of the problem
The program presently supports all shell states withl � 3, i.e. up
to openf -shells, inLS-coupling and withj � 7/2, i.e. up to open
f7/2- andg7/2-subshells, injj -coupling. For the transformation of
configuration state functions, the coupling of two openLS-shells

or, correspondingly, fourjj -subshells are also supported. Injj -
coupling, however, astandard order[cf. Section 2.2] is always as-
sumed for the coupling sequence of the individual shells. Several
simplifications are used on the basis of this standard order.

Unusual features of the program
Apart from the “interactive access” to theLS–jj transformation ma-
trix elements between (sub-)shell states inLS- and jj -coupling, a
complete transformation of the coupling scheme can be carried out
also for configuration respectively atomic state functions, just by
typing a few lines at MAPLE’s prompt. To simplify the handling of
the program, a short but very powerful notation has been introduced
which help the user toconstructstepwise symmetry-adapted func-
tions of different complexity. But although the program presently
supports only shell states inLS- andjj -coupling, the same notation
can be extended also to incorporate further coupling schemes in the
future. The main commands of the present extension are described
in detail in Appendix B; for a quick reference on the current capa-
bilities of the RACAH program, we refer the reader to Ref. [3] and to
a list of all available commands in the fileRacah-commands.ps
which is appended to the code.

Typical running time
The program replies promptly on most requests. Even large tabula-
tions of LS–jj transformation matrices can be carried out in a few
(tens of) seconds.
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LONG WRITE-UP

1. Introduction

The classification of the level structure of open-shell atoms and ions is anon-trivial task which occurs frequently
in the interpretation of complex spectra. In the analysis of optical spectra, for instance, the correct knowledge of
the LSJ spectroscopic notation of the atomic states may help isolate individual levels and terms without that the
theoretical energies fromab initio computations need be accurate enough for a direct assignment of the observed
lines. In fact, such a demand arises already for rather simple shell structures such as the spectrum of Ne II [1],
for which the lowest excited 2s2p6 2S term occurs high-up in the theoretical level structure, even if a sizeable
wave function expansion is applied, and therefore may lead to misassignments—if no additional information about
further properties of these levels or about their representation in different coupling schemes is available. Since,
today, most relativistic computations are carried out injj -coupling, an efficient and reliableLS–jj transformation
of atomic states is of primary interest.

For atoms with a single open shell and, in particular with an opens- or p-shell, theLS–jj transformation
matrices are well known and can be obtained from different sources [2–4]. These matrices are also thebuilding
blocksfor the transformation of all symmetry-adapted functions and are often simply abbreviated by
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〈
lN αLSJ

∣∣ ( −κ −N −ν −J , +κ +N +ν +J ) J 〉, (1)

i.e. in terms of Fourier coefficients of the corresponding shell states in the (re-coupled) basis. However, such

matrices for single-shell configurations with fixed occupationN = −N + +
N are only of little help in transforming

atomic or configuration states with a more complex shell structure for which the individual (sub-)shell states need
to be treated consistently with respect to their definition, choice of quantum numbers as well as their phase relation
to each other. Therefore, in order to extent the single-shell matrices (1) to opend- andf -shell configurations or to
evaluate these transformation matrices for complex shell structures, insight into the construction of the subshell
states is required for all the coupling schemes under consideration. Moreover, the size of the transformation
matrices (1) increases rapidly with the orbital angular momentuml due to the large number of (allowed) projections
ml of the electrons in any open-shell configuration(n1l1)

N1, (n2l2)
N2, . . . [5]. For these two reasons and due to

the complexity of therecoupling coefficients, which arise in the evaluation of the transformation coefficients [cf.
Eqs. (22), (23)], these matrix elements are often not available from the literature, not to mention the efficiency of
their use if more than one open shell is involved and if such transformation need to be carried out explicitly.

Today, an alternative and much simpler access to the transformation between different coupling schemes is
possible by means of computer-algebraic manipulations. For the coupling of angular momenta, for instance, such
a framework for symbolic manipulations have been developed by us during recent years and is now known as the
RACAH program [6]. This program is a powerful tool in simplifying formal expressions from the theory of angular
momentum. Recent developments to this package concerned not only the fast and reliable evaluation of Racah
expressions but also the implementation of standard quantities [7], spherical harmonics [8] as well as the evaluation
of recoupling coefficients [9]. Therefore, the RACAH package also meets (most of) thebasic requirementswhich
are needed for the transformation of general, symmetry-adapted functions between different coupling schemes.
With the present extension to the RACAH package, we now support a convenient set-up and application of theLS–
jj transformation matrices for all atomic (sub-)shells with orbital angular momental � 3. In addition, a powerful
notation is provided for dealing with symmetry-adapted functions at different level of complexity such as atomic
and configuration state functions as obtained from relativistic computations. In the present implementation, we
support the transformation of such symmetry functions with up to two open (nonrelativistic)LS-shells or up to
four (relativistic)jj -subshells, respectively. For even more complex shell structures, moreover, we intent to utilize
and implement these developments directly into the available atomic codes such as GRASP92 [10] or the RATIP

package [11]. But already with the present extension of the RACAH program, a major step in theLSJclassification
of atomic and ionic levels has been achieved.

In the next section, we first explain the construction of symmetry-adapted functions inLS- andjj -coupling,
respectively, as well as the evaluation of the transformation matrices. This is followed in Section 3 by a short
review about RACAH’s program structure and how it is distributed before we illustrate and discuss several examples
in Section 4. Apart from the transformation of configuration states with a single open shell, our third example
displays the transformation of two atomic levels as they may arise in standard computations. Section 5 outlines the
algebraic evaluation and simplification of the transformation matrices, of course, by making use again of RACAH

itself. This section points to theroad which we need to go in order to deal with general open-shell states and their
transformation among different coupling schemes in the future. Finally, a few comments on further and highly
desirable extensions of the present work are given in Section 6.

2. LS–jj transformation matrices

2.1. Transformation of subshell states

For a successful transformation of symmetry-adapted functions from one coupling scheme to another, it is
first necessary to understand the construction of these functions in some detail. In atomic shell theory, symmetry-
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adapted configuration states are usually constructed from antisymmetrized states ofN equivalentelectrons of a
given shell(nl), to which we briefly refer as (sub-)shell states below. InLS-coupling, for example, such a subshell
states of the shell(nl) is written as [3]∣∣nlN αLS

〉
, (2)

whereα represents all additional quantum numbers which, apart from the total orbital angular momentumL and
total spinS, are needed for the unique classification of these states. In practice, an additional numberα is needed
only for subshells with orbital angular momental � 3, i.e. for electrons from thef -, g-, . . . shells. A list of all
possible subshell states for opens-,p-, d- andf -shells, both in quasispin and seniority notation, has been displayed
previously in Ref. [7], Table 1. For the subshell states (2), moreover, the angular momentaL andS can be coupled
also to a total angular momentumJ , |nlN αLSJ〉, which gives rise to the so-calledLSJnotation. Of course, further
additional intermediate angular momenta will arise if the subshell states of two or more open shells are coupled
to each other which, however, should not be confused with the current discussion about the subshell states for
equivalentelectrons.

In jj -coupling, similarly, the subshell states ofN equivalent electrons of a subshell(nκ) are represented by∣∣nκN νJ
〉
, (3)

whereκ is the relativistic (angular momentum) quantum number

κ =± (j + 1/2) for l = j ± 1/2 (4)

and two further quantum numbersν andJ are found sufficient to classify all subshell states withj = 1/2,3/2,5/2,
and 7/2 unambiguously. In this coupling notation, additional quantum numbers,α, only occurs for subshell states
with j � 9/2; for j = 9/2, we use the quantum numberw = 0,1, or 2 similar as forf -shells inLS-coupling. A list
of all allowed subshell states injj -coupling withj = 1/2,3/2,5/2,7/2, and 9/2 were given in Ref. [7], Table 2. In
fact, all LS↔ jj transformations of symmetry-adapted functions can always be traced back to the corresponding
transformation of the subshell states (2) and (3), from which these symmetry functions are built-up.

