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Abstract

During recent years, much attention in developing general-purpose, computer—algebra systems was focused not only on better
symbolic algorithms but, to a very similar extent, also on fast numerical computations and improved tools for visualization.
Behind this development, of course, the main idea is to provide the users with a single environment for the solution of their
scientific or engineering tasks. In a revised version of the &+ program, we follow this idea and provide a fast and much
extended access to the standard quantities from the theory of angular momentum within the framewarbf M this
revision, emphasis is paid to the efficient computation of the standard quantities by supporting both, the default software model
as well as fast (hardware) floating-point computations. MoreovetAR is now organized and distributed as aRLE module
which can be installed and utilized like any other module, including help pages and the use of internally recognized data
structures. The present extension of thecRRH program may therefore enlarge the range of applications considerably towards
problems from quantum optics, collision theory or even solid-state physics.
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No. of bytes in distributed program, including test data, etc.: reduce the “numerical costs” in the theoretical treatment of (quan-
2429654 tum) many-particle systems dramatically. In fact, many details of
such systems can be understood only if the proper algebraic re-
lations are found and applied. In the present version a€A&H,
however, symbolic manipulations are supported so far only for
those expressions which include the Wignetj symbols ¢ < 9),
Clebsch—-Gordan coefficients and/or spherical harmonics. For all
other quantities, we currently just facilitate fast numerical computa-
tions, by making use also of MPLE’s recently implementethard-
ware floating-point model

Distribution format: tar gzip file

Keywords: Angular momentum, bipolar harmonic, Clebsch—-Gor-
dan coefficient, coefficient of fractional parentage, Condon-Short-
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bol, spherical harmonic, spinor spherical harmonic, tensor spherical
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9 gnem-j sy Unusual features of the program

Nature of the physical problem The RacAH program provides an interactive environment which,

The theories of angular momentum and spherical tensor operators apart from the standard symbols and functions of the theory of an-

provide a very powerful calculus for the study of (quantum) many- gular momentum, also supports the evaluation of recoupling coef-

particle systems, sometimes known also as Racah’s algebra. Theficients, various coefficients and matrix elements from the atomic

efficient use of these theories, however, require—apart from the shell model as well as transformation matrices between different

knowledge of a great deal of algebraic transformations and rules— coupling schemes [2].

a fast and reliable access to their standard quantities such as the

Wigner n—j symbols and Clebsch-Gordan coefficients, spherical Typical running time

harmonics of various kinds, the rotation matrices, and many others. Although the program replies ‘promptly’ on most requests, the run-
ning time depends strongly on the complexity of the expressions.

Method of solution

A set of MAPLE procedures has been developed and maintained References

over the last years which supports both, algebraic manipulations as [1] Maple is a registered trademark of Waterloo Maple Inc.

well as fast computations of the standard expressions from the the- [2] S. Fritzsche, Comp. Phys. Commun. 103 (1997) 51;

ory of angular momentum. G. Gaigalas, S. Fritzsche, B. Fricke, Comp. Phys. Commun. 135
(2001) 219;

S. Fritzsche, T. Inghoff, T. Bastug, M. Tomaselli, Comp. Phys.
Commun. 139 (2001) 314.

Restrictions onto the complexity of the problem

Of course, the full power of the angular momentum theory is given
by alarge set of (group-theoretical and often rather sophisticated) re-
lations between its standard quantities, which may help simplify and

LONG WRITE-UP

1. Introduction

The theory of angular momentum offers two crucial advantages for the treatment of quantum many-particle
systems: (i) the definition of rather a small number of standard quantities and (ii) an elegant and very powerful
calculus which help simplify and evaluate sophisticated expressions. Owing to these advantages, the techniques
from this theory (sometimes known also as Racah algebra techniques [1]) have been utilized in a large number of
applications and in quite different field of many-particle physics [2,3]. In the earlier design [4—6] ofatheHR
program, however, we just focused on the second benefit so far, the algebraic transformRtioatoéxpressions
[cf. Fig. 1 in Ref. [4]] which were found appropriate for symbolic manipulations. Until now, such Racah expressions
may include the Wignern—; symbols, Clebsch—Gordan and recoupling coefficients as well as (various integrals
over) the spherical harmonics. To obtain a simplification even for complex expressions, a large variety of sum and
orthogonality rules were implemented earlier. Today, these developments from the last eight years about are utilized
not only in the automatic derivation of (atomic) perturbation expansions, but also inStke j; transformation
of symmetry-adapted functions [7] as well as for the evaluation of many-particle matrix elements within the atomic
and nuclear shell model [8].

Less attention in the earlier design of thedRH program has been paid to the efficient and reliable computation
of the standard quantities from the angular momentum theory. Fast computations, of course, require the use of
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hardware floating-point algorithmsa line which has now been followed up also by several general-purpose,
computer—algebra (CA) systems such agAVE or MATHEMATICA. The implementation of floating-point
algorithms may help solve scientific and engineering tasks within the ‘same computational environment’, starting
from a first analysis of the problem and by utilizing both, symbolic manipulagodsiumerical computations until
the point is reached where the results need to be visualized and presented. For applications of the theory of angular
momentum, the realization of this concept requires an efficient computation not only for the Wighgymbols
and spherical harmonics but also for a much larger set of other symbols and functions. A major interest in such a
development concerns, for instance, various tensorial types of the spherical harmonics, the Wigner rotation matrices
or special coefficients from the (atomic or nuclear) shell model. But although these standard quantities can be often
introduced quite easily into some theoretical derivation, a reliable implementation—which is consistent in all of
its definitions and phases—is usually much harder to find. Typical fields of application hereby may include high-
energy physics, atomic and molecular structure and scattering theory or even electro-magnetic field computations
for nano-type structures and mesoscopic systems.
With a larger range of applications, of course, a better incorporation ofslba R program into the (underlying)
MAPLE environment also became necessary and very desirable. This need is obvious as the whole program now
contains more than 240 subprocedures which are hidden mainly behind the about 20 user-relevant (and public)
commands. For a proper encapsulation and protection of the coda,®how supports the use afodulesvhich
help incorporate additional packages into its overall framework, including new help pages, the use of internal data
structures, and a much simpler distribution and installation of the code. In addition, the careful use of modules
facilitates further improvements and modifications of the code without that the user interface need to be changed.
To follow the recent trend in the development of the general-purpose CA environments, here we presenta revised
version of the RcAH package. This package now provides a considerably enlarged set of (standard) functions from
the theory of angular momentum which are distributed within twa\f\ME) modules, including their help pages
and a manual for quick reference. In the next section, we first summarize all quantities which are now supported by
the program as well as the use and implementation of floating-point algorithms for a few more important symbols.
For their detailed definition and computation, however, we refer the reader to two appendices below. For most of the
additional quantities, emphasis was paid first of all on a reliable computation while the knowledge about their (alge-
braic) properties and transformations can be likely considered only stepwise in the future. Section 3, then, describes
the revised program structure and the distribution of the code. A short run time comparison in Section 4 finally
demonstrates the acceleration in the computation of the Wigneald-6— symbols and the spherical harmonics.

