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Abstract

During recent years, much attention in developing general-purpose, computer–algebra systems was focused not onl
symbolic algorithms but, to a very similar extent, also on fast numerical computations and improved tools for visua
Behind this development, of course, the main idea is to provide the users with a single environment for the solution
scientific or engineering tasks. In a revised version of the RACAH program, we follow this idea and provide a fast and mu
extended access to the standard quantities from the theory of angular momentum within the framework of MAPLE. In this
revision, emphasis is paid to the efficient computation of the standard quantities by supporting both, the default softwa
as well as fast (hardware) floating-point computations. Moreover, RACAH is now organized and distributed as a MAPLE module
which can be installed and utilized like any other module, including help pages and the use of internally recogniz
structures. The present extension of the RACAH program may therefore enlarge the range of applications considerably to
problems from quantum optics, collision theory or even solid-state physics.
 2003 Published by Elsevier B.V.
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NEW VERSION SUMMARY

Title of program: RACAH

Catalogue identifier:ADRW

Program Summary URL:http://cpc.cs.qub.ac.uk/summaries/ADRW

Program obtainable from:CPC Program Library, Queen’s Univer-
sity of Belfast, N. Ireland

Licensing provisions:none

Computers for which the program is designed:all computers with
a license of the computer algebra package MAPLE [1]

Installations: University of Kassel (Germany)

Operating systems under which the program has been tested:Linux
7.1+ and Windows2000

Program language used:MAPLE 7 and 8

Memory required to execute with typical data:5–50 MB

✩ This program can be downloaded from the CPC Program Library under catalogue identifier: http://cpc.cs.qub.ac.uk/summaries/
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No. of bytes in distributed program, including test data, etc.:
2 429 654

Distribution format: tar gzip file

Keywords: Angular momentum, bipolar harmonic, Clebsch–Gor-
dan coefficient, coefficient of fractional parentage, Condon–Short-
ley coefficient, Cruzan’s algorithm, Gaunt coefficient, Racah’sW -
coefficient, reduced matrix element, rotation matrix, Sharp’s sym-
bol, spherical harmonic, spinor spherical harmonic, tensor spherical
harmonic, tripolar harmonic, unit tensor, vector spherical harmonic,
WignerD-function, Wignern–j symbol.

Nature of the physical problem
The theories of angular momentum and spherical tensor operators
provide a very powerful calculus for the study of (quantum) many-
particle systems, sometimes known also as Racah’s algebra. The
efficient use of these theories, however, require—apart from the
knowledge of a great deal of algebraic transformations and rules—
a fast and reliable access to their standard quantities such as the
Wigner n–j symbols and Clebsch–Gordan coefficients, spherical
harmonics of various kinds, the rotation matrices, and many others.

Method of solution
A set of MAPLE procedures has been developed and maintained
over the last years which supports both, algebraic manipulations as
well as fast computations of the standard expressions from the the-
ory of angular momentum.

Restrictions onto the complexity of the problem
Of course, the full power of the angular momentum theory is given
by a large set of (group-theoretical and often rather sophisticated) re-
lations between its standard quantities, which may help simplify and

reduce the “numerical costs” in the theoretical treatment of (qu
tum) many-particle systems dramatically. In fact, many details
such systems can be understood only if the proper algebrai
lations are found and applied. In the present version of RACAH,
however, symbolic manipulations are supported so far only
those expressions which include the Wignern–j symbols (n � 9),
Clebsch–Gordan coefficients and/or spherical harmonics. Fo
other quantities, we currently just facilitate fast numerical comp
tions, by making use also of MAPLE’s recently implementedhard-
ware floating-point model.

Unusual features of the program
The RACAH program provides an interactive environment whi
apart from the standard symbols and functions of the theory o
gular momentum, also supports the evaluation of recoupling c
ficients, various coefficients and matrix elements from the ato
shell model as well as transformation matrices between diffe
coupling schemes [2].

Typical running time
Although the program replies ‘promptly’ on most requests, the r
ning time depends strongly on the complexity of the expression

References
[1] Maple is a registered trademark of Waterloo Maple Inc.
[2] S. Fritzsche, Comp. Phys. Commun. 103 (1997) 51;

G. Gaigalas, S. Fritzsche, B. Fricke, Comp. Phys. Commun.
(2001) 219;
S. Fritzsche, T. Inghoff, T. Bastug, M. Tomaselli, Comp. Ph
Commun. 139 (2001) 314.

LONG WRITE-UP

1. Introduction

The theory of angular momentum offers two crucial advantages for the treatment of quantum many-
systems: (i) the definition of rather a small number of standard quantities and (ii) an elegant and very p
calculus which help simplify and evaluate sophisticated expressions. Owing to these advantages, the te
from this theory (sometimes known also as Racah algebra techniques [1]) have been utilized in a large n
applications and in quite different field of many-particle physics [2,3]. In the earlier design [4–6] of the RACAH

program, however, we just focused on the second benefit so far, the algebraic transformation ofRacah expression
[cf. Fig. 1 in Ref. [4]] which were found appropriate for symbolic manipulations. Until now, such Racah expre
may include the Wignern–j symbols, Clebsch–Gordan and recoupling coefficients as well as (various int
over) the spherical harmonics. To obtain a simplification even for complex expressions, a large variety of s
orthogonality rules were implemented earlier. Today, these developments from the last eight years about ar
not only in the automatic derivation of (atomic) perturbation expansions, but also in theLS ↔ jj transformation
of symmetry-adapted functions [7] as well as for the evaluation of many-particle matrix elements within the
and nuclear shell model [8].

Less attention in the earlier design of the RACAH program has been paid to the efficient and reliable computa
of the standard quantities from the angular momentum theory. Fast computations, of course, require th
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hardware floating-point algorithms, a line which has now been followed up also by several general-pur
computer–algebra (CA) systems such as MAPLE or MATHEMATICA . The implementation of floating-poin
algorithms may help solve scientific and engineering tasks within the ‘same computational environment’,
from a first analysis of the problem and by utilizing both, symbolic manipulationsandnumerical computations unt
the point is reached where the results need to be visualized and presented. For applications of the theory o
momentum, the realization of this concept requires an efficient computation not only for the Wignern–j symbols
and spherical harmonics but also for a much larger set of other symbols and functions. A major interest i
development concerns, for instance, various tensorial types of the spherical harmonics, the Wigner rotation
or special coefficients from the (atomic or nuclear) shell model. But although these standard quantities can
introduced quite easily into some theoretical derivation, a reliable implementation—which is consistent i
its definitions and phases—is usually much harder to find. Typical fields of application hereby may includ
energy physics, atomic and molecular structure and scattering theory or even electro-magnetic field com
for nano-type structures and mesoscopic systems.