Although, at the first glance, the definition of the subshell states inLS- andjj -coupling appears very similar,
these states generally belong to different irreducible representations of the SO3 rotation group. Injj -coupling,
each (nonrelativistic)nl-shell is usually ‘separable’ into two (relativistic) subshells with total angular momenta
j± = l ± 1/2. Therefore, in order to transform a shell state|lNαLS〉 into a jj -coupled basis,1 two subshell states

with j− andj+ may both occur in the expansion, i.e.| −κ
−
N
−
ν
−
J 〉 and| +κ

+
N
+
ν
+
J 〉, where we utilize again the relativistic

quantum numberκ to simplify the notation below. Obviously, also,N = −N + +N and
−
κ=−(+κ +1) > 0 must hold

where the notation
−
κ> 0 and

+
κ< 0 becomes clearer when one considers the corresponding total angular momenta

j± = l ± 1/2.
Making use of this notation, the transformation between the subshell states inLS- andjj -coupling can be written

as ∣∣lN αLSJ
〉 = ∑

−
N
−
ν
−
J
+
ν
+
J

∣∣( −κ −N −ν −J , +κ (N−−N) +ν
+
J
)
J
〉 〈( −

κ
−
N −ν
−
J ,
+
κ (N−−N) +ν

+
J
)
J
∣∣ lN αLSJ

〉
, (5)

∣∣(−κ −N −ν −J , +κ +N +ν +J ) J 〉 =∑
αLS

∣∣l(−N++N) αLSJ
〉〈
l(
−
N++N) αLSJ

∣∣ (−κ −N −ν −J , +κ +N +ν +J ) J 〉 (6)

1 Here and in the following, we often omit the principal quantum numbern in the notation of the subshell states as this quantum number is
irrelevant for the transformation properties of these states. The principal quantum number is needed only if two or more subshell states with the
samel andj but differentn’s later occur in the construction of the symmetry functions.
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which, in both cases, includes a summation over all the quantum numbers (except of theκ ’s and l). Here,

|( −κ
−
N
−
ν
−
J ,
+
κ
+
N
+
ν
+
J ) J 〉 is a coupled state with well-defined total angular momentumJ which is built from the

correspondingjj -coupled subshell states withj± = l ± 1/2 and the total subshell angular momenta
−
J and

+
J ,

respectively.
An explicit expression for the transformation coefficients

〈( −
κ
−
N −ν
−
J ,
+
κ (N−−N) +ν

+
J
)
J
∣∣ lN αLSJ

〉= 〈l(−N++N) αLSJ
∣∣ (−κ −N −ν −J , +κ +N +ν +J ) J 〉 (7)

in (5) and (6) can be obtained only if we take the construction of the subshell states ofN equivalent electrons
from their correspondingparent stateswith N − 1 electrons into account. For a number of special configurations,
expressions for these coefficients have been displayed before in Ref. [12]. In general, however, therecursive
definition of the subshell states, out of their parent states, also leads to a recursive generation of the transformation
matrices (7) which we summarize in Appendix A. For the moment, it is sufficient to say that these transformation
coefficients can be chosenreal and that they occur very frequently as thebuilding blocksin the transformation of
all symmetry functions. The transformation matrices (7) are therefore implemented in a suitable form for all (sub-)
shells withl � 3 and occupation numbersN = 1,2, . . . ,2l + 1 in the current extension to the RACAH program.
For all other allowed occupation numbersN = 2l + 2, . . . ,4l + 2, these transformation coefficients are obtained
according to theirelectron–holesymmetry from the matrix elements forN ′ = 4l+2−N . Such a symmetry relation
was established originally by Grant et al. [18] and later utilized also in the tabulations of Gaigalas et al. [5] for all
subshells withl � 3.

2.2. Coupling of subshell states

Of course, many electron configurations with a single open shell occur in the notation of atomic levels and
may allow a rough characterization. For a detailed representation of these levels, however, configuration state
functions (CSF) with several open shells need to be taken into account, a situation which is even strongly enhanced
when opend- or f -shell elements or excited levels are to be considered. In such situations, the construction of
a suitable symmetry-adapted basis for the representation of the atomic states also requires the coupling of two or
more (open) subshell states. InLS-coupling, typically, a CSF basis is constructed from a stepwise coupling of the
individual shellslN1

1 , l
N2
2 , . . .∣∣(. . . (((lN1

1 α1L1S1, l
N2
2 α2L2S2)L12S12, l

N3
3 α3L3S3)L123S123

)
. . .
)
J
〉

(8)

which could be written explicitly also in terms of a Clebsch–Gordan expansion. For the case of two open shells,
for example, a proper CSF basis∣∣(lN1

1 α1L1S1, l
N2
2 α2L2S2

)
LSJ

〉
=

∑
ML1MS1ML2MS2MLMS

∣∣lN1
1 α1L1S1ML1MS1

〉∣∣lN2
2 α2L2S2ML2MS2

〉
×〈L1ML1 L2ML2 | LML〉〈S1MS1 S2MS2 | SMS〉〈LML SMS | JMJ 〉 (9)

includes the coupling of the subshell orbital angular momentaL1 andL2 to a totalL and the subshell spinsS1 and
S2 to a totalS which are finally coupled to a totalJ .

A very similar sequence for the coupling of the subshell states|κN1
1 ν1J1〉, |κN2

2 ν2J2〉, . . . is applied also in
jj -coupling. In principle, again, any (predefined) sequence of thejj -coupled subshells will give rise to a valid
many-particle basis. For practical purposes and in particular for an efficient transformation of such configuration
states, however, it is useful to define astandard orderfor jj -coupled configuration states such as
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∣∣∣(. . . (((((−κ −N1
1
−
ν1
−
J 1,

+
κ
+
N1
1
+
ν1
+
J 1)J1,

−
κ
−
N2
2
−
ν2
−
J 2)J

′
12,
+
κ
+
N2
2
+
ν2
+
J 2)J12

−
κ
−
N3
3
−
ν3
−
J 3)J

′
123,

+
κ
+
N3
3
+
ν3
+
J 3
)
J123. . .

)
J
〉

(10)

which fulfills two additional conditions:

(i) If both subshells with commonli , i.e.
−
κi and

+
κi appears in the expansion, these two subshells always occur

successively in the sequence(
−
κ
−
Ni

i

−
νi
−
J i,
+
κ
+
Ni

i

+
νi
+
J i) Ji . Formally, we can use this sequence even for subshell

states with zero occupation if we interprete|κ0ν = 0 J = 0〉 ≡ 1; in this case, the full Clebsch–Gordan
expansion [cf. (9)] remains valid due to the orthonormality properties of the Clebsch–Gordan coefficients.

(ii) For theLS–jj transformation of configuration states〈(
. . .
(
((l

N1
1 α1L1S1, l

N2
2 α2L2S2)L12S12, l

N3
3 α3L3S3)L123S123

)
. . .
)
J
∣∣

(
. . .
(
((((
−
κ
−
N1
1
−
ν1
−
J 1,

+
κ
+
N1
1
+
ν1
+
J 1)J1,

−
κ
−
N2
2
−
ν2
−
J 2)J

′
12,
+
κ
+
N2
2
+
ν2
+
J 2)J12

−
κ
−
N3
3
−
ν3
−
J 3)J

′
123,

+
κ
+
N3
3
+
ν3
+
J 3
)
J123. . .

)
J
〉

(11)

we further assume instandard orderthatl1= −κ1 =−(+κ1+1), l2= −κ2 =−(+κ2+1), . . . , i.e. that the sequence
of (sub-)shell states is thesame on both sidesof the transformation matrix.

In the following, we always assume this standard order in the derivation of explicit expressions for theLS–jj
transformation matrices. The two conditions (i)–(ii) simplifies the implementation of these matrices considerably
without much loss of generality. The same or at least a very similarorder in the sequence of the individual shells
is assumed in many standard programs on atomic structure.

We are now prepared to write down the transformation coefficients

〈(
((
−
κ
−
N1
1
−
ν1
−
J 1,

+
κ
+
N1
1
+
ν1
+
J 1)J1,

−
κ
−
N2
2
−
ν2
−
J 2)J

′
12,
+
κ
+
N2
2
+
ν2
+
J 2
)
J
∣∣ (lN1

1 α1L1S1, l
N2
2 α2L2S2

)
LSJ

〉
(12)

for the coupling of two open shells inLS-coupling or up to four open subshells injj -coupling, respectively. As
before, an expansion of aLS-coupled CSF in an appropriatejj -coupled basis is obtained by a summation over all
quantum numbers apart from theκi ’s. Making use of the two expansions (5), (9) and of the recoupling theory of
angular momenta, we easily find∣∣(lN1

1 α1L1S1, l
N2
2 α2L2S2

)
LSJ

〉
=

∑
−
N1
−
N2
−
ν1
−
J 1
+
ν1
+
J 1
−
ν2
−
J 2
+
ν2
+
J 2J1J2J

′
12

∣∣∣((( −κ −N1
1
−
ν1
−
J 1,

+
κ
(N1−

−
N1)

1
+
ν1
+
J 1)J1,

−
κ
−
N2
2
−
ν2
−
J 2)J

′
12,
+
κ
(N2−

−
N2)

2
+
ν2
+
J 2
)
J
〉

× 〈((L1,L2)L, (S1, S2)S
)
J
∣∣ ((L1, S1)J1, (L2, S2)J2

)
J
〉

× 〈((−J1,
+
J1)J1, (

−
J2,
+
J2)J2

)
J
∣∣ ((( −J1,

+
J1)J1,

−
J2)J

′
12,
+
J2
)
J
〉

× 〈(−κ −N1
1
−
ν1
−
J 1,

+
κ
(N1−

−
N1)

1
+
ν1
+
J 1
)
J1
∣∣ lN1

1 α1L1S1 J1
〉

× 〈(−κ −N2
2
−
ν2
−
J 2,

+
κ
(N2−

−
N2)

2
+
ν2
+
J 2
)
J2
∣∣ lN2

2 α2L2S2 J2
〉
, (13)

where the third and fourth line denote tworecoupling coefficientswhich ensure that the sequence of the couplings
on the left- and right-hand side of the expansion is taken into account properly. These recoupling coefficients can
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be evaluated by means of the RACAH program; here we postpone the derivation until Section 5 and display only
the final result∣∣(lN1

1 α1L1S1, l
N2
2 α2L2S2

)
LSJ

〉
=

∑
−
N1
−
N2
−
ν1
−
J 1
+
ν1
+
J 1
−
ν2
−
J 2
+
ν2
+
J 2J1J

′
12

∣∣∣(((−κ −N1
1
−
ν1
−
J 1,

+
κ
(N1−

−
N1)

1
+
ν1
+
J 1)J1,

−
κ
−
N2
2
−
ν2
−
J 2)J

′
12,
+
κ
(N2−

+
N2)

2
+
ν2
+
J 2
)
J
〉

× (−1)
−
J 2+

+
J 2+J1+J

√
[J1, J

′
12,L,S]

〈(−
κ
−
N1
1
−
ν1
−
J 1,

+
κ
+
N1
1
+
ν1
+
J 1
)
J1
∣∣ lN1

1 α1L1S1 J1
〉

×
∑
J2

[J2]
{
L1 S1 J1
L2 S2 J2
L S J

} {
J1

−
J 2 J ′12+

J 2 J J2

}

× 〈(−κ −N2
2
−
ν2
−
J 2,

+
κ
+
N2
2
+
ν2
+
J 2
)
J2
∣∣ lN2

2 α2L2S2 J2
〉
. (14)

Explicit representations of the transformation matrices becomes quickly cumbersome if more than two open
shells are involved. For such complex shell structures, a symbolic and automatic treatment seems to be inevitable.
In the present implementation of the RACAH program, therefore, an automatic transformation of configuration state
functions is also restricted to symmetry functions with two open (LS-)shells, see Section 4.