2. Extensionstothe RACAH program
2.1. Enlarged set of numerical procedures

In physics, a number adtandard quantitiesre typically used in order to express most formulas which are
related to the theory of angular momentum. Apart from the Wignigr symbols (whose need, originally, gave
rise to the design and set-up of thedxH package), for instance, these are the rotation matrices of various
types, products and linear combinations of the spherical harmonics, reduced matrix elements, and many others.
The algebraic manipulation of these quantities often help achieve (mathematical) simplifications of great elegance
and, thus, to obtain insight also into the behavior of physical systems. For most of these quantities, however, the
properties and relations among each other are unfortunately not (yet) availableoatuery algebraic level
a situation which is likely not to change much within the next few years. Therefore, in order to facilitate at least
the efficient use and computation of these quantities, we incorporated several of them at a ‘numerical level’ into
the present version of theARAH program. Table 1 lists the presently implemented symbols and functions from
the theory of angular momentum and the (corresponding) commands. These procedures provide not only a fast
and interactive access to these entities—and, hence, may ‘replace’ many (old-fashioned) tabulations—but will also
facilitate new applications, for instance, in the treatment of many-particle systems. The full algebraic support of



S. Fritzsche et al. / Computer Physics Communications 153 (2003) 424-444 427

Table 1
List of symbols and functions which are presently supported by theAR program. The definition of these quantities mainly follows the
monograph by Varshalovich et al. [3] about the theory of angular momentum

Symbol Designation RcAH procedure
a b c - . . .
(ma my mc> Wigner 35 symbol Racah_wa3j(), Racah_w3j_range()
a b c ’ . . .
d e f Wigner 65 symbol Racah_ws6j(), Racah_w6j_range()
a c
d e f Wigner 9 symbol Racah_w9j()
g h i
a b ¢ d
e f g hils Wigner 12— symbol of kinds = 1, 2 Racah_w12j()
i j k1
— ap a3z a4
by — b3z by , .
Sharp’s symbol [9] Racah_w12j()
[ cq
di dy dz —
(amg, bmplcme) Clebsch—Gordan coefficient Racah_ClebschGordan()
W (abcd; ef) Racah'sw coefficient Racah_Wcoefficient()
al () Wignerd? (p) rotation matrix Racah_dmatrix()
D’im/ (o, B, y) Wigner’s D-function Racah_Dmatrix()
Urim, (w; O, D) Rotation matrixU (w) Racah_Umatrix()
Yim (9, ¢) Spherical harmonic Racah_YIm()

(YL 01,00) ®Y1,(92, 92},

Bipolar spherical harmonic Racah_bipolarY()

{Y[l(ﬂl, ¥ ® {le(ﬂzv ¥2)® YI3(793~ ¢3)}123}LM

Tripolar spherical harmonic Racah_tripolarY()
Y}fn(z?, ) Tensor spherical harmonic Racah_tensorY()
Q;m(ﬂ, ) Spinor spherical harmonic Racah_spinorY()
Y }m (0, 9) Vector spherical harmonic Racah_vectorY()
(lgmg |lpmp |lcme) Gaunt coefficient Racah_Gaunt()

Ck(la, ma; 1y, mp) Condon-Shortley coefficient Racah_CondonShortley()
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Table 1
(Continued)
Symbol Designation RCAH procedure
(ve QI 1a'97) |||ye’ Q'T) Reduced coefficient of fractional Racah_rcfp()
parentage
((NaoLS|IIN"Ya'Q'L'S)I) or
(Neor 1 iV 1@ @' J))) Coefficient of fractional parentage Racah_cfp()
(Nad I T® | ¥’ J') Reduced matrix element of the unit Racah_reduced_T()
tensorsT® in jj-coupling
((NaLS|UPING'L'S") Reduced matrix element of the unit Racah_reduced_U()
tensorsU %) in LS-coupling
(I(NaLS||VED |[ING'L'S") Reduced matrix element of the unit Racah_reduced_V()
tensorsv 1 in LS-coupling
(ja@r i wkaki) ;o' 017 Reduced matrix element of the unit Racah_reduced_W()
tensorsw %%;) in jj-coupling
(la QLS ||| Wkakiks) |10’ Q"L'S") Reduced matrix element of the unit Racah_reduced_W()
tensorsw ka¥i%s) in L S-coupling

these quantities, however, can be provided only later step by step as further symbolic algorithms are developed
and, in fact, the requirements will arise from the side of the user. Since the calculus of angular momentum has been
developed to a very large and powerful framework during the last six decades, collaborations and help from other
groups are always appreciated for this project.

Most of the quantities from Table 1 are likely to be known to the reader from the literature. In this write-up,
therefore, we may leave out details from their definition and the large number of mathematical relations which they
fulfill. For such details, we refer the reader to the classical text by Varshalovich et al. [3]. Appendix A, however,
compiles some of the background in order to make the present implementation ofdiei rogram useful
for practical applications. An alphabetic list and description of all commands of the package, including those
from Table 1, is provided with the program [cf. Section 3]. In the following, we only recall some basic facts and
conventions, about which the user must be aware of, and where these quantities (may) arise in applications.

Wigner 3n—j symbols(n = 1, 2, and 3). The Wigner 3—; symbols are all related to the transformation of angular
momenta between different coupling schemes.#er1, 2, and 3, these symbols were taken as the basic data
structures of the RcAH program and were defined explicitly in Ref. [4], Appendix A. The Wigner 8symbols
frequently arise in (almost) all applications of the theory of angular momentum.

12— symbolsof first and second type. Sharp’s symbol. Wigner 3:—j symbols of higher ordei > 4) are rarely
used in applications as their complexity increases rapidly wiind as severdtinds of these symbols appear
[3]. There are two kinds of 12~symbols, called thédirst and secondkind or 12—(1) and 12-(2) symbols,
respectively. These symbols are often written as

ail az az a4
b1 by bz bag|sy,
Cl1 €2 (€3 (4
wheres = 1, 2 selects th&ind. Instead of the 127-symbol ofsecondkind, Sharp’s symbd9] is sometimes used

which possess a slightly higher symmetry [cf. Appendix A.2]. #ef 4 and 5, the properties of thea-3j symbols
are still a topic in modern research on group theory.
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Clebsch—Gordan and Racah’'s W coefficients. The Clebsch—Gordan or vector coupling coefficients appear
naturally as Fourier coefficients in thie-couplingof angular momenta; they are closely related to the Wigner
3—j symbols where, in the R2AH program, we use the Condon—Shortley pase convention [10]

; ; ; _(_avii—jotmap 12 J1 J2 3
(jama, jom2 | jams) = (=1) [J3l (””ll 2 _m3> : 1)
Also, Racah'sW coefficients,W (abed; cf) = (—1)“+b+d+e{,‘§’e’]‘;}, are basically equivalent to the Wigner
6—j symbols and were used only in the earlier literature on the recoupling of angular momenta; indha R
program, these coefficients are supported just for a quick reference or in oxexdksome given relation from
the literature.