With a larger range of applications, of course, a better incorporation of the RACAH program into the (underlying
MAPLE environment also became necessary and very desirable. This need is obvious as the whole prog
contains more than 240 subprocedures which are hidden mainly behind the about 20 user-relevant (an
commands. For a proper encapsulation and protection of the code, MAPLE now supports the use ofmoduleswhich
help incorporate additional packages into its overall framework, including new help pages, the use of inter
structures, and a much simpler distribution and installation of the code. In addition, the careful use of m
facilitates further improvements and modifications of the code without that the user interface need to be ch

To follow the recent trend in the development of the general-purpose CA environments, here we present
version of the RACAH package. This package now provides a considerably enlarged set of (standard) functio
the theory of angular momentum which are distributed within two (MAPLE) modules, including their help page
and a manual for quick reference. In the next section, we first summarize all quantities which are now supp
the program as well as the use and implementation of floating-point algorithms for a few more important s
For their detailed definition and computation, however, we refer the reader to two appendices below. For mo
additional quantities, emphasis was paid first of all on a reliable computation while the knowledge about the
braic) properties and transformations can be likely considered only stepwise in the future. Section 3, then, d
the revised program structure and the distribution of the code. A short run time comparison in Section 4
demonstrates the acceleration in the computation of the Wigner 3–j and 6–j symbols and the spherical harmoni

2. Extensions to the RACAH program

2.1. Enlarged set of numerical procedures

In physics, a number ofstandard quantitiesare typically used in order to express most formulas which
related to the theory of angular momentum. Apart from the Wignern–j symbols (whose need, originally, ga
rise to the design and set-up of the RACAH package), for instance, these are the rotation matrices of va
types, products and linear combinations of the spherical harmonics, reduced matrix elements, and man
The algebraic manipulation of these quantities often help achieve (mathematical) simplifications of great e
and, thus, to obtain insight also into the behavior of physical systems. For most of these quantities, how
properties and relations among each other are unfortunately not (yet) available at a (computer–) algebraic level;
a situation which is likely not to change much within the next few years. Therefore, in order to facilitate a
the efficient use and computation of these quantities, we incorporated several of them at a ‘numerical le
the present version of the RACAH program. Table 1 lists the presently implemented symbols and functions
the theory of angular momentum and the (corresponding) commands. These procedures provide not o
and interactive access to these entities—and, hence, may ‘replace’ many (old-fashioned) tabulations—but
facilitate new applications, for instance, in the treatment of many-particle systems. The full algebraic sup
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Table 1
List of symbols and functions which are presently supported by the RACAH program. The definition of these quantities mainly follows
monograph by Varshalovich et al. [3] about the theory of angular momentum

Symbol Designation RACAH procedure

(
a b c
ma mb mc

)
Wigner 3–j symbol Racah_w3j(), Racah_w3j_range()

{
a b c

d e f

}
Wigner 6–j symbol Racah_w6j(), Racah_w6j_range()


a b c

d e f

g h i

 Wigner 9–j symbol Racah_w9j()


a b c d

e f g h

i j k l

∣∣∣∣∣∣ s
 Wigner 12–j symbol of kinds = 1,2 Racah_w12j()


− a2 a3 a4
b1 − b3 b4
c1 c2 − c4
d1 d2 d3 −

 Sharp’s symbol [9] Racah_w12j()

〈a ma, b mb|c mc〉 Clebsch–Gordan coefficient Racah_ClebschGordan()

W(abcd; ef ) Racah’sW coefficient Racah_Wcoefficient()

d
j

mm′ (β) Wignerd j
mm′ (β) rotation matrix Racah_dmatrix()

D
j

mm′ (α,β,γ ) Wigner’sD-function Racah_Dmatrix()

U
j

mm′ (ω;Θ,Φ) Rotation matrixU(ω) Racah_Umatrix()

Ylm(ϑ,ϕ) Spherical harmonic Racah_Ylm(){
Yl1(ϑ1, ϕ1)⊗ Yl2(ϑ2, ϕ2)

}
LM

Bipolar spherical harmonic Racah_bipolarY(){
Yl1(ϑ1, ϕ1)⊗ {

Yl2(ϑ2, ϕ2)⊗ Yl3(ϑ3, ϕ3)
}
l23

}
LM

Tripolar spherical harmonic Racah_tripolarY()

Y ls
jm

(ϑ,ϕ) Tensor spherical harmonic Racah_tensorY()

Ω l
jm

(ϑ,ϕ) Spinor spherical harmonic Racah_spinorY()

Y l
jm(ϑ,ϕ) Vector spherical harmonic Racah_vectorY()

〈lama | lbmb | lcmc〉 Gaunt coefficient Racah_Gaunt()

Ck(la,ma; lb,mb) Condon–Shortley coefficient Racah_CondonShortley()
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Table 1
(Continued)

Symbol Designation RACAH procedure

(
γαQΓ |||a(qγ ) |||γα′Q′Γ ′) Reduced coefficient of fractional

parentage
Racah_rcfp()

(
lN αQLS || lN−1(α′Q′L′S′)l

)
or(

jNαQJ || jN−1(α′Q′J ′)j
)

Coefficient of fractional parentage Racah_cfp()(
jNαJ ||T (k) || jNα′J ′) Reduced matrix element of the unit

tensorsT (k) in jj -coupling
Racah_reduced_T()

(
lN αLS ||U(k) || lN α′L′S′) Reduced matrix element of the unit

tensorsU(k) in LS-coupling
Racah_reduced_U()

(
lN αLS ||V (k1) || lN α′L′S′) Reduced matrix element of the unit

tensorsV (k1) in LS-coupling
Racah_reduced_V()

(
j αQJ |||W(kqkj ) ||| j α′Q′J ′) Reduced matrix element of the unit

tensorsW(kqkj ) in jj -coupling
Racah_reduced_W()

(
lαQLS |||W(kqkl ks ) ||| lα′Q′L′S′) Reduced matrix element of the unit

tensorsW(kqkl ks ) in LS-coupling
Racah_reduced_W()

these quantities, however, can be provided only later step by step as further symbolic algorithms are d
and, in fact, the requirements will arise from the side of the user. Since the calculus of angular momentum
developed to a very large and powerful framework during the last six decades, collaborations and help fro
groups are always appreciated for this project.

Most of the quantities from Table 1 are likely to be known to the reader from the literature. In this wri
therefore, we may leave out details from their definition and the large number of mathematical relations wh
fulfill. For such details, we refer the reader to the classical text by Varshalovich et al. [3]. Appendix A, ho
compiles some of the background in order to make the present implementation of the RACAH program usefu
for practical applications. An alphabetic list and description of all commands of the package, including
from Table 1, is provided with the program [cf. Section 3]. In the following, we only recall some basic fac
conventions, about which the user must be aware of, and where these quantities (may) arise in applicatio

Wigner 3n–j symbols (n= 1,2, and 3). The Wigner 3n–j symbols are all related to the transformation of angu
momenta between different coupling schemes. Forn = 1,2, and 3, these symbols were taken as the basic
structures of the RACAH program and were defined explicitly in Ref. [4], Appendix A. The Wigner 3n–j symbols
frequently arise in (almost) all applications of the theory of angular momentum.