2.3. Transformation of atomic states

Any set of configuration state functions (8) or (10) can be utilized to form a many-particle basis for the set-
up of the (corresponding) Hamiltonian matrix. The diagonalization of this matrix then results in approximate
atomic states, given as a superposition of the corresponding CSF. WhileLS-coupled CSF (8) are frequently
applied in nonrelativistic atomic structure calculations, thejj -coupled CSF (10) are the basis of most relativistic
computations. However, not much need to be said here about the details of atomic structure theory. For the sake
of simplicity, we can restrict ourselves to the configuration interaction (CI) approach in which (any) approximate
atomic state is either written in terms of aLS-coupled∣∣Ψτ (J

P )
〉=∑

r

a(LS)
r (τ ) |γr LS JP〉 (15)

or jj -coupled basis∣∣Ψτ (J
P )
〉=∑

s

a
(jj)
s (τ ) |γsJP〉, (16)

whereτ = 1,2, . . . enumerates the atomic levels (of the given symmetry) andγr , γs denote the sets of all quantum
numbers as required for an unique classification of the CSF. No further information is needed to understand the
transformation behaviour when one wants to transform a state|Ψτ (J

P )〉 from one into another basis:∣∣Ψ (LS)
τ (J P )

〉←→ ∣∣Ψ (jj)
τ (J P )

〉
.

Obviously, the transformation of any atomic state can be reduced simply to the transformation of the underlying
configuration state functions|γr LS JP〉 and |γs JP〉, respectively. For these CSF, explicit expressions have been
discussed in the previous subsection.

From the user’s viewpoint, of course, the main request to the present implementation concerns the
transformation of atomic states between aLS- and jj -coupled basis. For these two coupling schemes, both
directions of the transformation are equally supported, including aLS- andSL-coupling sequence. To facilitate
the use of the program as well as the communication inside of the code, a powerful notation has been introduced
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Table 1
Additional commands to the RACAH package forLS–jj transformations of coupled (sub-)shell states. A more detailed description of these
new procedures, which are provided for interactive work, is given in Appendix B. Our new commands also include a number of auxiliarity
procedures to facilitate thecommunicationwith and within the RACAH program

shell_jj(), shell_LS() To represent a (sub-)shell state in eitherjj - or LS-coupling.
csf_jj(), csf_LS() To represent a configuration state functions of one or two open shells in eitherjj - or LS-coupling.

Racah_matrix_LS_jj() Returns theLS–jj transformation matrix〈lN νLS J | (−κ
−
N
−
ν
−
J ,
+
κ
+
N
+
ν
+
J ) J 〉

for all subshells withl = 0, . . . ,3.
Racah_transform_csf() Transforms a configuration state function fromjj - to LS-coupling or vice versa. CSF of different

complexity are supported by the program.
Racah_transform_asf() Transforms an atomic state function (ASF) fromjj - to LS-coupling or vice versa.
Racah_set_coupling() Definesthe coupling order in the set-up of theLS- shell states to eitherLS- or SL-coupling.

to define and to manipulate atomic states of type (15) or (16); see Section 4 and Appendix B.1 below. With
this additional notations, the transformation of atomic states is achieved by a single line which can be typed in
interactively. But already from the notation in this section it becomes clear how (easily) other coupling schemes
such asJK- or LK-coupling [15] could be incorporated into the program, for instance, in order to search for the
bestrepresentation of some level(s) in terms of a single coupling scheme.

3. New procedures for the RACAH package

Since its first publication in 1997, the RACAH package [6] has grown considerably. In its early days, emphasis
was put on simplifying those Racah expressions which included summations only over the Wignern− j symbols
[cf. Ref. [6], Fig. 1]. Apart from suchalgebraicmanipulations of expressions, however, recent developments also
concerned an improvednumericalsupport of a few standard tasks from the theory of angular momentum. Following
this line, a number of basic quantities for evaluating (many-electron) matrix elements have been provided recently
[7] and will be further enhanced in the future. With the present extension to the RACAH program, we now facilitate
also the access toLS–jj transformation matrices and to the transformation of general atomic and configuration
symmetry functions at different level of complexity.

Obviously, any automatic transformation of atomic states must enable the user with a quick and simple access to
the underlying symmetry functions. To support thedefinitionand communication of such functions, two basicterms
from the atomic shell model play a central role: atomicshell statesand their successive coupling which, finally,
leads to the definition ofconfiguration state functions(CSF). In order to simplify the handling of these functions,
four auxiliarity procedures have been designed and introduced into the RACAH program with the intention to keep
all necessary information about a subshell state or a CSF close together. These procedures such ascsf_LS() and
shell_LS() or csf_jj() andshell_jj(), respectively, are defined separately for each coupling scheme, i.e. forLS- or
jj -coupling, and, hence, could be easily extended to include other coupling schemes in the future. The procedure
Racah_set_coupling() also differs from most other commands in that it just ‘assigns’ thecoupling order LSor SLof
the orbital angular momenta and the spins to aglobalvariable; this particular procedure must therefore be invoked
prior to any other command which deals withLS–jj transformations.

Although a simple notation has been worked out in order to construct CSF of any complexity, an automatic
transformation of atomic states is currently supported only for configuration states with up to two open shells inLS-
and up to four open subshells injj -coupling, respectively. This limitation has arose from the number of recoupling
coefficients which occur in any transformation and which grows rapidly if more open shells get involved. In the
future, the program might be extended to more complex shell structures if demands arise from our work or from
the side of users.
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At user’s level, only a very few procedures have to be known in order to obtain theLS–jj transformation
matrices or to transform some atomic or configuration state. Table 1 displays a short list of the main commands.
Owing to the rapid increase of the complexity of many expressions, however, a (much) larger number of procedures
had to be implemented at a lower level of the program. Many of them make use of previous developments such
as the routines for obtaining reduced coefficients of fractional parentage or for evaluating recoupling matrices.
Since all transformation coefficients are evaluated directly to their numerical (i.e. either algebraic or floating-point)
values, no additional data structures needed to be defined for the present work.

The explicit expression (14) of a transformation matrix for two open shells showed that these coefficients are
always reduced to the transformation of individual subshell states〈

lN αLSJ
∣∣ ( −κ −N −ν −J , +κ +N +ν +J ) J 〉.

These matrix elements are stored internally in the program using the format

[Q, L, S, J_big, N_1, Q_1, J_big_1, Q_2, J_big_2, factor, nom, denom]

for l = 1,2 and

[w, Q, L, S, J_big, N_1, Q_1, J_big_1, Q_2, J_big_2, factor, nom, denom]

for l = 3, as their recursive computation (from the matrix elements of the corresponding parents states) was found
too slow for practical purposes. In this representation, the value of eachLS–jj transformation matrix elements is

given byfactor×
√

nom
denom; they are kept for all occupation numbersN = 1, . . . ,2l + 1.

With the increasing size of the RACAH program, a newprogram structurebecame necessary. Following recent
suggestions by the MAPLE standard, therefore, the program is now divided into the two modulesRacah and
Jucys which must be loaded separately by thewith() feature of MAPLE. While theRacah module now
contains all procedures for the set-up and manipulation of Racah expression [6,8], the standard quantities from
Ref. [7] and the present implementation of theLS–jj transformation matrices are incorporated into the module
Jucys. Of course, the use of modules also helps to keep all low-level procedures invisible to the user. The RACAH

package is distributed as a tar (-xvf) fileRacah2002.tar which, apart of the source code and module libraries
in different MAPLE versions, includes aRead.me for the installation of the program as well as the document
Racah-commands.ps. This document provides the definition of alldata structuresof the RACAH program as
well as an alphabetic list of all user relevant commands. The code can be downloaded also from our home page
via the world wide web (http://www.physik.uni-kassel/fritzsche). For most commands, moreover, there are on-line
help pages available which are distributed and maintained together with the code.

4. Examples

A few examples from atomic shell theory are displayed below to illustrate the application of theLS–jj
transformation matrices from Section 2. Beside of the computation of a particular matrix element, we briefly
explain how, for instance, the user can generate a (full)LS–jj transformation matrix for a half-filledf -shell, i.e.
the subspace which is spanned by the|f 7 wνLS〉 subshell states. We also show explicitly how, for C2+ ions, the
two low-lying 1s22s2p J = 1 levels from a (jj -coupled) multiconfiguration Dirac–Fock calculation can be easily
transformed into a more appropriateLS-coupled basis.