Wigner’s D-function Dr{lm, (a, B, y). The D-functions are often required for the transformation of wave functions
under the rotation of coordinates

Wi @@ 0)) =D |Wim (9. 0. 0))D) (e, B. ). (2)

whered, ¢ andv’, ¢’ are the polar angles in the initial and the rotated systemg#at) denote the corresponding

spin variables. More general, these functions occur in the transformation of any irreducible spherical tensor of
rank j. The D-functions are utilized, therefore, in all treatments of scattering processes (from elementary particles
up to molecules and clusters), including capture, transfer, and emission processBsfurtations fulfill a large
number of (symmetry) properties [3] and are expressed most simply in terms of the Euler(anglesndy) and

the Wigner rotation matrixl,’nm,(ﬁ), see below.

Rotation matrix drfnm,(ﬁ). This matrix describes the rotation of any spherical tensor by the ghglound a
given axis, say, the quantization axis of the system. Several explicit representation@jf2sior cogs/2), the
hypergeometric function, or in terms of other polynomials exist for g function; it will be used also to extent
the data structures of theaRAH program for algebraic manipulations in the future.

Rotation matrix Un’m/ (w; ©, @). Instead of the Euler anglés, 8, y), itis sometimes more convenientto describe
rotations in terms of the rotation angie (around the axis of rotation) and the two polar angi&s® which
determine the orientation of the rotation axis. For this choice of angles, the rotation operatét"is with

n = (@, ®) and the matrix elements of this operator in terms of the variab)&, @ give rise directly to

Ul (@;0,®) =(jm|e M| jm). (3)

An explicit representation of the rotation matlibéw (w; ®, @) can be obtained from thB-functions [3] by using
a proper transformation of the variables ©, ®) — (o, 8, ¥)

; '’ / 1—itan% cos® e
U,{lm/ (CU, @, @) — il’Vlfm e*l(l"’lfm )@( 2 ) d},{,lm/(%_) (4)
J1+tar?§cog e

where the angl€ is determined by
sing —sin2 sin®
2 T2 '

Spherical harmonics. The Y}, (6, ¢) functions form a complete and orthonormal set on the unit sphere, and are
therefore widely used in classical and quantum physics. Not much need to be said here as their definition and
implementation into the RCAH program have been presented recently [11]; the spherical harmonics frequently
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appear in the representation of wave functions for a wide range of physical systems, in the evaluation of the
corresponding (quantum) matrix elements, and at many places elsewhere.

Bipolar and tripolar spherical harmonics. When defined asreducible tensorslinear combinations of products

of p spherical harmonics often form a convenient basis to represent (distribution) functions in physics which
depend orp vector directions. For this purpose, for instance, lifpolar spherical harmonicare defined as the
irreducible tensor product of two spherical harmonics with different arguments [3]

{Yi,01,00) @ Y1, (D2, 92}, ,, = Z (lama, lom2 | LM) Y13y (91, 91) Yiom, (92, ¢2). (5)

mimy

For differently, 2, L, andM, the bipolar harmonics form a complete and orthonormal set

f 21022 {Y1,(20) ® Y1, (22)}; 3 A Y1 (20 @ Y1y (R22)} 110 = 8111 81038118 (6)

of functions which depend on two unit vectors, say,andny, respectively. A similar definition also applies for
thetripolar spherical harmonics

(Y101, 01) @ {Y1,(92, 92) ® Y15 (P3, ¢3)},23}LM

= ) (luma.logmaz| LM){lama, l3m3 | 123m23) Yiymy (91, 91) Yigmy (92, 92) Yigmy (93, 93).  (7)

my,m2,ms3,ma3

where, however, different coupling sequences are possible and have to be taken into account in applications.
Apart from the sequende = I3 + (12 + [3),;, We also support the coupling = (I1 + 12),, + |3 in the RACAH

program; these two coupling sequences are related to each other by standard recoupling theory. The bipolar and
tripolar harmonics obey simple transformation properties under the rotation and inversion of the coordinates. For
products of two or more of these functions, which are given with the same arguen, ..., there exist
Clebsch—Gordan expansions as for the spherical harmonics, including the Wighsymbols of various types

[cf. Appendix A.4].

Tensor spherical harmonics. Following the standard coupling of two angular momenta, the tensor spherical
harmonics are constructed as a sum of products of the spherical harriippias ¢) (eigenfunctions of? and
1,) and the spin functiong,,,, (eigenfunctions o§? ands,)

i, @) =AY 1@ xshjm =D Yim (9, 9) Xsm (Imy, smy | jm) (8)

mjp,ms

so that an irreducible tensor of rariks obtained. While thé quantum number always occurs as a (nonnegative)
integer, the indiceg ands are both either integers or half-integers. For giveand s, the (orbital) angular
momentuni can take the values+s, j+s—1, ..., |j —s|; the allowed values of: arej, j—1, ..., —j. Typically,
the tensor spherical harmonits, (9, ¢) are represented by a column matrix wigy + 1) elements so that the
summation over the spin variable is replaced by a matrix multiplication. Similar to the spherical harmonics, which
form a complete set of functions on the unit sphere, the tensor spherical harmiohids ¢) form a complete
and orthonormal set of functions for the expansion of rargpinors with the domain of argumentsOy < r,
0< ¢ < 2n.

According to different definitions of the spin functions such as in a Cartesian, spherical, or helicity basis
representation, different components of the tensor spherical harmonics need to be distinguished Abnthe R
program, we currently support
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(i) the contravariant spherical componerftem Eq. (8)
(Y5, =Yimo@ @)im—0.50 | jm), o=ss—1... —s (9)
(ii) the contravariant helicity componenj3]

is 2+ 172
heol =[]

There are two special cases of the tensor spherical harmonics which are often discussed separately.

D’,; ,(0,8,9)(I0, s j1). (10)

Spinor spherical harmonics. Fors = 1/2, the tensor harmonics (8) are also called spinor spherical harmonics

l _ i3
2,0, 0) = Yj,f,(l‘/‘, ®) (11)

which are eigenfunctions of the operat@?sj., |2 ands?, wheres is assumed to be the spin operatorfet 1/2.

As for the tensor spherical harmonics, a number of different components need to be distinguished, including
contravariant and covariant tensor components. Table 2 lists the components of the spinor and vector spherical
harmonics which are presently supported by thecRH program; they refer to different definitions of the spin

basis functions as compiled in Appendix A.5.

Vector spherical harmonics. The other special case of the tensor spherical harmonics are those foesfiri.e.
the vector spherical harmonics

Y@, 0) =Y @, ¢). (12)

A large deal of representations, integrals, and algebraic relations are known for the vector spherical harmonics
which play an crucial role, for instance, in the quantum theory of light and in the current (hot) topic of laser-matter
interactions. Again, however, only a few components of the vector spherical harmonics with respect to different
definitions of the spin basis functions are presently supported by the program (see Table 2).