12–j symbols of first and second type. Sharp’s symbol. Wigner 3n–j symbols of higher order(n� 4) are rarely
used in applications as their complexity increases rapidly withn and as severalkindsof these symbols appea
[3]. There are two kinds of 12–j symbols, called thefirst and secondkind or 12–j (1) and 12–j (2) symbols,
respectively. These symbols are often written as

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

∣∣∣∣∣∣ s
 ,

wheres = 1,2 selects thekind. Instead of the 12–j symbol ofsecondkind, Sharp’s symbol[9] is sometimes use
which possess a slightly higher symmetry [cf. Appendix A.2]. Forn= 4 and 5, the properties of the 3n–j symbols
are still a topic in modern research on group theory.
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Clebsch–Gordan and Racah’s W coefficients. The Clebsch–Gordan or vector coupling coefficients app
naturally as Fourier coefficients in there-couplingof angular momenta; they are closely related to the Wig
3–j symbols where, in the RACAH program, we use the Condon–Shortley pase convention [10]

〈j1m1, j2m2 | j3m3〉 = (−1)j1−j2+m3[j3]1/2
(
j1 j2 j3
m1 m2 −m3

)
. (1)

Also, Racah’sW coefficients,W(abed; cf) = (−1)a+b+d+e{ a b c
d e f

}
, are basically equivalent to the Wign

6–j symbols and were used only in the earlier literature on the recoupling of angular momenta; in the RACAH

program, these coefficients are supported just for a quick reference or in order tochecksome given relation from
the literature.

Wigner’s D-function D
j

mm′ (α,β, γ ). TheD-functions are often required for the transformation of wave funct
under the rotation of coordinates∣∣Ψjm′(ϑ ′, ϕ′, σ ′)

〉=∑
m

∣∣Ψjm(ϑ,ϕ,σ )
〉
D
j

mm′(α,β, γ ), (2)

whereϑ,ϕ andϑ ′, ϕ′ are the polar angles in the initial and the rotated system, andσ(σ ′) denote the correspondin
spin variables. More general, these functions occur in the transformation of any irreducible spherical te
rankj . TheD-functions are utilized, therefore, in all treatments of scattering processes (from elementary p
up to molecules and clusters), including capture, transfer, and emission processes. TheD-functions fulfill a large
number of (symmetry) properties [3] and are expressed most simply in terms of the Euler angles(α,β, andγ ) and
the Wigner rotation matrixdj

mm′(β), see below.

Rotation matrix d
j

mm′(β). This matrix describes the rotation of any spherical tensor by the angleβ around a
given axis, say, the quantization axis of the system. Several explicit representations in sin(β/2) or cos(β/2), the
hypergeometric function, or in terms of other polynomials exist for thisreal function; it will be used also to exten
the data structures of the RACAH program for algebraic manipulations in the future.

Rotation matrix Uj

mm′(ω;Θ,Φ). Instead of the Euler angles(α,β, γ ), it is sometimes more convenient to descr
rotations in terms of the rotation angleω (around the axis of rotation) and the two polar anglesΘ, Φ which
determine the orientation of the rotation axis. For this choice of angles, the rotation operator is e−iωn·j with
n ≡ (Θ,Φ) and the matrix elements of this operator in terms of the variablesω,Θ,Φ give rise directly to

U
j

mm′(ω;Θ,Φ)≡ 〈
jm
∣∣e−iωn·j∣∣jm′〉. (3)

An explicit representation of the rotation matrixUj

mm′ (ω;Θ,Φ) can be obtained from theD-functions [3] by using
a proper transformation of the variables(ω;Θ,Φ)→ (α,β, γ )

U
j

mm′(ω;Θ,Φ)= im−m′
e−i(m−m′)Φ

(
1− i tanω

2 cosΘ√
1+ tan2 ω

2 cos2Θ

)m+m′

d
j

mm′(ξ) (4)

where the angleξ is determined by

sin
ξ

2
= sin

ω

2
sinΘ.

Spherical harmonics. TheYlm(θ,φ) functions form a complete and orthonormal set on the unit sphere, an
therefore widely used in classical and quantum physics. Not much need to be said here as their defin
implementation into the RACAH program have been presented recently [11]; the spherical harmonics freq
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appear in the representation of wave functions for a wide range of physical systems, in the evaluatio
corresponding (quantum) matrix elements, and at many places elsewhere.

Bipolar and tripolar spherical harmonics. When defined asirreducible tensors, linear combinations of produc
of p spherical harmonics often form a convenient basis to represent (distribution) functions in physics
depend onp vector directions. For this purpose, for instance, thebipolar spherical harmonicsare defined as th
irreducible tensor product of two spherical harmonics with different arguments [3]{

Yl1(ϑ1, ϕ1)⊗ Yl2(ϑ2, ϕ2)
}
LM

=
∑
m1m2

〈l1m1, l2m2 | LM〉Yl1m1(ϑ1, ϕ1)Yl2m2(ϑ2, ϕ2). (5)

For differentl1, l2,L, andM, the bipolar harmonics form a complete and orthonormal set∫ ∫
dΩ1 dΩ2

{
Yl1(Ω1)⊗ Yl2(Ω2)

}∗
LM

{
Yl′1(Ω1)⊗ Yl′2(Ω2)

}
L′M ′ = δl1l′1δl2l′2δLL′δMM ′ (6)

of functions which depend on two unit vectors, say,n1 andn2, respectively. A similar definition also applies f
the tripolar spherical harmonics{

Yl1(ϑ1, ϕ1)⊗ {
Yl2(ϑ2, ϕ2)⊗ Yl3(ϑ3, ϕ3)

}
l23

}
LM

=
∑

m1,m2,m3,m23

〈l1m1, l23m23 | LM〉〈l2m2, l3m3 | l23m23〉Yl1m1(ϑ1, ϕ1)Yl2m2(ϑ2, ϕ2)Yl3m3(ϑ3, ϕ3), (7)

where, however, different coupling sequences are possible and have to be taken into account in app
Apart from the sequenceL = l1 + (l2 + l3)l23, we also support the couplingL = (l1 + l2)l12 + l3 in the RACAH

program; these two coupling sequences are related to each other by standard recoupling theory. The bi
tripolar harmonics obey simple transformation properties under the rotation and inversion of the coordina
products of two or more of these functions, which are given with the same argumentsΩ1,Ω2, . . . , there exist
Clebsch–Gordan expansions as for the spherical harmonics, including the Wignern–j symbols of various type
[cf. Appendix A.4].

Tensor spherical harmonics. Following the standard coupling of two angular momenta, the tensor sph
harmonics are constructed as a sum of products of the spherical harmonicsYlml (ϑ,ϕ) (eigenfunctions ofl2 and
lz) and the spin functionsχsms (eigenfunctions ofs2 andsz)

Y ls
jm(ϑ,ϕ)≡ {Yl ⊗ χs}jm =

∑
ml,ms

Ylml (ϑ,ϕ)χsms 〈lml, sms | jm〉 (8)

so that an irreducible tensor of rankj is obtained. While thel quantum number always occurs as a (nonnega
integer, the indicesj and s are both either integers or half-integers. For givenj and s, the (orbital) angula
momentuml can take the valuesj+s, j+s−1, . . . , |j−s|; the allowed values ofm arej, j−1, . . . ,−j . Typically,
the tensor spherical harmonicsY ls

jm(ϑ,ϕ) are represented by a column matrix with(2s + 1) elements so that th
summation over the spin variable is replaced by a matrix multiplication. Similar to the spherical harmonics
form a complete set of functions on the unit sphere, the tensor spherical harmonicsY ls

jm(ϑ,ϕ) form a complete
and orthonormal set of functions for the expansion of ranks spinors with the domain of arguments 0� ϑ � π ,
0 � ϕ � 2π .