Let us start with the (numerical) evaluation of theLS–jj transformation matrix element2

〈
f 3 (w = 1, ν = 3) 2J 15/2

∣∣f 3
7/2 (

+
ν = 3) 15/2

〉
2 The capitalJ on the left-hand side denotes the spectroscopic notation for the orbital angular momentumL= 7 and should not be confused

with the total angular momentum of this shell state.
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for a partially filledf -shell, i.e. for the two (sub-)shell states with quantum numbersl = 3,N = 3, w = 1, ν = 3,

L= 7,S = 1/2, and
+
j = 7/2,

+
N = 3,

+
ν= 3,

+
J = 15/2, respectively. Since

−
N = 0 in this case, no|f 0

5/2
−
ν
−
J 〉 subshell

state occurs in the notation. For these quantum numbers, we obtain the transformation coefficient simply by typing

> Racah_set_coupling(LS);
> T := Racah_matrix_LS_jj(shell_LS(3,3,1,3,7,1/2), shell_jj(-4,3,3,15/2));

T := 0.586845597.

As previously, the same result can be obtained also in algebraic or prime-number representations if the proper
keywords algebraic or prime are added to the parameter list. In prime-number notation, for instance, the
transformation coefficient

> T := Racah_matrix_LS_jj(shell_LS(3,3,1,3,7,1/2),
shell_jj(-4,3,3,15/2),prime);

T := [1,−3,3,1,−2]
is returned as a list of (the first few non-zero) integer powers

[a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11]
of the prime numbersp1 = 2, p2 = 3, p3 = 5, p4 = 7, p5 = 11,p6 = 13,p7 = 17,p8 = 19,p9 = 23,p10= 29,
p11= 31 from which the actual values is obtained as

a0

(
11∏
i=1

p
ai
i

)1/2

. (17)

That is, the result[1,−3,3,1,−2] is just equivalent to the value3
2×7

√
3×5

2 ≈ 0.586845597.
Several tabulations have been published over the years [5,16,17] to theLS–jj transformation matrices

〈lN αLS J | ( −κ
−
N
−
ν
−
J ,
+
κ
+
N
+
ν
+
J )J 〉 for different—partially filled—shells and using different phase conventions.

With the present extension to the RACAH package, we now provide a much simpler access to these transformation
matrices which can be adopted to the actual requirements of the user. As a second example, therefore, we display
how one cancreatean ‘electronic table’ (for any shell withl � 3) within only a few lines of MAPLE code. Fig. 1
shows the necessary code for a half-filledf 7 shell which can easily be modified and extended for other shells as
well. The printout from this example is shown below in the TEST RUN OUTPUT.

We now extent our examples to the transformation of configuration state functions or even atomic states as they
frequently appear in standard (relativistic) computations. To deal with a simple case, let us consider the two lowest
1s22s2p J = 1 levels of C2+ ions which attracted a lot of recent interest in the diagnostics of stellar atmospheres
[13]. In a single-configuration approximation, these two levels are written in terms of only twojj -coupled CSF

|Ψτ 〉 = a1(τ ) |γ1 J = 1〉 + a2(τ ) |γ2 J = 1〉, (18)

whereτ = 1,2, and the configuration states

|γ1 J = 1〉 = ∣∣(2s1
1/2 (ν = 1) 1/2; 2p1

1/2 (ν = 1)1/2
)
J = 1

〉
,

(19)
|γ2 J = 1〉 = ∣∣(2s1

1/2 (ν = 1) 1/2; 2p1
3/2 (ν = 1)3/2

)
J = 1

〉
are derived from the coupling of the two valence electrons in an opens- andp-shell, respectively. In this notation,
we omit the 1s2 core since it does nottake partin the coupling of the shells or in according transformations. The
mixing coefficients{ai(τ )} in Eq. (18) can be obtained from either a multiconfiguration Dirac–Fock (MCDF) or
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Racah_set_coupling(LS); Racah_set_coupling_scheme(LS_quasispin);
l := 3; N := 7; j1 := 5/2; j2 := 7/2; t1 := Racah_subshell_term_LS(l,Q_int);
kappa_1 := 3; kappa_2 := -4; Racah_set_coupling_scheme(jj_quasispin);
for J from 1/2 to (N*l)+1/2 do lprint("J=",J);
for i from 1 to nops(t1) do

if abs(t1[i][4]-t1[i][5])<=J and J<=t1[i][4]-t1[i][5] and type(J+t1[i][4]+t1[i][5],integer) then
s1 := shell_LS(l, N, t1[i][2], 2*l+1-2*t1[i][3], t1[i][4], t1[i][5], check);
lprint(Racah_shell_print(s1));
for N1 from 0 to N do

M1 := (N1-(2*j1+1)/2)/2; N2 := N-N1; M2 := (N2-(2*j2+1)/2)/2;
if type(M1,integer) then
t2 := Racah_subshell_term_jj(j1,Q_int); t3 := Racah_subshell_term_jj(j2,Q_int);

elif not type(M1,integer) then
t2 := Racah_subshell_term_jj(j1,Q_halfint); t3 := Racah_subshell_term_jj(j2,Q_halfint);

fi;
for i_1 from 1 to nops(t2) do
if abs(M1) <= t2[i_1][3] then

s2 := shell_jj(kappa_1, N1, (2*j1+1)/2-2*t2[i_1][3], t2[i_1][4]);
for i_2 from 1 to nops(t3) do

if abs(M2) <= t3[i_2][3] then
if abs(t2[i_1][4] - t3[i_2][4]) <= J and J <= t2[i_1][4] + t3[i_2][4] then
s3 := shell_jj(kappa_2, N2, (2*j2+1)/2-2*t3[i_2][3], t3[i_2][4], check);
result := Racah_matrix_LS_jj(s1,s2,s3,J,prime);
lprint(Racah_shell_print(s2),Racah_shell_print(s3),result);

end if; end if;
end do; end if; end do; end do; end if; end do; end do;

Fig. 1. Generation of theLS–jj transformation matrix for a half-filledf 7 shell. The beginning of this table is shown in the TESTRUN OUTPUT

below.

configuration interaction calculation. By using, for instance, the well-known GRASP92 code [10], we find for the
two J = 1 levels the expansions

|Ψ1〉 = 0.8170|γ1 J = 1〉 + 0.5767|γ2 J = 1〉,
(20)

|Ψ2〉 = −0.5767|γ1 J = 1〉 + 0.8170|γ2 J = 1〉,
which clearly illustrate that a (pure)jj -coupling scheme is inappropriate for the present example.

A (much) more appropriate representation might be obtained inLS-coupling. However, before we transform
the two atomic states|Ψ1,2〉 into such a representation, we first show the transformation of a single configuration
state, say,|γ1 J = 1〉. The quantum numbers of this state can be read off directly from its definition in (19). In the
RACAH program, we may enter this CSF as

> CSF_1 := csf_jj(shell_jj(-1,1,1,1/2),shell_ jj(1,1,1,1/2),1,check);

CSF_l = csf_jj(shell_jj(-1,1,1,1/2),shell_jj(1,1,1,1/2),1)

where use is made of the two auxiliarity procedurescsf_jj() andshell_jj(). These procedures return the
input (basically)unevaluatedbut help facilitate the communication with and within the program (see Appendix B
for further details about these commands). Bydefiningfirst (again) the coupling sequence for theLS-subshell states,
we obtain the (complete) expansion of the CSF|γ1 J = 1〉 by

> Racah_set_coupling(LS);
> Racah_transform_csf("jj->LS",CSF_1,print):

".5773502693 * |(s^1 nu=1, ^2S; p^1 nu=1, ^2P) ^2P_1 >"
".8164965809 * |(s^1 nu=1, ^2S; p^1 nu=1, ^2P) ^3P_1 >"
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where, in spectroscopic notation, the first lines represents the1P1 (L= 1, S = 0, J = 1) and the second the3P1
component. In the last input line, the keywordprint causes the procedure to ‘print’ the result (and to return aNULL

expression) while, otherwise, the same result is returned in a list structure [csf1(), c1, csf2(), c2, . . .], as suitable for
further manipulations.

Having a simple access to the transformation of configuration states, we are now prepared to transform also
the (full) atomic states. For the wave functions|Ψ1,2〉 of the twoJ = 1 levels, this is simply achieved (as before)
by assigning the CSF|γ2 J = 1〉 from (19) also to some variableCSF_2 and by carrying out the transformation
explicitly:

> CSF_2 := csf_jj(shell_jj(-1,1,1,1/2),shell_ jj(-2,1,1,3/2),1);
> Racah_transform_asf("jj->LS",CSF_1,0.8170,CSF_2,0.5767, print):

".9426 * |(s^1 nu=1, ^2S; p^1 nu=1, ^2P) ^1P_1 >"
".3341 * |(s^1 nu=1, ^2S; p^1 nu=1, ^2P) ^3P_1 >"

and

> Racah_transform_asf("jj->LS",CSF_1,-0.5767,CSF_2,0.8170, print):

" .3341 * |(s^1 nu=1, ^2S; p^1 nu=1, ^2P) ^1P_1 >"
"-.9426 * |(s^1 nu=1, ^2S; p^1 nu=1, ^2P) ^3P_1 >" .