Table 2
Contravariant and covariant components of the spinor and vector spherical harmonics. See Appendix A for the definition of the different spin
basis functions

Spin basis Component Expression Remarks

Spinor spherical harmonics

Spherical spin basis (A.17) contravariant [rzﬁm(ﬁ »]° =(lm—o, %(r\ Jm)Y; m—q (8, 9) l=j+1/2; 0 =+1/2
covariant [rzﬁm(ﬁ o)y = (=1/2- ”[rzl @.0]7 I=j+1/2; 0 =+1/2
Spherical helicity basis (A.21) contravariant [Qﬁm(ﬂ <p)] \/m(zo 1A\;A)D’7L7m (0,9, 9) I=j+1/2; A==1/2
covariant [Q;m ®, <p)],\ = (71)1/2—*[9;” ®, <p)]LA I=j+1/2; A==£1/2
Vector spherical harmonics
Spherical spin basis (A.17) contravariant [Y ]m(ﬁ 0] =m—0,10 | jm)Y; y_o (9, 9) I=j,j%£1 0=0,+1
covariant [Y ]m(ﬁ »], = 1)”[Yl @,0]° I=j,j+1 ¢ =01
Spherical helicity basis (A.21) contravariant [Y ]m(ﬁ (p)] \/?(10 1| JA)DJ _n(0.9.9) I=j,j+1 A»=0+1
covariant [, 0, = (—D[Y! Lo @, 0]~ I=j,j+1 1=0+1
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Gaunt coefficients. Among the known set of integrals over the spherical harmonics, there are a few integrals which
occur very frequently in the description of many-particle systems and to which a special notation has been assigned.
The Gaunt coefficient, for instance, denotes the integral over a product of three spherical harmonics with the same
argument? = (9, ¢)

amallpmyllome) = / 42 Y7 ()i, (2) Vi (£2). (13)

In the study of atomic and molecular systems, the Gaunt coefficients naturally appear in the linearization of the
product of two orbital angular momentum states

Yim, () Yim (2) =Y {lamallymplleme) Yigm, (2)
lg,mg

as well as in the decomposition of reducible representations of the rotation group into irreducible representations.

Condon-Shortley coefficients. The Gaunt coefficients are closely related also to the Condon—Shortley coefficients
C*(ly, mga: Iy, mp) which are defined by the integral

b4
2k+1

The Condon—Shortley coefficients are required in atomic and molecular Hartree—Fock calculations, for instance, in
order to evaluate the electron—electron interaction matrix.

1/2
CE s ma; Iy, mp) = [ } / A2 Y7, (2)Ykmy—my (2)Yigm, (2). (14)

Coefficients of fractional parentage and reduced matrix elements. Several standard quantities from the atomic

shell model such as the (reduced) coefficients of fractional parentage and the matrix elements of the unit tensors,
both in LS- and jj-coupling, have been implemented before into trecRH program [8]. They are augmented

now also by theLS—j;j transformation matrices and the corresponding transformation of symmetry-adapted
configuration and atomic state functions [7].

Apart from the (reduced) coefficients of fractional parentage and the matrix elements of the unit tensors, all
procedures from Table 1 have been implemerealdditionto the previous version of theA®AH program [6].
These commands are designed in order to sugpsttcomputationsr, at least, to provide a quick reference to
a wider range of symbols and functions from the theory of angular momentum. All procedures, however, can be
invoked with either symbolic or numerical arguments. Of course, the numerical evaluation of an expression is
possible only if all arguments are nfimericaltype or, in the case of the Wignerj symbols, if they belong to
aspecial-valueln all other cases, a numbertestsare made on the consistency of the parameters but, otherwise,
the commands retunmevaluatedThen, a simplification may still occur later in a particular computation—if the
arguments evaluate properly. In practice, most computations are traced back internally to the calculation of the
Wigner 3:—j symbols and the spherical harmonics.

2.2. Hardware floating-point computations

The incorporation ohumericalprocedures into the &AH program follows a line which differs from our
previous design. In most earlier versions, namely, emphasis was paid mainly to the algebraic transformation and
simplification of Racah expressions [5] which (may) contain the Wigrgr symbols, the spherical harmonics
[11] and/or general recoupling coefficients [6]. However, a straightforward extension of this concept—aiming
to incorporate also other quantities from the theory of angular momentum and spherical tensor operators at an
algebraiclevel—appears as a vegjaboratetask which, in practice, may require a long-time effort. In this light,
the numerical supporbf a wider class of symbols and functions can be consideredfiast &tepwhich helps
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the user already now to tackle (more sophisticated) tasks within slmaR framework. For similar reasons also,

most modern CA environments have recently improved their support of hardware operations and their tools for
visualization. Beside of itsoftware modelfor instance, which basically allows the ‘exact’ transformation and
computation (including numbers of rather arbitrary lengthsAPME now supports the use of much faster floating-
point operations (its so-calldthrdware modgl For these two models, however, efficient algorithms are often quite
different from each other and still need to be developed for moststandardapplications.

As mentioned above, the calculation of expressions from the theory of angular momentum can be traced back
very often to the computation of the Wignet-3j symbols and spherical harmonics. Therefore, special care has
been taken to implement, in particular, thej3and 6 symbols in an efficient way using their symmetries
and recurrence relations [12]. In the program, however, the development ohambare floating-poin{hf)
procedures are kept well separated from the previous code for symbolic manipulations. These hf procedures are
called only if the parameters in the commands of Table 1 allow such floating-point operations without that a loss
of accuracy can occur, i.e. that the requested numb&¥ gf t s is appropriate for floating-point operations. In
all other cases, the computations are carried out as before withirnL &k software model, often by utilizing the
basic definition of these quantities in terms of more elementary functions. For the hf procedures, we internally use
thename conventioRacah_compute_quantity_hf() wherequantity refers to the name of the symbol (or procedure)
as shown in Table 1.

Here, we will not explain the implementation of the individual symbols in detail. A central role in the calculation
of many quantities is played by the recursive computation of the Wignga8d 6 symbols due to an algorithm
of Schulten and Gordon [12] as well as by the careful choice of the expansion which is used to evaluate the
spherical harmonics. Appendix B summarizes the recursion relations which are utilized for the Wigrssrd3—

6—j symbols; for the computation of the §-symbols, a proper summation over products of thregsis applied
internally. While, however, the implementation of ‘symbolic transformations’ often require a very clear and formal
program structure, a higher efficiency is sometimes obtained in numerical computations by making use of a (not-so-
obvious) re-arrangement of data and/or operations. Moreover, some of the numerical algorithms are suitable only
for a restricted range of parameters which are hard to recognize from a given implementation. Our strict separation
of the softwareandhardwareprocedures of the RcaH program will therefore help to append further numerical
algorithms without that the symbolic part of the code is disturbed. The explicit development and incorporation of
such (additional) algorithms will however depend onfibedbackvhich we will obtain from the user community.

3. Further modifications and distribution of the code

Recent MaPLE releases have provided a number of syntax extensions (and modifications) as appropriate for
a modern language. Of course, the central idea behind these improvements is to facilitate the program design
and maintenance. Two important syntax extensions from the recent years concern, for example, the automatic
type checkingf the (incoming) arguments and a simple incorporatiousér-defined typedhe use of these
two extensions have simplified the communication and data transfer within AbaHRprogram considerably.
Moreover, the ype check of user-defined data structures can now be handledipy &k standard syntax such as
type(a, keywor d) , wherea denotes any variable or expression, &ndie orf al se is returned in dependence
whethera meets the internal representation of kegword-typ@r not. Table 3 lists theype definitionsvhich have
been appended by theaARAH program to the inherent types of AdLE. Other syntax modifications such as the
(new) constructor ... do ... end do or if ... elif ... else ... endif, and others are now also exploited within&xH
and helped improve the readability and re-use of the code.