According to different definitions of the spin functions such as in a Cartesian, spherical, or helicity
representation, different components of the tensor spherical harmonics need to be distinguished. In theACAH

program, we currently support
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(i) the contravariant spherical componentsfrom Eq. (8)[
Y ls
jm(ϑ,ϕ)

]σ = Yl,m−σ (ϑ,ϕ)〈lm− σ, sσ | jm〉, σ = s, s − 1, . . . ,−s, (9)

(ii) the contravariant helicity components[3]

[
Y ls
jm(ϑ,ϕ)

]′λ =
[

2l + 1

4π

]1/2

D
j
−λ−m(0, ϑ,ϕ)〈l0, sλ | jλ〉. (10)

There are two special cases of the tensor spherical harmonics which are often discussed separately.

Spinor spherical harmonics. For s = 1/2, the tensor harmonics (8) are also called spinor spherical harmoni

Ωl
jm(ϑ,ϕ)≡ Y

l 1
2

jm(ϑ,ϕ) (11)

which are eigenfunctions of the operatorsj2, jz, l2 ands2, wheres is assumed to be the spin operator fors = 1/2.
As for the tensor spherical harmonics, a number of different components need to be distinguished, in
contravariant and covariant tensor components. Table 2 lists the components of the spinor and vector
harmonics which are presently supported by the RACAH program; they refer to different definitions of the sp
basis functions as compiled in Appendix A.5.

Vector spherical harmonics. The other special case of the tensor spherical harmonics are those for spins = 1, i.e.
the vector spherical harmonics

Yl
jm(ϑ,ϕ)≡ Y l1

jm(ϑ,ϕ). (12)

A large deal of representations, integrals, and algebraic relations are known for the vector spherical ha
which play an crucial role, for instance, in the quantum theory of light and in the current (hot) topic of laser-
interactions. Again, however, only a few components of the vector spherical harmonics with respect to d
definitions of the spin basis functions are presently supported by the program (see Table 2).

Table 2
Contravariant and covariant components of the spinor and vector spherical harmonics. See Appendix A for the definition of the diffe
basis functions

Spin basis Component Expression Remarks

Spinor spherical harmonics

Spherical spin basis (A.17) contravariant
[
Ωl
jm

(ϑ,ϕ)
]σ = 〈

lm− σ, 1
2σ |jm〉Yl,m−σ (ϑ,ϕ) l = j ± 1/2; σ = ±1/2

covariant
[
Ωl
jm

(ϑ,ϕ)]σ = (−1)1/2−σ [Ωl
jm

(ϑ,ϕ)
]−σ

l = j ± 1/2; σ = ±1/2

Spherical helicity basis (A.21) contravariant
[
Ωl
jm(ϑ,ϕ)

]′λ =
√

2l+1
4π

〈
l0, 1

2λ|jλ
〉
D
j
−λ,−m(0,ϑ,ϕ) l = j ± 1/2; λ= ±1/2

covariant
[
Ωl
jm

(ϑ,ϕ)
]′
λ

= (−1)1/2−λ[Ωl
jm

(ϑ,ϕ)
]′−λ

l = j ± 1/2; λ= ±1/2

Vector spherical harmonics

Spherical spin basis (A.17) contravariant
[
Yl
jm

(ϑ,ϕ)
]σ = 〈lm− σ,1σ | jm〉Yl,m−σ (ϑ,ϕ) l = j, j ± 1; σ = 0,±1

covariant
[
Yl
jm

(ϑ,ϕ)
]
σ

= (−1)σ
[
Yl
jm

(ϑ,ϕ)
]−σ

l = j, j ± 1; σ = 0,±1

Spherical helicity basis (A.21) contravariant
[
Yl
jm(ϑ,ϕ)

]′λ =
√

2l+1
4π 〈l0,1λ | jλ〉Dj

−λ,−m(0,ϑ,ϕ) l = j, j ± 1; λ= 0,±1

covariant
[
Yl
jm(ϑ,ϕ)

]′
λ

= (−1)λ
[
Yl
jm(ϑ,ϕ)

]′−λ
l = j, j ± 1; λ= 0,±1
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Gaunt coefficients. Among the known set of integrals over the spherical harmonics, there are a few integrals
occur very frequently in the description of many-particle systems and to which a special notation has been a
The Gaunt coefficient, for instance, denotes the integral over a product of three spherical harmonics with t
argumentΩ ≡ (ϑ,ϕ)

〈lama|lbmb|lcmc〉 ≡
∫

dΩ Y ∗
lama

(Ω)Ylbmb(Ω)Ylcmc (Ω). (13)

In the study of atomic and molecular systems, the Gaunt coefficients naturally appear in the linearizatio
product of two orbital angular momentum states

Ylbmb(Ω)Ylcmc (Ω)=
∑
la,ma

〈lama|lbmb|lcmc〉Ylama (Ω)

as well as in the decomposition of reducible representations of the rotation group into irreducible represen

Condon–Shortley coefficients. The Gaunt coefficients are closely related also to the Condon–Shortley coeffi
Ck(la,ma; lb,mb) which are defined by the integral

Ck(la,ma; lb,mb)=
[

4π

2k + 1

]1/2∫
dΩ Y ∗

lama
(Ω)Yk,ma−mb(Ω)Ylbmb (Ω). (14)

The Condon–Shortley coefficients are required in atomic and molecular Hartree–Fock calculations, for ins
order to evaluate the electron–electron interaction matrix.

Coefficients of fractional parentage and reduced matrix elements. Several standard quantities from the atom
shell model such as the (reduced) coefficients of fractional parentage and the matrix elements of the uni
both inLS- andjj -coupling, have been implemented before into the RACAH program [8]. They are augmente
now also by theLS–jj transformation matrices and the corresponding transformation of symmetry-ad
configuration and atomic state functions [7].

Apart from the (reduced) coefficients of fractional parentage and the matrix elements of the unit tens
procedures from Table 1 have been implementedin addition to the previous version of the RACAH program [6].
These commands are designed in order to supportfast computationsor, at least, to provide a quick reference
a wider range of symbols and functions from the theory of angular momentum. All procedures, however
invoked with either symbolic or numerical arguments. Of course, the numerical evaluation of an expre
possible only if all arguments are ofnumericaltype or, in the case of the Wignern–j symbols, if they belong to
a special-value. In all other cases, a number oftestsare made on the consistency of the parameters but, other
the commands returnunevaluated. Then, a simplification may still occur later in a particular computation—if
arguments evaluate properly. In practice, most computations are traced back internally to the calculatio
Wigner 3n–j symbols and the spherical harmonics.