Apparently, while the ground state level|Ψ1〉 is a 1P1 level, |Ψ2〉 represents the3P1 level. Again, theprint flag is
used and ensures that the results are printed to screen and are not returned in terms of a list structure.

The commandRacah_transform_asf() provides a very flexible access to the transformation of atomic states; any
number of CSF along with their corresponding mixing coefficientsai can appear in the parameter list. Moreover,
the same syntax applies for this procedure if an atomic state is given inLS-coupling,

|Φτ 〉 =
∑
i

ai(τ ) |γi LSJ〉, (21)

and should be transformed intojj -coupling. With just two minor differences: The string"LS->jj" has to be
used, instead, and theCSFi in the parameter list must represent properLS-coupled configuration state functions.
Although the program is currently limited to two open shells, of course, the samesyntaxcould be used for more
complex shell structures or if other coupling schemes are to be incorporated into the program. Moreover, the
construction of the CSF from the successive coupling of subshell states will help tackle more enhanced tasks in the
future, such as the computation ofangular coefficientsfor (non-scalar) tensorial operators of rankK.

5. Evaluation of transformation matrices

We now return to the evaluation of the transformation coefficients (11) from Section 2 which we could easily
write down in thisbra-ketnotation. However, to carry out any transformation of configuration or atomic states
explicitly, these matrix elements must be simplified to a computationally suitable form. This is achieved by the
recoupling of the angular momentawhich, in a number of steps, enables us to bring them into an equal sequence on
the left- and right-hand side of the transformation matrix (11). Therefore, any transformation matrix can always be
expressed in terms of several recoupling coefficients and an appropriate number of transformation matrices (7), i.e.〈

lN αLSJ
∣∣ ( −κ −N −ν −J , +κ +N +ν +J ) J 〉,

where a single matrix occurs for each open shell in the construction of the symmetry-adapted functions.
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For LS–jj transformations and the standard order (10) of thejj -coupled subshell states,two stepsare required
for the recoupling of the angular momenta. The first step (i) arise from the recoupling of the total subshell orbital
angular momentaLi and spinsSi〈((

((L1,L2)L12,L3)L123, . . .
)
L,
(
((S1, S2)S12, S3)S123, . . .

)
S
)
J
∣∣

((
((L1, S1)J1, (L2, S2)J2)J12, (L3, S3)J3

)
J123, . . .

)
J
〉
, (22)

in order to obtain the total subshell angular momentaJi . In the second step, then, (ii) these total angular momenta
are brought into their standard order (10) by〈((

((
−
J 1,
+
J 1)J1, (

−
J 2,
+
J 2)J2)J12, (

−
J 3,
+
J 3)J3

)
J123, . . .

)
J
∣∣

((
((
−
J 1,
+
J 1)J1,

−
J 2, )J

′
12,
+
J 2)J12,

−
J 3)J

′
123,

+
J 3
)
J123, . . .

)
J
〉
. (23)

Further steps in the recoupling of angular momenta may arise if thejj -coupled CSF are not defined in standard
order (10) or if more elaborate coupling schemes occur.

Recoupling coefficients of type (22) and (23) can be evaluated by means of the RACAH program [9]. In the
following, we demonstrate this recent progress with the simplification of these coefficients for configuration states
with two open shells inLS-coupling|(lN1

1 α1L1S1, l
N2
2 α2L2S2)LSJ 〉. In this case, the first recoupling coefficient

(22) simplifies to 〈((L1,L2)L, (S1, S2)S)J | ((L1, S1)J1, (L2, S2)J2)J 〉 and is evaluated interactively by

> rcc_1 := Racah_set(recoupling(‘<((L1,L2)L,(S1,S2)S)J|
((L1,S1)J1,(L2,S2)J2)J>‘)):

> rcc_1 := Racah_evaluate(rcc_1):
> Racah_print(rcc_1):

--->
(-2 Ll + 2 S2 + 2 S1 + 2 L2 + 2 J)
(-1)√

2J2+ 1√2J1+ 1√2S+ 1√2L+ 1

w9j(L2,L1,L,J2,J1,J,S2,S1,S)

which can be re-written as〈(
(L1,L2)L, (S1, S2)S

)
J
∣∣ ((L1, S1)J1, (L2, S2)J2

)
J
〉

=√[J1, J2,L,S]
{
L1 S1 J1
L2 S2 J2
L S J

}
(24)

by using the symmetries of the Wigner 9–j symbols and the fact that 2J+ 2 mJ_ can be added without any change
in the overall phase of the expression. Using similar lines, we can evaluate the second coefficient (23) for the given
case of four open (jj -coupled) subshells〈((Jm1, Jp1) J1, (Jm2, Jp2)J2) J | (((Jm1, Jp1) J1, Jm2)J

′
12, Jp2) J 〉 in

expression (13)

> rcc_2 := Racah_set(recoupling(‘<((Jm1,Jp1)J1,(Jm2,Jp2)J2)J|
(((Jm1,Jp1)J1,Jm2)J12_p,Jp2)J>‘)):

> rcc_2 := Racah_evaluate(rcc_2):
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> Racah_print(rcc_2):

--->
(-Jp2 + 2 mJ_ - J1 + 2 Jm1 + 2 Jp1 - J - Jm2 + 2 J2)
(-1) √

2J12_p+ 1√2J2+ 1

triangle(J1,Jm1,Jp1)
w6j(J,J1,J2,Jm2,Jp2,J12_p)

which leads to the result〈(
(Jm1, Jp1)J1, (Jm2, Jp2)J2

)
J
∣∣ (((Jm1, Jp1)J1, Jm2)J

′
12, Jp2

)
J
〉

= (−1)Jm2+Jp2+J1+J
√
[J2, J

′
12]

{
J1 Jm2 J ′12
Jp2 J J2

}
. (25)

When we combine the two expression (24) and (25), we arrive at the expression (14) for the transformation
matrix of configuration states with two (open) shells inLS-coupling; their complete expansion in terms of ajj -
coupled basis can be written∣∣(lN1

1 α1L1S1, l
N2
2 α2L2S2

)
LSJ

〉
=

∑
N1−N2−J1J2J

′
12
−
ν1
−
J 1
+
ν1
+
J 1
−
ν2
−
J 2
+
ν2
+
J 2

√[J1, J2,L,S]


L1 S1 J1
L2 S2 J2
L S J




× (−1)
−
J2+

+
J 2+J1+J

√
[J2, J

′
12,L,S]

{
J1

−
J 2 J ′12+

J 2 J J2

}

× 〈(−κ −N1
1
−
ν1
−
J 1,

+
κ
(N1−

+
N1)

1
+
ν1
+
J 1
)
J
∣∣ lN1

1 α1L1S1 J1
〉

× 〈(−κ −N2
2
−
ν2
−
J 2,

+
κ
(N2−

+
N2)

2
+
ν2
+
J 2
)
J
∣∣ lN2

2 α2L2S2 J2
〉

× ∣∣((( −κ −N1
1
−
ν1
−
J 1,

+
κ
+
N1
1
+
ν1
+
J 1)J1,

−
κ
−
N2
2
−
ν2
−
J 2)J

′
12,
+
κ
+
N2
2
+
ν2
+
J 2
)
J
〉

(26)

or vice versa, if a summation is carried out over all intermediate angular momenta inLS-coupling.

6. Summary and outlook

A set of additional commands to the RACAH program now facilitates the transformation of symmetry-adapted
functions with quite different complexity fromjj - to LS-coupling andvice versa. For such transformations, all
partially filled (sub-)shells withl � 3 (i.e. up tof -electrons) are supported and, hence, the program extends the
previously available tabulations and implementations considerably. In the study of atomic spectra, for example,
the new version of the RACAH program may help identify atomic and ionic levels as obtained from relativistic
calculations injj -coupling. Apart from the analysis of the valence-shell spectra, a reliable classification of the
level structure is crucial, in particular, for the study of inner-shell processes, where the creation of additional
vacancies often gives rise to a large (or even huge) number of possible states; in practice, however, only a very few
levels are typically involved in some process but need first to berecognized, of course. The present extension to
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the RACAH program can help to implement such transformations also directly into available atomic code, a project
which is currently under work for the RATIP package [11].