Another great benefit for the implementation of large software packagea i #arises from the proper use
of moduleswhich help to encapsulate, to maintain, and to install the code. Moreover, the use of modules facilitates
the hiding of internal data and program structures since all commands, which are provided to the user, must be
exportedexplicitly. We make use of this feature also for thedAH program which is provided now in terms of
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Table 3
Newt ype definitions for the RCAH program. A boolean value of either ue orf al se is returned
type(a,...) Returnst r ue if a belongsto oris a..
type(a, hal finteger) ...,—1/2,0,1/2,1,3/2,...
type(a, hal f nonposi nt) ...,—3/2,-1,-1/2,0
type(a, hal f nonnegi nt) 0,1/2,1,3/2,...
type(a, hal f negi nt) ...,=3/2,-1,-1/2
type(a, hal f posi nt) 1/2,1,3/2,...
type(a, Racahexpr) Racah expression, see Ref. [4]
type(a, Racahsun) Racah sum, i.e. a sum of Racah expressions
type(a,tdelta) Kroneckers,,, a triangulars (a, b, ¢) or a Dirac functions (x — x”)
type(a, delta) Kroneckers,p,
type(a,triangle) triangulars(a, b, ¢)
type(a,dirac) Dirac functions (x — x”)
type(a, wnj) Wignern—;j symbol ¢ =3, 6, or 9)
type(a, w3j) Wigner 3 symbol
type(a, wej) Wigner 6— symbol
type(a, woj) Wigner 9— symbol
type(a, YIm spherical harmonic

two modules: While (i) the&kacah module comprises all procedures for the symbolic and numerical treatment of
Racah expressions [4-6], the (@i)cys module contains the quantities from the atomic shell model [8] as well as

the LS—j;j transformation matrices and procedures [7]. Both modules can be invoked simplthi3acah) and
with(Jucys) and, altogether, contain more than 240 procedures or about 50,000 lines of code and data. To make use
of Jucys’ functionality requires, however, that tiacah module has been loaded before.

The extension of RcAH towards applications from the atomic shell model [7,8] required to incorporate a large
number ofdatafor the classification of the subshell states. In the previous versions, these data needed to be re-
initialized explicitly during the execution of the program, in dependence of the particular application. With the
(new) modulestructure of MAPLE, a faster access onto this quantities has now be achieved. These data for the
classification and transformation of atomic shell states are all contained Jndmodule. With the adaptation
of the RACAH program to the present standard, we also included a number dfglpywagesvhich, by a proper in-
stallation, are incorporated directly intoA®LE's help facilities. Moreover, a brief list of all (exported) procedures
of the individual modules can be obtained by meanBaafah_help(Racah) or Racah_help(Jucys), respectively.

The design and set-up of modules also facilitates the distribution of the code. As before, the whole package is
distributed by the tar fil&Racah2002. t ar from which theRacah2002 root directory is (re-)generated by the
command ar -xvf Racah2002. t ar. This root contains the source code libraries (forME 7 and 8), a
Read. ne for the installation of the program as well as the docunRatah- conmands. ps. This document
provides the definition of aiata structure®f the RaCAH program as well as an alphabetic list of all user relevant
(and exported) commands. TRacah2002 root also contains an example of aapl ei ni t file which can
easily be modified and incorporated into the uskosre. Making use of such amapl ei ni t file, then, the two
modulesRacah andJucys should be available like any other module oARLE.

4. Run-time comparison between the different computational models
In many applications, theeliable but alsofastaccess to the symbols and functions from Section 2 appears to be

of quite similar importance. Therefore, in order to demonstrate the acceleration in the computations due to the use
of the particularly designed numerical algorithms and hardware floating-point operations, here we provide a brief



S. Fritzsche et al. / Computer Physics Communications 153 (2003) 424-444 435

run-time comparison between tlseftwareand hardware procedures of the RCAH program. This comparison

shows the capabilities of the presently revised version and may help the user in making the decision, whether a
given problem can be solved entirely within the framework @fcRH or if an interface between the symbolic
evaluation and the (final) numerical computations need to be developed.

In practice, of course, the overall gain in the efficiency of a computation by means of hardware-adapted
algorithms will usually depend on the particular requirements of the given task. If one considers the wide range of
possible parameters and applications, therefore, a syagtefactoris hardly to be obtained for the various cases.
However, to provide a good fingerprint on the acceleration due to the use of numerical procedures, we may define
and calculate a few representative Racah expression—utilizing battsHRs software and hardware procedures.
Since most quantities from Table 1 are traced back internally to the computation of the Wigngymbols and
spherical harmonics, the following two (finite) summations

Imax a+5 4 5 c

XX (51 ) as)
Imax a+5 c+2 a+2

MDD D IR VA (10

a=0 c=la—5| d=|c-2| f=la—-2]

are defined for the Wigner 3-and 6 symbols, respectively, which only depend on a single paramigigr% 0)
and which, in dependence @nay, are quite representative for rather a wide range of parameters. For the spherical

harmonics, similarly, we define the (finite) sum

Table 4
Run-time comparison betweemRAH’s software and hardware procedures for the finite summations (15)—(17).

A comparison is made in dependence of the paranigigrwhich is representative for a wide range of angular
momentum quantum numbels. is the number of terms in the corresponding summation and the (run) times
are given in seconds. All computations have been carried out by means of a 1000 MHz Pentium Ill processor.
The values of these (rather arbitrary) expressions are also given in order to facilitate a test of the installation

Expression Imax N Time Value Comments
Expr. (15) 10 91 <1 0.6399280116 hardware modBl,gits = 12
<1 software modelDi gits = 12
<1 software modelDi gits = 24
200 2181 - @ soft- and hardware moddl gits = 12
6  9.354589477 software modé&l, gits = 24
Expr. (16) 10 2175 1 1.418802038 hardware moBeQi ts = 12
5 software modelDi gits = 12
7 software modelDi gits = 24
50 13175 6 2.239234279 hardware modlgi ts = 12
44 software modeDi gits = 12
53 software modeDi gits = 24
Expr. (17) 10 121  «1 {7.218872080 hardware mod€i, gi ts = 12
1 —5.816808893i}  software moddlj gits = 12
1 software modelDi gits = 24
30 961 <1 {-12.04709382 hardware modBl,gits = 12
7 —29.09665235i}  software modd)j gits = 12
9 software modelDi gits = 24

& Computation not possible for the given numberDdfgi t s due to the large factorials which arise in the

evaluation.



436 S. Fritzsche et al. / Computer Physics Communications 153 (2003) 424—-444

Imax 1

37 Yo o) (17)

=0 m=-I

which we evaluate below fofg = 0.166 andgg = 0.675, the approximate (geographical) coordinates of our
university in Kassel. For these three expressions (15)—(17), Table 4 compares the run-time requirements of the
software and hardware computations for different valuegngf, i.e. different ranges of parameters, and for a
different number of (validDi gi t s. In this table, all computations were carried out by means of a 1000 MHz
Pentium Il processor. Moreover, we also display the (rather arbitrary) values of the corresponding sums in order
to provide the user with a simple test of his or her installation. Overall, a gain of about a fact8ri§ obtained
if the given parameters and the required accuracy of the computations allow for the useaHi’'® hardware
procedures. A similar gain can be expected also for most other quantities from Table 1 which, internally, refer to
the Wigner 3—j symbols and spherical harmonics.