2.2. Hardware floating-point computations

The incorporation ofnumericalprocedures into the RACAH program follows a line which differs from ou
previous design. In most earlier versions, namely, emphasis was paid mainly to the algebraic transforma
simplification of Racah expressions [5] which (may) contain the Wignern–j symbols, the spherical harmoni
[11] and/or general recoupling coefficients [6]. However, a straightforward extension of this concept—
to incorporate also other quantities from the theory of angular momentum and spherical tensor operato
algebraiclevel—appears as a veryelaboratetask which, in practice, may require a long-time effort. In this lig
the numerical supportof a wider class of symbols and functions can be considered as afirst stepwhich helps
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the user already now to tackle (more sophisticated) tasks within the RACAH framework. For similar reasons als
most modern CA environments have recently improved their support of hardware operations and their t
visualization. Beside of itssoftware model, for instance, which basically allows the ‘exact’ transformation
computation (including numbers of rather arbitrary lengths), MAPLE now supports the use of much faster floatin
point operations (its so-calledhardware model). For these two models, however, efficient algorithms are often q
different from each other and still need to be developed for mostnon-standardapplications.

As mentioned above, the calculation of expressions from the theory of angular momentum can be trac
very often to the computation of the Wigner 3n–j symbols and spherical harmonics. Therefore, special care
been taken to implement, in particular, the 3–j and 6–j symbols in an efficient way using their symmetr
and recurrence relations [12]. In the program, however, the development of suchhardware floating-point(hf)
procedures are kept well separated from the previous code for symbolic manipulations. These hf proced
called only if the parameters in the commands of Table 1 allow such floating-point operations without tha
of accuracy can occur, i.e. that the requested number ofDigits is appropriate for floating-point operations.
all other cases, the computations are carried out as before within MAPLE’s software model, often by utilizing th
basic definition of these quantities in terms of more elementary functions. For the hf procedures, we intern
thename conventionRacah_compute_quantity_hf() wherequantity refers to the name of the symbol (or procedu
as shown in Table 1.

Here, we will not explain the implementation of the individual symbols in detail. A central role in the calcu
of many quantities is played by the recursive computation of the Wigner 3–j and 6–j symbols due to an algorithm
of Schulten and Gordon [12] as well as by the careful choice of the expansion which is used to evalu
spherical harmonics. Appendix B summarizes the recursion relations which are utilized for the Wigner 3j and
6–j symbols; for the computation of the 9–j symbols, a proper summation over products of three 6–j ’s is applied
internally. While, however, the implementation of ‘symbolic transformations’ often require a very clear and
program structure, a higher efficiency is sometimes obtained in numerical computations by making use of a
obvious) re-arrangement of data and/or operations. Moreover, some of the numerical algorithms are suita
for a restricted range of parameters which are hard to recognize from a given implementation. Our strict se
of thesoftwareandhardwareprocedures of the RACAH program will therefore help to append further numeri
algorithms without that the symbolic part of the code is disturbed. The explicit development and incorpora
such (additional) algorithms will however depend on thefeedbackwhich we will obtain from the user communit

3. Further modifications and distribution of the code

Recent MAPLE releases have provided a number of syntax extensions (and modifications) as approp
a modern language. Of course, the central idea behind these improvements is to facilitate the program
and maintenance. Two important syntax extensions from the recent years concern, for example, the a
type checkingof the (incoming) arguments and a simple incorporation ofuser-defined types. The use of these
two extensions have simplified the communication and data transfer within the RACAH program considerably
Moreover, thetype check of user-defined data structures can now be handled by MAPLE’s standard syntax such a
type(a,keyword), wherea denotes any variable or expression, andtrue orfalse is returned in dependenc
whethera meets the internal representation of thekeyword-typeor not. Table 3 lists thetype definitionswhich have
been appended by the RACAH program to the inherent types of MAPLE. Other syntax modifications such as t
(new) constructsfor ... do ... end do or if ... elif ... else ... endif, and others are now also exploited within RACAH

and helped improve the readability and re-use of the code.
Another great benefit for the implementation of large software packages in MAPLE arises from the proper us

of moduleswhich help to encapsulate, to maintain, and to install the code. Moreover, the use of modules fa
the hiding of internal data and program structures since all commands, which are provided to the user,
exportedexplicitly. We make use of this feature also for the RACAH program which is provided now in terms
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Table 3
Newtype definitions for the RACAH program. A boolean value of eithertrue or false is returned

type(a,...) Returnstrue if a belongs to or is a. . .

type(a,halfinteger) . . . ,−1/2,0,1/2,1,3/2, . . .
type(a,halfnonposint) . . . ,−3/2,−1,−1/2,0
type(a,halfnonnegint) 0,1/2,1,3/2, . . .
type(a,halfnegint) . . . ,−3/2,−1,−1/2
type(a,halfposint) 1/2,1,3/2, . . .
type(a,Racahexpr) Racah expression, see Ref. [4]
type(a,Racahsum) Racah sum, i.e. a sum of Racah expressions
type(a,tdelta) Kroneckerδab, a triangularδ(a, b, c) or a Dirac functionδ(x − x′)
type(a,delta) Kroneckerδab
type(a,triangle) triangularδ(a, b, c)
type(a,dirac) Dirac functionδ(x − x′)
type(a,wnj) Wignern–j symbol (n= 3,6, or 9)
type(a,w3j) Wigner 3–j symbol
type(a,w6j) Wigner 6–j symbol
type(a,w9j) Wigner 9–j symbol
type(a,Ylm) spherical harmonic

two modules: While (i) theRacah module comprises all procedures for the symbolic and numerical treatme
Racah expressions [4–6], the (ii)Jucys module contains the quantities from the atomic shell model [8] as we
theLS–jj transformation matrices and procedures [7]. Both modules can be invoked simply bywith(Racah) and
with(Jucys) and, altogether, contain more than 240 procedures or about 50,000 lines of code and data. To m
of Jucys’ functionality requires, however, that theRacah module has been loaded before.

The extension of RACAH towards applications from the atomic shell model [7,8] required to incorporate a
number ofdata for the classification of the subshell states. In the previous versions, these data needed t
initialized explicitly during the execution of the program, in dependence of the particular application. W
(new) modulestructure of MAPLE, a faster access onto this quantities has now be achieved. These data
classification and transformation of atomic shell states are all contained in theJucys module. With the adaptatio
of the RACAH program to the present standard, we also included a number of newhelp pageswhich, by a proper in-
stallation, are incorporated directly into MAPLE’s help facilities. Moreover, a brief list of all (exported) procedu
of the individual modules can be obtained by means ofRacah_help(Racah) or Racah_help(Jucys), respectively.

The design and set-up of modules also facilitates the distribution of the code. As before, the whole pa
distributed by the tar fileRacah2002.tar from which theRacah2002 root directory is (re-)generated by th
commandtar -xvf Racah2002.tar. This root contains the source code libraries (for MAPLE 7 and 8), a
Read.me for the installation of the program as well as the documentRacah-commands.ps. This documen
provides the definition of alldata structuresof the RACAH program as well as an alphabetic list of all user relev
(and exported) commands. TheRacah2002 root also contains an example of a.mapleinit file which can
easily be modified and incorporated into the user’shome. Making use of such a.mapleinit file, then, the two
modulesRacah andJucys should be available like any other module of MAPLE.