With the implementation of rather abstract data structures such as shell and configuration states [cf. the
auxiliarity proceduresshell_LS(), csf_LS(), ...], we also provide a powerful notation for more
advanced tasks. For open-shell atoms and ions, for instance, a long-standing problem concerns the computation
of theangular coefficientsfor effectiven-particle operators as they occur in many-body perturbation theory. Here,
the given notation for shell and configuration states can help decompose general matrix elements automatically.
Another task concerns theoptimal classificationof atomic levels to assist the interpretation of atomic data and to
improve the data base on energy levels and transition probabilities for the large user community of atomic data.
For this aim, further coupling schemes need to be implemented in the future.
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Appendix A. Recurrence relations for the subshell transformation coefficients

The transformation coefficients〈lN αLSJ | ( −κ
−
N
−
ν
−
J ,
+
κ
+
N
+
ν
+
J )J 〉 between the (sub-)shell states from different

coupling schemes are thebuilding blocksfor all transformations. For a given single-shell configuration ofN

equivalent electrons(lN ), these matrices can be expressed recursively in terms of the transformation matrices for
N − 1 equivalent electrons, i.e. in terms of the transformation of the corresponding parent states. The recurrence
relations for the subshell transformation coefficients therefore include the coefficients of fractional parentage
(lN αLS‖lN−1 (α′L′S′) l) and a proper recoupling of the angular momenta

〈
lN αLSJ

∣∣ ( −κ −N −ν −J , +κ +N +ν +J )J 〉
=√[L,S]/N ∑

α′L′S ′

(
lN αLS

∥∥lN−1 (α′L′S′) l
) ∑

J ′
[J ′]

×
[√ −

N [j−,
−
J ]
{
L′ l L

S′ s S

J ′ j− J

}∑
−
ν
′ −
J

′
(−1)j−+

−
J−+J+J ′

{ +
J

−
J ′ J ′

j− J
−
J

}

× (j ( −N−1)
− (

−
ν ′
−
J
′) j−

∥∥j −N−− −
ν
−
J
) 〈
lN−1 α′L′S′ J ′

∣∣ (−κ (
−
N−1) −ν ′

−
J
′, +κ

+
N +ν
+
J
)
J ′
〉

+
√
+
N [j−,

+
J ]
{
L′ l L

S′ s S

J ′ j+ J

}∑
+
ν ′
+
J′

(−1)j++
−
J++J ′+J

{
J ′

−
J J ′

J j+
+
J

}

× (j (+N−1)
+ (

+
ν ′
+
J
′)j+

∥∥j+ +N +
ν
+
J
)〈
l(N−1) α′L′S′ J ′

∣∣ ( −κ −N −ν −J , +κ (
+
N−1) +ν ′

+
J
′ ) J ′〉]. (A.1)

They can be applied to the transformation of any subshell state by starting from

〈
l2 αLSJ

∣∣ ( −κ−ν −J , +κ+ν +J ) J 〉= 1√
2

(
1+ (−1)L+S

)√[j−, j+,L,S]
{

l l L

s s S

j− j+ J

}
(A.2)

and
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〈
l2 αLSJ

∣∣ ±κ2±
ν J

〉= 1

4

(
1+ (−1)L+S

) (
1+ (−1)J

) [j±]√L,S]
{

l l L

s s S

j± j± J

}
. (A.3)

In the present work, the recurrence relation (A.1) has been utilized to generate the transformation matrices
for all partially filled shells withl � 3, i.e. up tof -electrons, and for occupation numbersN = 1,2, . . . ,2l + 1.
In this process, we made use of the coefficients of fractional parentage(lN αLS‖lN−1 (α′L′S′) l) in LSJ- and
(jN−1 (ν′J ′)j‖jN νJ ) in jj -coupling, which were implemented earlier into the RACAH package [7]. To keep the
(current) transformation of the symmetry-adapted functions feasible in time, these coefficients are stored internally
in the program [cf. Section 4]. For all occupation numbers larger than 2l+ 1, i.e.N = 2l+ 2, . . . ,4l+ 1, we make
use of the symmetry relation [18]

〈
lN ανLSJ

∣∣ ( −κ −N −ν −J , +κ +N +ν +J ) J 〉
= (−1)(ν−

−
ν−+ν)/2〈l4l+2−N ανLSJ

∣∣ (−κ(2j−+1−−N) −ν
−
J ,
+
κ(2j++1−+N) +ν

+
J
)
J
〉

(A.4)

which is easily derived from the following two properties of the coefficients of fractional parentage [cf. Eq. (15) in
Ref. [19] and Eq. (9) in Ref. [20]](

l4l+1−N (α′ν′L′S′)l
∥∥l4l+2−N ανLS

)
= (−1)S+S ′+L+L′−l−

1
2+ 1

2 (ν+ν ′−1)

×
(

(N + 1)(2L′ + 1)(2S′ + 1)

(4l + 2−N)(2L+ 1)(2S + 1)

)1/2(
lN (α′ν′L′S′)l

∥∥lN+1 ανLS
)

(A.5)

and (
j2j−N (ν′J ′)j

∥∥j2j+1−N νJ
)

= (−1)J+J ′−j+
1
2 (ν+ν ′−1)

(
(N + 1)(2J ′ + 1)

(2j + 1−N)(2J + 1)

)1/2(
jN (ν′J ′)j

∥∥jN+1 νJ
)
. (A.6)

For further details about the properties of the cfp coefficients and the subshell transformation matrices (7), see
Refs. [19,20] and Ref. [5], respectively.

Appendix B. New commands for the RACAH package

The commands of the present extension to the RACAH program can be described fairly independent from
previous parts. Below, we briefly explain those procedures which have beenaddedand which are of interest for an
interactive use of theLS–jj transformation matrices. This provides a short description of the input and output of
the procedures to facilitate also the understanding of our examples in Sections 4 and 5; as previously, we follow
the style of the formerMaple Handbook[14]. A more detailed description of all the presently available commands
of the RACAH package (at user’s level) is distributed with the source code in the fileRacah-commands.ps.

As introduced earlier in the text, the terms of asubshell stateand aconfiguration state functionplay a key role
in the transformation of (coupled) states and the evaluation of matrix elements for open shells. They form thebasic
entities in dealing with such tasks and are often used to describe the input and output of (many) commands.
To facilitate the handling of these ‘atomic states’ (i.e. the communication with and among the procedures of
the RACAH program), we first introduce a number of auxiliarity procedures for these coupled states inLS- and
jj -coupling. Although several tests are made on the particular input of these procedures, they basically return
unevaluatedand, thus, serve mainly for keeping necessary information together. As seen from their names and list
of parameters, these auxiliarity procedures are designed so that furthercoupling schemescan be easily added later
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as according requirements arise. Since these procedures frequently occur during input and output and no actual
manipulation is made, alsonoprefixRacah_ has been added.

B.1. Auxiliarity procedures

Presently, procedures for the notation of shell-states and (atomic) CSF are provided injj - andLS-coupling.

• csf_jj(shell_jj) Auxiliarity procedure to represent a configuration state function which is built from a single
jj -coupled subshell state|κNνJ 〉 or |nκNνJ 〉.

Output: An unevaluated call tocsf_jj(shell_ jj) is returned.
Argument options: (shell_jj,check) to check, in addition, that the given quantum numbers in shell_jj()

give rise to a validjj -coupled subshell state withj = 1/2, . . . ,7/2. ♣ (shell_jj1,shell_jj2,J) to repre-
sent a configuration state function (CSF) of twojj -coupled subshell states|(κN1

1 ν1J1, κ
N2
2 ν2J2)J 〉 or

|(n1κ
N1
1 ν1J1, n2κ

N2
2 ν2J2)J 〉. ♣ (shell_jj1,shell_jj2,J12,shell_jj3,J) to represent a configuration state func-

tion (CSF) of threejj -coupled subshell states|((κN1
1 ν1J1, κ

N2
2 ν2J2)J12, κ

N3
3 ν3J3)J 〉 or |((n1κ

N1
1 ν1J1,

n2κ
N2
2 ν2J2)J12, n3κ

N3
3 ν3J3)J 〉. ♣ (shell_jj1,shell_jj2,J12,shell_ jj3,J123,shell_jj4,J) to represent a configu-

ration state function (CSF) of fourjj -coupled subshell states|(((κN1
1 ν1J1, κ

N2
2 ν2J2)J12, κ

N3
3 ν3J3)J123,

κ
N4
4 ν4J4)J 〉 or |(((n1κ

N1
1 ν1J1, n2κ

N2
2 ν2J2)J12, n3κ

N3
3 ν3J3)J123, n4κ

N4
4 ν4J4)J 〉.

Additional information: All (given) quantum numbers in the parameter list must evaluate to proper integers or
half-integers.

See also: csf_LS(), shell_jj(), Racah_csf_print().

• csf_LS(shell_LS,J) Auxiliarity procedure to represent a configuration state function which is built from a
singleLS-coupled subshell state|lNνLSJ 〉 or |nlNνLSJ 〉.

Output: An unevaluated call tocsf_LS(shell_ LS,J) is returned.

Argument options: (shell_LS,J,check) to check, in addition, that the given quantum numbers in shell_LS() and
J give rise to a validLSJ-coupled subshell state withl = 0, . . . ,3.♣ (shell_LS1,shell_LS2,L,S,J) to represent
a configuration state function (CSF) of twoLS-coupled subshell states|(lN1

1 ν1L1S1, l
N2
2 ν2L2S2)LSJ 〉 or

|(n1l
N1
1 ν1L1S1, n2l

N2
2 ν2L2S2)LSJ 〉.

Additional information: All (given) quantum numbers in the parameter list must evaluate to proper integers or
half-integers.

See also: csf_jj(), shell_LS(), Racah_csf_print().

• shell_jj(kappa,N,nu,J) Auxiliarity procedure to represent ajj -coupled subshell state|κNνJ 〉 for j = 1/2,
. . . ,7/2.

Output: An unevaluated call toshell_ jj(kappa,N,nu,J) is returned.

Argument options: ([n,kappa],N,nu,J) to represent ajj -coupled subshell state|nκNνJ 〉.♣ (kappa,N,nu,J,check)
to check, in addition, that the given quantum numbers give rise to a validjj -coupled subshell state; the program
terminates with an properERRORmessage if this is not the case.