In conclusion, a new and quite extended version of the &4 program is provided which incorporates a large
set of new symbols and functions from the theory of angular momentum. Since the full support of (all known)
symbolic transformations will require a long-term effort, emphasize has first been paid to the fast and reliable
computation of these symbols. Apart fromaMLE’s (standard) software model, we now also support much faster
hardware computations-f this happens to be possible for the given set of parameters. For a further acceleration
of these computations, moreover, efficiemnimerical algorithmsave been implemented for the Wigner;j3and
6—;j symbols, the spherical harmonics as well as the Gaunt coefficients. We hope and expect that itbrithis
solution, which combines software and hardware algorithms from the theory of angular momemntosy 'R
range of applications will be considerably enlarged within the near future.
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Appendix A. Definition of standard coefficientsand mathematical relations

For later reference, here we compile the definition and a few important relations for (most of) the quantities
from Table 1. These relations are used internally for the algebraic rearrangement of expressions as well as for
the numerical computations within APLE’s software and/or hardware floating-point mod&hey also provide
the user with the rules and phase or normalization conventions which we follow withinatheHRprogram. For
the Wigner 35 and 6 symbols, moreover, a set efficientbut usually more sophisticated algorithms have
been implemented for the further acceleration of hlkedwarecomputations; a brief outline of these numerical
algorithms is given below in Appendix B.

A.1l. Wignei3n—j symbolgn = 1, 2, and3) and Clebsch—Gordan coefficients

An explicit representation of the Wigner 3-and 65 symbols in terms of sums of factorials has been given
in Ref. [4], Appendix A. These expression are used internally for all computations of the Wigngisgmbols
(n =1, 2, and 3) within MaPLE’s software model whereby the $-symbols are obtained from a finite sum over
products of three 67-symbols [cf. Ref. [4], Eq. (17)]. Beside of humerical computations, however, K&AR
program also knows a large number of sum rules for the Wigney 3ymbols which can be utilized for algebraic
manipulations and simplifications of typical Racah expressions [5]. Moreover, the program recognizes a variety
of special symbols for the Wigner 3-and 6- symbols, if these coefficients cannot be evaluated numerically.
In order to support fast hardware floating-point computations for the WigngmBd 6 symbols, a recursive
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procedure due to Schulten and Gordon [12] is implemented which is summarized in Appendix B.1 below. Recent
progress has been made in this field also by Roothaan and Lai [13] who applied a new algebraic method due to
Labarthe [14] to derive explicit formulas for the computation of the 8symbols.

No explicit representations are known internally for the Clebsch—Gordan coefficients. As mentioned in
Section 2, these coefficients are first alwagducedto the Wigner 3+ symbols, before any computation or
manipulation is carried out using the phase convention of Condon and Shortley [10].

A.2. Wignerl2—j symbols

The Wigner 12+ symbols are related to the unitary transformation of five or more (coupled) angular momenta
between various coupling schemes. There existjiRsnbols of two different kinds, called tHast andsecond
kind, which are usually expressed in terms of the Wignej §ymbols. For thdirst kind, the 12-(1) symbols,
such an expansion reads [3]

ay az a3z aq b b
_ _\S—x aip a2 bi|)az a3z b2
bi b2 by bs|lp =) (-1 [x]{c2 o x}{C3 o x}
c1 €2 C3 C4 x
« {ag as bg} {a4 c1 b4} (A1)
c4 €3 X a c4 X

with § = Zf:l(ai + bi + ¢i), while the 12-(2) symbols of thesecondkind are simpler expressed in terms of
Sharp’s symbol [9]

a1 az az as — as a1 by

bl b2 b3 b4 20 (_1)a1+a2+a3+a4—cl—cz—63—04 c2 - bl c1 (AZ)
c3 b3 — «c4

C1 €2 (€3 (4 by az ax —

which obeys a slightly higher symmetry. A representation of Sharp’s symbol in terms of the WigreisGgiven
by [3]

— a2 az aq

b1 — bz by b3—as—di+c az by x |)az ba x
= (—1)bs—aa—ditc2
c1 C2 — ¢4 =1 ;[x] b1 d3 b3 c4 az aa

di do d3 -—
by dz x ca as x
x { d c1 d1 } { d c¢1 ¢ } ’ (A-3)

In the RacAH program, Egs. (A.1)-(A.3) are utilized by the (hnew) comm&adah_w12j() for the numerical
computation of the 12~symbols (of both kinds) as well as of Sharp’s symbol. They are applied both, in the
software model as well as for hardware floating-point computations, exploiting the fast algorithm for the Wigner
6—j symbols. Further algebraic properties of these symbols are not known to the program.

A.3. WignerD-functions and rotation matrices

The WignerD—functionsDj (o, B, y) are usually defined as the matrix elements of the rotation operator

mm

D(a, B, y) in the jm-representation

(jm|D(a, B, y)|j'm')=8;;D. (a,B,7), (A.4)



438 S. Fritzsche et al. / Computer Physics Communications 153 (2003) 424—-444

see Varshalovich et al. [3], Chapter 4. In this definitieng, andy are the Euler angles which specify the rotation
of either the physical system or, often more conveniently, the coordinates. The Vilighuerction also help realize
the transformation of irreducible tensors of rahk.e. the(2;j + 1)-dimensional matricef.)rfnm, (o, B, y) inm and

m’ are unimodular

delD’ (B, )| =+1. (A.5)
Usually, the WignetD-functions are represented as a product of three functions
D;];.,lm/(a’ ﬂ’ y) — e_i'nad;m/(ﬂ)e_im/y (AG)

which depend each on just a single Euler angle; the fundt,j;%n(ﬁ) is taken to be real and is often called Wigner’s
rotation matrix. In the RCAH program, the WigneD-functions are always treated by means of expression (A.6)

and the corresponding rotation mamiégm,(ﬁ).

For the rotation matrices, a large number of explicit representations in terms of different functions or
derivatives as well as several integral representations are listed by Varshalovich et al. [3], Section 4.3. From these
representations, we use the four expressions

& (B = (DI [+ m)( —m)IG 4 mONG —m'] Y2
Bym+m'4+2k (qin B\2j—m—m'—2k

y Z(—l)k '(cosz) . (sinz) ’

p K(Gj—m—k)I(G—m —k)(m+m +k)!

(A.7)

dl(B) = (DI +m)I(j —m)(j +m)G —mH]T?
(Cosg)Zkfmfm’ (sin g)2j+m+m’72k

_\k
X;( D KG4+m—=—\G+m =ik —m—m")!’

(A.8)

di L B) =[G +mlG —m)G +mNG —m ]
(cosh )2/ ~2ktm=—n' (gjn b y2k=—mn

ok
XXk:( b KG+m—\ —m —k)m —m+k)’

(A.9)

dl(B) = (=1 [ +m) —m)( +m)IG —m)N]T?
(Cosg)ijzkferm/ (Sin %)Zkerfm’

Nk
X;( Y G = =i+ =m0

(A.10)

for all numerical computations, in dependence of the factorials which occur in the denominators of (A.7)—(A.10).
Both, MAPLE’s software and hardware floating-point computations are supported along these lines.