4. Run-time comparison between the different computational models

In many applications, thereliablebut alsofastaccess to the symbols and functions from Section 2 appears
of quite similar importance. Therefore, in order to demonstrate the acceleration in the computations due to
of the particularly designed numerical algorithms and hardware floating-point operations, here we provide
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run-time comparison between thesoftwareandhardwareprocedures of the RACAH program. This compariso
shows the capabilities of the presently revised version and may help the user in making the decision, w
given problem can be solved entirely within the framework of RACAH or if an interface between the symbo
evaluation and the (final) numerical computations need to be developed.

In practice, of course, the overall gain in the efficiency of a computation by means of hardware-a
algorithms will usually depend on the particular requirements of the given task. If one considers the wide r
possible parameters and applications, therefore, a singlegain factoris hardly to be obtained for the various cas
However, to provide a good fingerprint on the acceleration due to the use of numerical procedures, we ma
and calculate a few representative Racah expression—utilizing both, RACAH’s software and hardware procedur
Since most quantities from Table 1 are traced back internally to the computation of the Wignern–j symbols and
spherical harmonics, the following two (finite) summations

lmax∑
a=0

a+5∑
c=|a−5|

(
a 5 c

−c 1 c− 1

)
, (15)

lmax∑
a=0

a+5∑
c=|a−5|

c+2∑
d=|c−2|

a+2∑
f=|a−2|

{
a 5 c

d 2 f

}
(16)

are defined for the Wigner 3–j and 6–j symbols, respectively, which only depend on a single parameter (lmax� 0)
and which, in dependence onlmax, are quite representative for rather a wide range of parameters. For the sp
harmonics, similarly, we define the (finite) sum

Table 4
Run-time comparison between RACAH’s software and hardware procedures for the finite summations (15)–(17).
A comparison is made in dependence of the parameterlmax which is representative for a wide range of angular
momentum quantum numbers.N is the number of terms in the corresponding summation and the (run) times
are given in seconds. All computations have been carried out by means of a 1000 MHz Pentium III processor.
The values of these (rather arbitrary) expressions are also given in order to facilitate a test of the installation

Expression lmax N Time Value Comments

Expr. (15) 10 91 �1 0.6399280116 hardware model,Digits = 12
<1 software model,Digits = 12

<1 software model,Digits = 24
200 2181 – a soft- and hardware model,Digits = 12

6 9.354589477 software model,Digits = 24

Expr. (16) 10 2175 1 1.418802038 hardware model,Digits = 12
5 software model,Digits = 12
7 software model,Digits = 24

50 13175 6 2.239234279 hardware model,Digits = 12
44 software model,Digits = 12
53 software model,Digits = 24

Expr. (17) 10 121 �1 {7.218872080 hardware model,Digits = 12
1 –5.816808893i} software model,Digits = 12

1 software model,Digits = 24

30 961 <1 {–12.04709382 hardware model,Digits = 12
7 –29.09665235i} software model,Digits = 12
9 software model,Digits = 24

a Computation not possible for the given number ofDigits due to the large factorials which arise in the
evaluation.
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Ylm(ϑ0, ϕ0) (17)

which we evaluate below forϑ0 = 0.166 andϕ0 = 0.675, the approximate (geographical) coordinates of
university in Kassel. For these three expressions (15)–(17), Table 4 compares the run-time requiremen
software and hardware computations for different values oflmax, i.e. different ranges of parameters, and fo
different number of (valid)Digits. In this table, all computations were carried out by means of a 1000
Pentium III processor. Moreover, we also display the (rather arbitrary) values of the corresponding sums
to provide the user with a simple test of his or her installation. Overall, a gain of about a factor 5. . .8 is obtained
if the given parameters and the required accuracy of the computations allow for the use of RACAH’s hardware
procedures. A similar gain can be expected also for most other quantities from Table 1 which, internally,
the Wigner 3n–j symbols and spherical harmonics.

In conclusion, a new and quite extended version of the RACAH program is provided which incorporates a lar
set of new symbols and functions from the theory of angular momentum. Since the full support of (all k
symbolic transformations will require a long-term effort, emphasize has first been paid to the fast and
computation of these symbols. Apart from MAPLE’s (standard) software model, we now also support much fa
hardware computations—if this happens to be possible for the given set of parameters. For a further accel
of these computations, moreover, efficientnumerical algorithmshave been implemented for the Wigner 3–j and
6–j symbols, the spherical harmonics as well as the Gaunt coefficients. We hope and expect that with thihybrid
solution, which combines software and hardware algorithms from the theory of angular momentum, RACAH’s
range of applications will be considerably enlarged within the near future.
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Appendix A. Definition of standard coefficients and mathematical relations

For later reference, here we compile the definition and a few important relations for (most of) the qu
from Table 1. These relations are used internally for the algebraic rearrangement of expressions as w
the numerical computations within MAPLE’s software and/or hardware floating-point model. They also provide
the user with the rules and phase or normalization conventions which we follow within the RACAH program. For
the Wigner 3–j and 6–j symbols, moreover, a set ofefficientbut usually more sophisticated algorithms ha
been implemented for the further acceleration of thehardwarecomputations; a brief outline of these numeri
algorithms is given below in Appendix B.

A.1. Wigner3n–j symbols(n= 1,2, and3) and Clebsch–Gordan coefficients

An explicit representation of the Wigner 3–j and 6–j symbols in terms of sums of factorials has been gi
in Ref. [4], Appendix A. These expression are used internally for all computations of the Wigner 3n–j symbols
(n = 1,2, and 3) within MAPLE’s software model whereby the 9–j symbols are obtained from a finite sum ov
products of three 6–j symbols [cf. Ref. [4], Eq. (17)]. Beside of numerical computations, however, the RACAH

program also knows a large number of sum rules for the Wigner 3n–j symbols which can be utilized for algebra
manipulations and simplifications of typical Racah expressions [5]. Moreover, the program recognizes a
of special symbols for the Wigner 3–j and 6–j symbols, if these coefficients cannot be evaluated numeric
In order to support fast hardware floating-point computations for the Wigner 3–j and 6–j symbols, a recursiv
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procedure due to Schulten and Gordon [12] is implemented which is summarized in Appendix B.1 below.
progress has been made in this field also by Roothaan and Lai [13] who applied a new algebraic metho
Labarthe [14] to derive explicit formulas for the computation of the 3n–j symbols.

No explicit representations are known internally for the Clebsch–Gordan coefficients. As mentio
Section 2, these coefficients are first alwaysreducedto the Wigner 3–j symbols, before any computation
manipulation is carried out using the phase convention of Condon and Shortley [10].