Additional information: All quantum numbers (except ofn) must evaluate to proper integers or half-integers.
♣ The relativistic angular momentum quantum number isκ =± (j + 1/2) for l = j ± 1/2. ♣ The principal
quantum numbern is often not required for the transformation of subshell states but enters the notation, if
different subshell states are coupled to each other or, in particular, in the evaluation of (most physical) matrix
elements.♣ All occupation numbers must be in the rangeN = 0, . . . , (2j + 1). ♣ ForN ≡ 0, an (unphysical)
subshell angular momentumj =−1/2 is formally allowed in order to facilitate the input for several procedures
from Appendix B.2.
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See also: csf_jj(), shell_LS(), Racah_shell_print(), Racah_tabulate().

• shell_LS(l,N,nu,L,S) Auxiliarity procedure to represent aLS-coupled subshell state|lNνLS〉 for l = 0, . . . ,2.

Output: An unevaluated call toshell_ LS(l,N,nu,L,S) is returned.

Argument options: (l,N,w,nu,L,S) to represent aLS-coupled subshell state|lNwνLS〉 for l = 3 and the
additional quantum numberw = 0, . . . ,10.♣ ([n,l],N,nu,L,S) or ([n,l],N,w,nu,L,S) to represent theLS-coupled
subshell states|nlNνLS〉 or |nlNwνLS〉, respectively.♣ (l,N,nu,L,S,check) to check, in addition, that the given
quantum numbers give rise to a validLS-coupled subshell state withl = 0, . . . ,2; the program terminates with
an properERRORmessage if this is not the case.

Additional information: All quantum numbers (except ofn) must evaluate to proper integers or half-integers.
♣ The principal quantum numbern is often not required for the transformation of subshell states but enters
the notation, if different subshell states are coupled to each other or, in particular, in the evaluation of (most
physical) matrix elements.♣ All occupation numbers must be in the rangeN = 0, . . . ,2(2l+ 1).

See also: csf_LS(), shell_jj(), Racah_shell_print(), Racah_tabulate().

B.2. Commands for LS–jj transformations

This appendix lists the commands for the transformation of coupled (subshell and configuration) states
where we utilize the (auxiliarity) notation from the previous part. This enables us with a very compact but
still flexible notation for the input and output of the individual procedures; for example, a notation like
...,shell_LSa,shell_LSb,... means that the user may type explicitly...,shell_LS(la,Na,nua,
La,Sa),shell_LS(lb,Nb,nub,Lb,Sb),... in the parameter list or first assign these (unevaluated) calls to
shell_LS() to any variables, saywa,wb, and later only use these variables at input time:...,wa,wb,.... To
‘extract’ the quantum numbers from these unevaluated calls, the commandRacah_tabulate() is used.

• Racah_csf_print(csf_jj) Returns a string of type “|. . . (‘κ1ˆN1, nu1, J1’; ‘ κ2ˆN2, nu2, J2’) J12; . . .〉” to facilitate
the printout ofjj -coupled CSF. The value ofκi is printed in spectroscopic notation such as d_3/2, f_7/2, . . . ;
if, moreover, the principal quantum numbern is given, a string like 3d_5/2ˆ2,. . . is returned.

Output: A string is returned.

Argument options: (csf_LS) to return “|. . . (‘l1ˆN1, nu1, ˆ2S1+1, L1’; ‘l 2ˆN2, nu2, ˆ2S2+1, L2’) L 12, S12; . . .〉”.
The values of li and Li are printed in spectroscopic notation such as s, p, d, . . . and S, P, D, . . . , respectively.
Forf -electrons (li = 3), the additional quantum number wi is printed in parenthesis such as “|. . . (l1ˆN1, (w1)
nu1, ˆ2S1+1, L1; l2ˆN2, (w2) nu2, ˆ2S2+1, L2) L12, S12; . . .〉”.

See also: csf_LS(), csf_jj() and Racah_ shell_print().

• Racah_matrix_LS_jj(shell_LS,shell_jj−,shell_jj+,J) Returns theLS–jj transformation matrix〈lN νLSJ |
(
−
κ
−
N
−
ν
−
J ,
+
κ
+
N
+
ν
+
J )J 〉 for all subshells withl = 0, . . . ,3 and the according

−
κ= l and

+
κ=−(l + 1).

Output: A (floating-point) number is returned.
Argument options: (shell_LS,shell_jj−,shell_jj+,J,algebraic) to return the same element of theLS–jj trans-

formation matrix but in algebraic form.♣ (shell_LS,shell_jj−,shell_jj+,J,prime) to return the same ele-
ment of theLS–jj transformation matrix but in prime-number representation.♣ (shell_LS1,shell_LS2,L,S,
shell_jj1−,shell_jj1+,J1,shell_jj2−,J12,shell_jj2+,J) to return theLS–jj transformation matrix

〈(
l
N1
1 ν1L1S1, l

N2
2 ν2L2S2

)
LSJ

∣∣ (((−κ −N1
1
−
ν1
−
J 1,

+
κ
+
N1
1
+
ν1
+
J 1)J1,

−
κ
−
N2
2
−
ν2
−
J 2)J12,

+
κ
+
N2
2
+
ν2
+
J 2
)
J
〉

Additional information: The subshell angular momenta and occupation numbers are not independent of each

other; they must fulfill the relationl = j− + 1/2= j+ − 1/2 andN =−N + +N ; the program terminates with
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an properERRORmessage if this is not the case.♣ If the principal quantum numbern is given, it must be the
same for all (sub-)shells.♣ For two and morecoupledsubshell states, these relations and condition must hold
for each group of subshell states on the left-hand side and right-hand side of the transformation matrix.♣ For

l = 0 follows
−
N= 0 and

−
κ= 0; such (unphysical) subshell states are formally allowed in the RACAH program

but can also be omitted from the list of parameters above.♣ The subshell shell_jj−with
−
κ or shell_jj+ with

+
κ can be omitted from the list of parameters above if

−
N= 0 or

+
N= 0. ♣ For details about the prime-number

representation, seeRacah_calculate_prime().

See also: Racah_set_coupling().

• Racah_set_coupling(LS) Defines the use ofLS-coupling for the|lNνLS〉 subshell states.

Output: A NULL expression is returned.

Argument options: (SL) to defines the use ofSL-coupling for the|lNνSL〉 subshell states.

Additional information: The information about the current coupling scheme for theLS subshell states is kept
in the global variableRacah_save_coupling_LS; its default value isRacah_save_coupling_LS=LS. ♣ If the
coupling scheme of the subshell states is to be changes, this procedure must be calledbeforeany transformation
is made.

See also: Racah_set_coupling_scheme().

• Racah_shell_print(shell_jj) Returns a string “κ , ˆN, nu, J” to facilitate the printout ofjj -coupled subshell
states. The value ofκi is printed in spectroscopic notation such as d_3/2, f_7/2, . . . ; if, moreover, the principal
quantum numbern is given, a string like 3d_5/2ˆ2,. . . is returned.

Output: A string is returned.

Argument options: (shell_jj,state) to return “|κ , ˆN, nu, J〉”. ♣ (shell_LS) to return “lˆN, nu, ˆ2S+1, L” or “lˆN,
w, nu, ˆ2S+1, L”. The values of l and L are printed in spectroscopic notation such as s, p, d, . . . and S, P, D, . . . ,
respectively.♣ (shell_LS,state) to return “|lˆN, nu, ˆ2S+1, L〉” or “ |lˆN, w, nu, ˆ2S+1, L〉”.

Additional information: These strings facilitate the line-mode printout of (coupled) subshell states and CSF.

See also: shell_LS(), shell_jj() and Racah_ csf_print().

• Racah_tabulate(shell_jj) Return a table with all defined quantum numbers of ajj -coupled subshell state.

Output: A tableT with entriesT[n], T[kappa], T[N], T[nu], andT[J] is returned.

Argument options: (shell_LS) to return a tableT with all defined quantum numbers of aLS-coupled shell state;
it has the entriesT[n], T[l], T[N], T[w], T[nu], T[L], andT[S].

Additional information: If some quantum numbers such as the principal quantum numbern is not defined,FAIL

is returned for the corresponding entry.

See also: shell_jj(), shell_LS().

• Racah_transform_asf(“jj→LS”,csf_jj 1,a1,csf_jj2,a2,. . . ) Expands an atomic state function, which is repre-
sented in ajj -coupled CSF basis

|Ψτ 〉 =
∑
k

∣∣CSF(jj)k

〉
a
(jj)

k (τ ),

into a basis ofLS-coupled CSF, i.e.

|Ψτ 〉 =
∑
i

∣∣CSF(LS)
i

〉
c
(LS)
i (τ ).

Output: A list [ [csf_LS1,c1], [csf_ LS2,c2], . . . ] is returned where csf_LSi describes aLS-coupled CSF and ci
the corresponding mixing coefficient in the expansion.
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Argument options: (“jj→LS”,csf_jj1,a1,csf_jj2,a2,. . . ,algebraic) to return the mixing coefficients in algebraic
form. ♣ (“jj→LS”,csf_jj1,a1,csf_jj2,a2,. . . ,print) to print the expansion in line mode. One line is printed
per termci ∗ |CSF(LS)

i 〉, and aNULL expression is returned in this case.♣ (“LS→jj”,csf_LS1,a1,csf_LS2,
a2,. . . ) to expand an atomic state function, which is represented in aLS-coupled CSF basis

|Φτ 〉 =
∑
k

∣∣CSF(LS)
k

〉
a
(LS)
k (τ ),

into a basis ofjj -coupled CSF, i.e.

|Φτ 〉 =
∑
i

∣∣CSF(jj)i

〉
c
(jj)
i (τ ).