In addition to the WigneDr{lm,(a,ﬁ, y) anddjnm/(ﬁ) functions, which are expressed in terms of the Euler

angles, only the rotation matri&r{lm/(w; O, @) [cf. Section 2] are also supported by the program. Several other
variants of the rotation matrix are known but are not incorporated (yet) into the program.

A.4. Spherical harmonics; bipolar and tripolar harmonics

For the last two years [11], the symmetries and properties of the spherical harrigniése) are now also
known to the RRcaH program and are exploited for symbolic manipulations of Racah expressions. By using
the properties of the spherical harmonics, however, products of two or three of these functioncoarblyeed
also to represent irreducible tensors of two (three) solid angles. Eqgs. (5) and (7) give the definition of the
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bipolar andtripolar spherical harmonics as irreducible tensors of rédnkFor functions which depend on two
(three) unit vectors, say, n2, (andns,) the bipolar (tripolar) spherical harmonics with differéntls, (I3,)L, M

form a complete and orthonormal set. For the bipolar spherical harmonics, for instance, the orthogonality and
normalization is

/ / A21.d922 (Y1, (20 & Y1224y (Y1 (20 & Y1, (22)} 10y = St b1sS1.0/m1rr (A11)
while the corresponding completeness condition takes the form
> AL @D ® Y1257, YL (2D ® Y1, (22)}7,, = 8(521 — 21)8 (22 — £25) (A.12)
o LM
with
2 b4
2 ={9,¢), /dQ E/d(p/dﬁsinz?,
0 0

5(2 — 2') = 8(cos? — cos?’)s (g — ¢).

Analogue relations also apply to the tripolar spherical harmonics. Moreover, for products of two (or more)
bipolar or tripolar harmonics with the same argumeRis 2, (and$23), Clebsch—Gordan expansions in terms of
these functions and the Wigne+; symbols are known and utilized in different areas of physics; for the bipolar
spherical harmonics, for instance, one of the Clebsch—Gordan expansions reads as [3]

(Y (@20 @Y 22} Y (2D @Yy (22}

=Y (LM’ L"M"|LM)Y " B(L4loL s {15 L o L) {Y 1, (821) ® Y1, (22)} (A.13)
LM ol
where
/ 4
l/, l/, l”, l”, L/, L”, 1/2 ll 1 11
B(I{5L {15 L lalp L) = 12, 12 ] (110, 1701110)(150, 1501120) y 1, 15 12 (A.14)
am L L' L

and[a,b,...] = (2a + 1)(2b + 1).... A number of other Clebsch—-Gordan expansions are also found in the
literature. Until now, however, only the computation of the bipolar and tripolar harmonics is supported by the
RAcaAH program; for fast numerical computations, the corresponding algorithms of the spherical harmonics are
used.

A.5. Spin functions and tensor spherical harmonics

In quantum physics, the spin functions are used to describe the polarization properties of particles and composite
systems with definite spin, i.e. a definite intrinsic angular momentum [3]. Usually, the spin functions are treated as
functions of some discrete varialitfewhich, for instance, may represent the spin projection ontg-#ves. For a
given spins, these functions are commonly written as column matrices

x(s)

-1
P R (A.15)

x(=s)
with (25 + 1) elements which represent the values of the spin functian) for the corresponding value of.
Accordingly, the Hermitian conjugate functiofi takes the form of a row matrix
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xT= () s =D (). (A.16)

Several definitions of the spin functions are known from the literature, in dependence of the choice of the
quantization axis and the context of application. With space-fixed coordinates, one often usessfihéricd)
spin basis functionswvhile (ii) the (spherica) helicity basis functionare applied for particles with a well-defined
linear momentum.

The spherical spin basis functions are eigenfunctions of

Sszm =s(s+ 1)h2Xsm, Sz Xsm = MA Xsm, (A.17)
and, thus, have theontravariant components
[Xsm]g =0gm- (A18)

Fors = 1/2 particles, in particular, the spin basis functions (m = +1/2) are usually written as

1 0
X%%Z(O)’ X%_%=(1>, (A.19)

while, fors = 1 particles, these functions,, (m = £1, 0) are given by

1 0 0
X11= (0) ) X10= (1) ) X1-1= (O) . (A.20)
0 0 1

In general, these sets of 2 1 basis functiong;,, (m =s,s — 1, ..., —s) form a complete and orthonormal basis
in the according spin space.
If the linear momenturp of a particle is taken as quantization axis, the spin projectialong this axis is called

thehelicity. Again, the helicityh = 5,5 — 1, ..., —s takes 2 4+ 1 possible values; however, since the helicity basis
functions are eigenfunctions et ands-n=s-p/p
S- nXS)n(ﬁv (p) = )\thk(ﬁ» (p)a (A21)

these functions depend on the polar anglendg (of the momentum vectgr or n, respectively).
The helicity basis functiory,, (%, ¢) can be generated from the spin basis functions (A.17) by means of a
rotation which turns the (space-fixegpxis parallel tan(#9, ¢) [3]

X8, 90) =Y D3y (9,9, 0) Xsm, (A.22)
m

and vice versa

Xsm=Y_ D, (0.9,0)x51 (2. ), (A.23)
A

and, hence, the contravariant components of the helicity basis functions are

(122, 9)]” = D35 (. 9, 0). (A.24)
For spin—% particles, the explicit form of the helicity basis functions is given by
5 o) — cosye1¢/2 5 o — —singe¢/2 A o5

Using the definition of the basis functions (A.17) or (A.21), one often wishes to construct tensor spherical
harmonics
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i, @ 0) =AY 1@ xshjm =D Yim (9, 9) Xsm (Imi, smy | jm) (A.26)

mjp,ms

which are obtained from the coupling of the orbital angular momentand spins to a total angular momentum
j =1+ sand, thus, are eigenfunctions B s, j, j.. Obviously, the 2 + 1 functionsY/; (9, ¢) with m =

j.j—1,...,—j form a irreducible tensor of rank; moreover, the tensor spherical harmonYc;g(z?, @) also

provide a complete and orthonormal set of functions for the expansion of r@msor functions with the domain

of arguments & 6 < 7, 0< ¢ < 2r. Inthe RACAH program, we currently support the (numerical) computation of

the contravariant components with respect to the spherical spin basis functions (A.17) and helicity basis functions
(A.21) for arbitrary spins. In addition, special procedures are provided for the more frequently used spinor

(s = 1/2) and vector { = 1) spherical harmonics; see Table 2 and the following Section A.6. Apart from the
(contravariant) components no further properties such as the transformation coefficients of the spin functions, the
spin density matrices, or others are (yet) supported by the program.

A.6. Spinor and vector spherical harmonics
Fors =1/2 ands = 1, special symbols and notations are used for the tensor spherical harmonics (A.26)

! _ vl

Y., (0,0) =Y (9, 0) (A.28)

m

which are called the spinor and vector spherical harmonics in these cases. They are typically expressdd by 2
(and 3x 1) column matrices which help replace the summation over the spin variable by a matrix multiplication.
For the spinor and vector spherical harmonics, the program supports both, the contravariant as well as covariant
components in the (spherical) spin and helicity basis. Table 2 lists the definition of the various components as
utilized by the RRCAH program.