A.2. Wigner12–j symbols

The Wigner 12–j symbols are related to the unitary transformation of five or more (coupled) angular mo
between various coupling schemes. There exist 12–j symbols of two different kinds, called thefirst andsecond
kind, which are usually expressed in terms of the Wigner 6–j symbols. For thefirst kind, the 12–j (1) symbols,
such an expansion reads [3]

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

∣∣∣∣∣∣ 1

 =
∑
x

(−1)S−x[x]
{
a1 a2 b1
c2 c1 x

}{
a2 a3 b2
c3 c2 x

}

×
{
a3 a4 b3
c4 c3 x

}{
a4 c1 b4
a1 c4 x

}
(A.1)

with S = ∑4
i=1(ai + bi + ci), while the 12–j (2) symbols of thesecondkind are simpler expressed in terms

Sharp’s symbol [9]
a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

∣∣∣∣∣∣ 2

= (−1)a1+a2+a3+a4−c1−c2−c3−c4


− a4 a1 b4
c2 − b1 c1
c3 b3 − c4
b2 a3 a2 −

 (A.2)

which obeys a slightly higher symmetry. A representation of Sharp’s symbol in terms of the Wigner 6–j ’s is given
by [3]

− a2 a3 a4
b1 − b3 b4
c1 c2 − c4
d1 d2 d3 −

 = (−1)b3−a4−d1+c2
∑
x

[x]
{
a3 b4 x

b1 d3 b3

}{
a3 b4 x

c4 a2 a4

}

×
{
b1 d3 x

d2 c1 d1

}{
c4 a2 x

d2 c1 c2

}
. (A.3)

In the RACAH program, Eqs. (A.1)–(A.3) are utilized by the (new) commandRacah_w12j() for the numerical
computation of the 12–j symbols (of both kinds) as well as of Sharp’s symbol. They are applied both, i
software model as well as for hardware floating-point computations, exploiting the fast algorithm for the W
6–j symbols. Further algebraic properties of these symbols are not known to the program.

A.3. WignerD-functions and rotation matrices

The WignerD-functionsDj

mm′ (α,β, γ ) are usually defined as the matrix elements of the rotation ope
D̂(α,β, γ ) in thejm-representation〈

jm
∣∣D̂(α,β, γ )

∣∣j ′m′〉= δjj ′Dj

mm′ (α,β, γ ), (A.4)
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see Varshalovich et al. [3], Chapter 4. In this definition,α,β, andγ are the Euler angles which specify the rotat
of either the physical system or, often more conveniently, the coordinates. The WignerD-function also help realize
the transformation of irreducible tensors of rankj , i.e. the(2j + 1)-dimensional matricesDj

mm′ (α,β, γ ) in m and
m′ are unimodular

det
∣∣Dj

mm′ (α,β, γ )
∣∣= +1. (A.5)

Usually, the WignerD-functions are represented as a product of three functions

D
j

mm′(α,β, γ )= e−imαd
j

mm′(β)e−im′γ (A.6)

which depend each on just a single Euler angle; the functiond
j

mm′(β) is taken to be real and is often called Wigne
rotation matrix. In the RACAH program, the WignerD-functions are always treated by means of expression (
and the corresponding rotation matrixdj

mm′(β).
For the rotation matrices, a large number of explicit representations in terms of different functio

derivatives as well as several integral representations are listed by Varshalovich et al. [3], Section 4.3. Fro
representations, we use the four expressions

d
j

mm′(β) = (−1)j−m′[
(j +m)!(j −m)!(j +m′)!(j −m′)!]1/2

×
∑
k

(−1)k
(cosβ2 )

m+m′+2k(sin β
2 )

2j−m−m′−2k

k!(j −m− k)!(j −m′ − k)!(m+m′ + k)! , (A.7)

d
j

mm′(β) = (−1)j+m
[
(j +m)!(j −m)!(j +m′)!(j −m′)!]1/2

×
∑
k

(−1)k
(cosβ2 )

2k−m−m′
(sin β

2 )
2j+m+m′−2k

k!(j +m− k)!(j +m′ − k)!(k −m−m′)! , (A.8)

d
j

mm′(β) = [
(j +m)!(j −m)!(j +m′)!(j −m′)!]1/2
×
∑
k

(−1)k
(cosβ2 )

2j−2k+m−m′
(sin β

2 )
2k−m+m′

k!(j +m− k)!(j −m′ − k)!(m′ −m+ k)! , (A.9)

d
j

mm′(β) = (−1)m−m′[
(j +m)!(j −m)!(j +m′)!(j −m′)!]1/2

×
∑
k

(−1)k
(cosβ2 )

2j−2k−m+m′
(sin β

2 )
2k+m−m′

k!(j −m− k)!(j +m′ − k)!(m−m′ + k)! (A.10)

for all numerical computations, in dependence of the factorials which occur in the denominators of (A.7)–
Both, MAPLE’s software and hardware floating-point computations are supported along these lines.

In addition to the WignerDj

mm′ (α,β, γ ) anddj
mm′(β) functions, which are expressed in terms of the Eu

angles, only the rotation matrixUj

mm′(ω;Θ,Φ) [cf. Section 2] are also supported by the program. Several o
variants of the rotation matrix are known but are not incorporated (yet) into the program.

A.4. Spherical harmonics; bipolar and tripolar harmonics

For the last two years [11], the symmetries and properties of the spherical harmonicsYlm(ϑ,ϕ) are now also
known to the RACAH program and are exploited for symbolic manipulations of Racah expressions. By
the properties of the spherical harmonics, however, products of two or three of these functions can becombined
also to represent irreducible tensors of two (three) solid angles. Eqs. (5) and (7) give the definition
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bipolar and tripolar spherical harmonics as irreducible tensors of rankL. For functions which depend on tw
(three) unit vectors, sayn1, n2, (andn3,) the bipolar (tripolar) spherical harmonics with differentl1, l2, (l3, )L,M

form a complete and orthonormal set. For the bipolar spherical harmonics, for instance, the orthogona
normalization is∫ ∫

dΩ1 dΩ2
{
Yl1(Ω1)⊗ Yl2(Ω2)

}∗
LM

{
Yl′1(Ω1)⊗ Yl′2(Ω2)

}
L′M ′ = δl1l′1δl2l′2δLL′δMM ′ , (A.11)

while the corresponding completeness condition takes the form∑
l1l2LM

{
Yl1(Ω

′
1)⊗ Yl2(Ω

′
2)
}∗
LM

{
Yl1(Ω1)⊗ Yl2(Ω2)

}∗
LM

= δ
(
Ω1 −Ω ′

1

)
δ
(
Ω2 −Ω ′

2

)
(A.12)

with

Ω ≡ {ϑ,ϕ},
∫

dΩ ≡
2π∫
0

dϕ

π∫
0

dϑ sinϑ,

δ(Ω −Ω ′)≡ δ(cosϑ − cosϑ ′)δ(ϕ − ϕ′).
Analogue relations also apply to the tripolar spherical harmonics. Moreover, for products of two (or

bipolar or tripolar harmonics with the same argumentsΩ1, Ω2 (andΩ3), Clebsch–Gordan expansions in terms
these functions and the Wignern–j symbols are known and utilized in different areas of physics; for the bip
spherical harmonics, for instance, one of the Clebsch–Gordan expansions reads as [3]{

Yl′1(Ω1)⊗ Yl′2(Ω2)
}
L′M ′

{
Yl′′1 (Ω1)⊗ Yl′′2 (Ω2)

}
L′′M ′′

=
∑
LM

〈
L′M ′,L′′M ′′|LM 〉∑

l2l2

B
(
l′1l′2L′; l′′1l′′2L′′; l1l2L

){
Yl1(Ω1)⊗ Yl2(Ω2)

}
LM

, (A.13)

where

B
(
l′1l′2L′; l′′1l′′2L′′; l1l2L

)= [l′1, l′2, l′′1, l′′2,L′,L′′, ]1/2
4π

〈
l′10, l′′10|l10

〉〈
l′20, l′′20|l20

〉{ l′1 l′′1 l1
l′2 l′′2 l2
L′ L′′ L

}
(A.14)

and [a, b, . . .] = (2a + 1)(2b + 1) . . . . A number of other Clebsch–Gordan expansions are also found i
literature. Until now, however, only the computation of the bipolar and tripolar harmonics is supported
RACAH program; for fast numerical computations, the corresponding algorithms of the spherical harmon
used.