Additional information: The subshell states of alljj -coupled CSF must be provided instandard order, i.e. if
bothjj -subshells withj = l ± 1/2 occur in a CSF, they must always couple like

(−
κ
−
N −ν
−
J ,
+
κ
+
N +ν
+
J
)
J

if they represent the first two subshells, and

(
(. . . ,

−
κ
−
N −ν
−
J )J,

+
κ
+
N +ν
+
J)J

′ . . .
)

otherwise.♣ For any expansion into ajj -coupled CSF basis, the subshell states also appear instandard order
in the output.♣ If the principal quantum number(s)n are given, they are transfered properly to the output but
must be the same for each group of subshell states in the expansion of the CSF.♣ For the use of aSL-coupled

CSF basis, seeRacah_set_coupling(). ♣ The subshell
−
κ or

+
κ can be omitted from the arguments of csf_jj if

−
N= 0 or

+
N= 0.

See also: csf_jj(), csf_LS(), shell_jj(), shell_LS().

• Racah_transform_csf(“jj→LS”,csf_jj) Expands ajj -coupled CSF into a basis ofLS-coupled CSF∣∣CSF(jj)
〉=∑

i

∣∣CSF(LS)i

〉
ci .

Output: A list [ [csf_LS1,c1], [csf_ LS2,c2], . . . ] is returned where csf_LSi describes aLS-coupled CSF and ci
the corresponding mixing coefficient in the expansion.

Argument options: (“jj→LS”,csf_jj,algebraic) to return the mixing coefficients in algebraic form.♣ (“jj→LS”,
csf_jj,print) to print the expansion in line mode. One line is printed per termci ∗ |CSF(LS)i 〉, and aNULL

expression is returned in this case.♣ (“LS→jj”,csf_LS) to expand aLS-coupled CSF into a basis ofjj -coupled
CSF|CSF(LS)〉 =∑i |CSF(jj)i 〉 ci .

Additional information: The subshell states of alljj -coupled CSF must be provided instandard order, i.e. if
bothjj -subshells withj = l ± 1/2 occur in a CSF, they must always couple like

(−
κ
−
N −ν
−
J ,
+
κ
+
N +ν
+
J
)
J

if they represent the first two subshells, and

(
(. . . ,

−
κ
−
N −ν
−
J )J,

+
κ
+
N +ν
+
J)J

′ . . .
)

otherwise where
−
κ= l and

+
κ= −(l + 1). ♣ For any expansion into ajj -coupled CSF basis, the subshell

states also appear instandard orderin the output.♣ If the principal quantum number(s)n are given, they are
transfered properly to the output but must be the same for each group of subshell states in the expansion of
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the CSF.♣ For the use of aSL-coupled CSF basis, seeRacah_set_coupling(). ♣ The subshell
−
κ or

+
κ can be

omitted from the argument of the csf_jj if
−
N = 0 or

+
N = 0.

See also: csf_jj(), csf_LS(), shell_jj(), shell_LS().

• Racah_transform_csf_jj_LS(csf_jj) Expands a singlejj -coupled CSF into a basis ofLS-coupled CSF∣∣CSF(jj)
〉=∑

i

∣∣CSF(LS)i

〉
ci .

Output: A list [ [csf_LS1,c1], [csf_ LS2,c2], . . . ] is returned where csf_LSi describes aLS-coupled CSF and ci
the corresponding mixing coefficient in the expansion.

Argument options: (csf_jj,algebraic) to return the mixing coefficients in algebraic form.

See also: csf_jj(), csf_LS(), shell_jj(), shell_LS(), Racah_set_coupling(), Racah_transform_csf().

• Racah_transform_csf_LS_jj(csf_LS) Expands a singleLS-coupled CSF into a basis ofjj -coupled CSF∣∣CSF(LS)
〉=∑

i

∣∣CSF(jj)i

〉
ci .

Output: A list [ [csf_jj 1,c1], [csf_ jj2,c2], . . . ] is returned where csf_jji describes ajj -coupled CSF and ci the
corresponding mixing coefficient in the expansion.

Argument options: (csf_LS,algebraic) to return the mixing coefficients in algebraic form.

See also: csf_jj(), csf_LS(), shell_jj(), shell_LS(), Racah_set_coupling(), Racah_transform_csf().

References

[1] H.M.S. Blackford, A. Hibbert, At. Data Nucl. Data Tables 58 (1994) 101.
[2] R.D. Cowan, The Theory of Atomic Structure and Spectra, University of California Press, Berkeley and Los Angeles, 1981.
[3] Z.B. Rudzikas, Theoretical Atomic Spectroscopy, Cambridge University Press, Cambridge, 1997.
[4] K.G. Dyall, Comput. Phys. Comm. 39 (1986) 141.
[5] G. Gaigalas, T. Zalandauskas, Z. Rudzikas, At. Data Nucl. Data Tables (2002), in print.
[6] S. Fritzsche, Comput. Phys. Comm. 103 (1997) 51;

S. Fritzsche, S. Varga, D. Geschke, B. Fricke, Comput. Phys. Comm. 111 (1998) 167.
[7] G. Gaigalas, S. Fritzsche, B. Fricke, Comput. Phys. Comm. 135 (2001) 219.
[8] T. Inghoff, S. Fritzsche, B. Fricke, Comput. Phys. Comm. 139 (2001) 297.
[9] S. Fritzsche, T. Inghoff, T. Bastug, B. Fricke, Comput. Phys. Comm. 139 (2001) 314.

[10] F.A. Parpia, C.F. Fischer, I.P. Grant, Comput. Phys. Comm. 94 (1996) 249.
[11] S. Fritzsche, J. Electr. Spec. Rel. Phenom. 114–116 (2001) 1155.
[12] G. Gaigalas, T. Zalandauskas, Z. Rudzikas, Lithuanian J. Phys. 41 (2001) 226.
[13] Y.H. Le Teuff, T.J. Millar, A.J. Markwick, Astron. Astrophys. (Suppl. Ser.) 146 (2000) 157.
[14] D. Redfern, The Maple Handbook, Springer, New York, Berlin, 1996.
[15] W.C. Martin, W.L. Wiese, in: G.W.F. Drake (Ed.), Atomic, Molecular and Optical Physics Handbook, AIP Press, New York, 1996, p. 135.
[16] J.B. Calvert, E.R. Tuttle, Il Nuovo Cimento 54 B (1979) 413.
[17] W.J. Childs, At. Data Nucl. Data Tables 67 (1997) 1.
[18] K.G. Dyall, I.P. Grant, J. Phys. B 15 (1982) L371.
[19] G. Gaigalas, Z. Rudzikas, C. Froese Fischer, At. Data Nucl. Data Tables 70 (1998) 1.
[20] G. Gaigalas, S. Fritzsche, Z. Rudzikas, At. Data Nucl. Data Tables 76 (2000) 235.



60 G. Gaigalas, S. Fritzsche / Computer Physics Communications 149 (2002) 39–60

TEST RUN OUTPUT

> Racah_LS_jj_calculate_table();
"LS-jj transformation matrices for f subshells with occupation N=7"
"J=", 1/2
"f^7, (w=0) nu=5, ^6F"
"f_5/2^1 nu=1, 5/2", "f_7/2^6 nu=2, 2", [1, 2, 1, 0, -3]
"f_5/2^2 nu=2, 2", "f_7/2^5 nu=3, 3/2", [-1, 4, 1, -1, -4]
"f_5/2^2 nu=2, 2", "f_7/2^5 nu=3, 5/2", [-1, 0, 0, -1, -3, 1]
"f_5/2^2 nu=2, 4", "f_7/2^5 nu=1, 7/2", [1, 3, 0, 1, -3]
"f_5/2^2 nu=2, 4", "f_7/2^5 nu=3, 9/2", [-1, 0, 0, 0, -4, 1, 1]
"f_5/2^3 nu=1, 5/2", "f_7/2^4 nu=2, 2", [0]
"f_5/2^3 nu=1, 5/2", "f_7/2^4 nu=4, 2", [1, 0, 1, 0, -3, 1]
"f_5/2^3 nu=3, 3/2", "f_7/2^4 nu=2, 2", [1, 1, 1, 0, -4]
"f_5/2^3 nu=3, 3/2", "f_7/2^4 nu=4, 2", [0]
"f_5/2^3 nu=3, 9/2", "f_7/2^4 nu=2, 4", [1, 2, 0, 2, -4, 1]
"f_5/2^3 nu=3, 9/2", "f_7/2^4 nu=4, 4", [0]
"f_5/2^3 nu=3, 9/2", "f_7/2^4 nu=4, 5", [0]
"f_5/2^4 nu=2, 2", "f_7/2^3 nu=3, 3/2", [-1, 4, 1, -1, -4]
"f_5/2^4 nu=2, 2", "f_7/2^3 nu=3, 5/2", [-1, 0, 0, -1, -3, 1]
"f_5/2^4 nu=2, 4", "f_7/2^3 nu=1, 7/2", [-1, 3, 0, 1, -3]
"f_5/2^4 nu=2, 4", "f_7/2^3 nu=3, 9/2", [-1, 0, 0, 0, -4, 1, 1]
"f_5/2^5 nu=1, 5/2", "f_7/2^2 nu=2, 2", [-1, 2, 1, 0, -3]
.
.