Appendix B. Fast numerical algorithms

Algorithms for fast numerical computations are known for various quantities from the literature. They often
benefit from particular restrictions which apply to certain classes of problems; other algorithms sometimes uses
predefinedarrays of numbers from which the results are obtained more easily than from a direct computation. In
the RacAH program, we presently support only the fast recursive computation of (a whole set of) the Wigner 3—
and 6 symbols, both in the software as well as hardware floating-point model. These recursive relations are then
also used for the computation of the Gaunt coefficients.

B.1. Schulten—Gordon recurrence for the WigBel and6—; symbols

A fast recursive computation of the Wigner 8and 6 symbols and, in particular for large values of the
arguments or for complete sets of such coefficients, were first implementeddrerEN code by Schulten and
Gordon [12]. In this previous implementation, use was made of thedne-éteprecursion relations for thg- and
m-values in the Wigner 37-symbols

aA(a+1)(a+l b C)+B(a)(a b nf)+(a+1)A(a)(

mg mp  NMe mg mp

1 »b c

a—
mg mp N

> =0 (B.1)

with
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A@)=Va?— (b2 (b+c+12—a?/a? —m2,

B(a) =—Q2a+ D[b(b+ Dma — c(c + Dmg — ala + 1) (me —myp)],

(B.2)

and

a b c a b c a b c
C(ma+1)(ma+l mp—1 mc>+D(ma)<ma mp mc>+c(ma)(ma—l mp+1 mc>_0

(B.3)
with
Cma) =+/(a—mg+1)(a+ma)(b+mp+ )b —mp),
Dmy)=a@+D+bb+1) —clc+1)+2mamyp. (B.4)
These linear three-term recursions (B.1) and (B.3) reduce to just two terms for the minimal and maximal values
amin= b —c|, amax=b+c,
(B.5)
mamin=|_a|’ Mamax = A

and, hence, can be utilized for addwnwardor upwardrecursion. In the RcaH program, we apply Eqg. (B.1) and
a downward recursion for theecursivecomputation of single Wigner 3-symbols, by starting from the special
value

(b+c b c

mg mp  NMe

) — (_1)7b+67mb7m,_-[b+C]7l/2

|:(2b)!(2c)!(b+c +mp+m)lb+c—mp— mc)!:|1/2 .

2D+ 2c)/ (b + mp)!(b — mp)!(c +m)(c — m)!

and by using a re-arrangement of the arguments saithainax(a, b, ¢) is always achieved.
A similar (one-steprecursion relation also applies for the WignerjGymbols [12]

aE(a+1)<“:;1 ’ ;>+F(a)(g ’ ;>+(a+l)E(a)<ad_1 ’ ;):o (B.7)

with

E(a) = \/az—(b—c)z\/(b—i—c—l-l)z—az\/az—(e—f)z\/(e—i—f—i-l)z—az,

Fa) = a+Dfa@+D[-ata+1) +bb+1) +clc+1)]
+e(e+l)[a(a+l)+b(b+l)—c(c+l)]
+ f(f+D[a@@+1) —bb+1)+c(c+1)]—2a(a+ Dd(d + 1)} (B.8)

and withnon-zeraz-values in the range

Amin = ma><(|b —cl,le— f|) ... amax=minb +c,e+ f). (B.9)
Again, this recursion equation (B.7) is applied for tleeursivecomputation of single Wigner §-symbols by
arranging the arguments to have- max(a, b, ¢, d, e, f) andamax= b + ¢, and by using the special value

b+c b c| _ (qyprerets @20)(2)b+c+e+ f+DIb+c—e+ )
d e f| @b+2c+DI(=b—c+e+ HIb+ f—d)!
N b+c+e— HI(-b+ f+d)!(—c+e+d)
b—f+dDb+f+d+Dl(c+e—d)(c—e+d)(c+e+d+1)

]. (B.10)
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Apart from the (recursive) computation of single Wignerj&nd 6 symbols, the recursion equations (B.1),
(B.3), and (B.7) above can be also utilized to generate a whole range of coefficients such as

dmin--Amax b C _ Aamin b C amin + 1 b C amax b C (B ll)
My mp me) \mg mp me)’ My mp me)’ U\ mg mp me )’ '

a b ¢\ ([ a b c a b c a b c
—a.a . me) \—a a-m, m.)’ ' \—a+1 a—-1-m, m.)" " "'\a —a—-m. m.)’

(B.12)
for the Wigner 35 symbols and, similarly,

Admin--@max b c __J @min b ¢ Amin + 1 b ¢ amax b ¢ (B 13)
d e fl7 1 d e f|’ d e f|7l d e f '
for the 65 symbols. For such eange of coefficienthowever, the recursions must be carried out both, downward
and upward from the two non-classical domains and towards the intermediate region of large coupling coefficients,
as pointed out by Schulten and Gordon [12]. In this case, moreover, the recursion equations are better applied

to determine the Wigner 3—and 6 symbols only up to a constant factor which is finally obtained from the
following unitary properties and phase conventions [12]

2 -
a b ¢ _ ; amax b ¢ _ (_a\b—c—ma

Ea [a] (ma my mc> =1, S|gn_( m,  my mc>] =(-1 , (B.14)

2 -
Z a b c . a b c “m
[a] (ma mp —mg — mb> - 1’ Slgn_(a mp —a— mb>] - (_1)2a+b b’ (Bls)
Z[a a1l b ¢ 2_1 sign- amax b ¢ = (—1ybtetetS (B.16)
- ’ d e f| 7 | 4 e ff] ’ '

A two-siderecursion is generally necessary in order to ensure a numerically stable procedure since the coupling
coefficients may oscillate rapidly in the intermediate region of the quantum numbers but decay exponentially to
zero towards their boundaries.

In the RacaH program, a recursive computation of single Wignel &nd 6 symbols is implemented, if
the keywordrecursiveis given explicitly; moreover, such a recursive procedure is also utilized+ib + ¢ > 30
for the Wigner 35 symbols andi + b + ¢ +d + e + f > 40 for the 65 symbols, respectively. In the present
implementation, moreover, we always utilize—if possible-AfME's hardware floating-point model for the
computation of these symbols. The recursion relations (B.1), (B.3), and (B.7) are also applied if a (complete) range
of coefficients such as (B.11)—(B.13) is to be calculated by a callatmh_w3j _range() or Racah_w6j_range(),
respectively. For all further details, see the user manual in the document Racah-command.ps which is distributed
with the program.

B.2. Cruzan’s algorithm for the Gaunt coefficients

The efficient computation of the Gaunt coefficients, i.e. the integrals over products of three spherical harmonics,
has been recently reviewed and improved by Sebilleau [15]. From his analysis of various algorithms, he suggested
to start from the representation of the Gaunt coefficients in terms of the WigriesyBabols

Lo Iy, 11\ Y2
<lama|zbmb|zcmc>=<—1>’"«(M> (l“ by l)( la ZC>, (B.17)

A 0 0 O —mg mp Mg
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which was first introduced by Cruzan [16], and to use the recurrence procedures from Appendix B.1 The use of
these recursions is supported by the comntanchh_Gaunt() if an additional keywordecursiveis given explicitly
or, as default, itz + b + ¢ > 30.
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