A.5. Spin functions and tensor spherical harmonics

In quantum physics, the spin functions are used to describe the polarization properties of particles and c
systems with definite spin, i.e. a definite intrinsic angular momentum [3]. Usually, the spin functions are tre
functions of some discrete variableσ which, for instance, may represent the spin projection onto thez-axis. For a
given spins, these functions are commonly written as column matrices

χ =


χ(s)

χ(s − 1)
...

χ(−s)

 (A.15)

with (2s + 1) elements which represent the values of the spin functionχ(σ) for the corresponding value ofσ .
Accordingly, the Hermitian conjugate functionχ† takes the form of a row matrix
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χ† = χ∗(s),χ∗(s − 1), . . . , χ∗(−s) . (A.16)

Several definitions of the spin functions are known from the literature, in dependence of the choice
quantization axis and the context of application. With space-fixed coordinates, one often uses (i) the (spherical)
spin basis functions, while (ii) the (spherical) helicity basis functionsare applied for particles with a well-define
linear momentum.

The spherical spin basis functions are eigenfunctions of

s2χsm = s(s + 1)h̄2χsm, szχsm =mh̄χsm, (A.17)

and, thus, have thecontravariant components

[χsm]σ = δσm. (A.18)

For s = 1/2 particles, in particular, the spin basis functionsχsm (m= ±1/2) are usually written as

χ 1
2

1
2

=
(

1
0

)
, χ 1

2− 1
2

=
(

0
1

)
, (A.19)

while, for s = 1 particles, these functionsχsm (m= ±1,0) are given by

χ11 =
(1

0
0

)
, χ10 =

(0
1
0

)
, χ1−1 =

(0
0
1

)
. (A.20)

In general, these sets of 2s + 1 basis functionsχsm (m= s, s − 1, . . . ,−s) form a complete and orthonormal bas
in the according spin space.

If the linear momentump of a particle is taken as quantization axis, the spin projectionλ along this axis is called
thehelicity. Again, the helicityλ= s, s − 1, . . . ,−s takes 2s + 1 possible values; however, since the helicity ba
functions are eigenfunctions ofs2 ands · n ≡ s · p/p

s · nχsλ(ϑ,ϕ)= λh̄χsλ(ϑ,ϕ), (A.21)

these functions depend on the polar anglesϑ andϕ (of the momentum vectorp or n, respectively).
The helicity basis functionχsλ(ϑ,ϕ) can be generated from the spin basis functions (A.17) by means

rotation which turns the (space-fixed)z-axis parallel ton(ϑ,ϕ) [3]

χsλ(ϑ,ϕ)=
∑
m

Ds
mλ(ϕ,ϑ,0)χsm, (A.22)

and vice versa

χsm =
∑
λ

Ds−λ−m(0, ϑ,ϕ)χsλ(ϑ,ϕ), (A.23)

and, hence, the contravariant components of the helicity basis functions are[
χsλ(ϑ,ϕ)

]σ =Ds
σλ(ϕ,ϑ,0). (A.24)

For spin-12 particles, the explicit form of the helicity basis functions is given by

χ 1
2

1
2
(ϑ,ϕ)=

(
cosϑ2 e−iϕ/2

sin ϑ
2 eiϕ/2

)
, χ 1

2 − 1
2
(ϑ,ϕ)=

(
−sin ϑ

2 e−iϕ/2

cosϑ2 eiϕ/2

)
. (A.25)

Using the definition of the basis functions (A.17) or (A.21), one often wishes to construct tensor sp
harmonics
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Y ls
jm(ϑ,ϕ)≡ {Yl ⊗ χs}jm =

ml,ms

Ylml (ϑ,ϕ)χsms 〈lml, sms | jm〉 (A.26)

which are obtained from the coupling of the orbital angular momentuml and spins to a total angular momentum
j = l + s and, thus, are eigenfunctions ofl2, s2, j2, jz. Obviously, the 2j + 1 functionsY ls

jm(ϑ,ϕ) with m =
j, j − 1, . . . ,−j form a irreducible tensor of rankj ; moreover, the tensor spherical harmonicsY ls

jm(ϑ,ϕ) also
provide a complete and orthonormal set of functions for the expansion of ranks tensor functions with the domai
of arguments 0� θ � π , 0� φ � 2π . In the RACAH program, we currently support the (numerical) computatio
the contravariant components with respect to the spherical spin basis functions (A.17) and helicity basis f
(A.21) for arbitrary spins. In addition, special procedures are provided for the more frequently used s
(s = 1/2) and vector (s = 1) spherical harmonics; see Table 2 and the following Section A.6. Apart from
(contravariant) components no further properties such as the transformation coefficients of the spin funct
spin density matrices, or others are (yet) supported by the program.

A.6. Spinor and vector spherical harmonics

For s = 1/2 ands = 1, special symbols and notations are used for the tensor spherical harmonics (A.26)

Ωl
jm(ϑ,ϕ)≡ Y

l 1
2

jm(ϑ,ϕ), (A.27)

Yl
jm(ϑ,ϕ)≡ Y l1

jm(ϑ,ϕ) (A.28)

which are called the spinor and vector spherical harmonics in these cases. They are typically expressed× 1
(and 3× 1) column matrices which help replace the summation over the spin variable by a matrix multiplic
For the spinor and vector spherical harmonics, the program supports both, the contravariant as well as
components in the (spherical) spin and helicity basis. Table 2 lists the definition of the various compon
utilized by the RACAH program.

Appendix B. Fast numerical algorithms

Algorithms for fast numerical computations are known for various quantities from the literature. They
benefit from particular restrictions which apply to certain classes of problems; other algorithms sometim
predefinedarrays of numbers from which the results are obtained more easily than from a direct computa
the RACAH program, we presently support only the fast recursive computation of (a whole set of) the Wignj
and 6–j symbols, both in the software as well as hardware floating-point model. These recursive relations
also used for the computation of the Gaunt coefficients.

B.1. Schulten–Gordon recurrence for the Wigner3–j and6–j symbols

A fast recursive computation of the Wigner 3–j and 6–j symbols and, in particular for large values of t
arguments or for complete sets of such coefficients, were first implemented in a FORTRAN code by Schulten an
Gordon [12]. In this previous implementation, use was made of the two (one-step) recursion relations for thej - and
m-values in the Wigner 3–j symbols

aA(a+ 1)

(
a + 1 b c

ma mb mc

)
+B(a)

(
a b c

ma mb mc

)
+ (a + 1)A(a)

(
a − 1 b c

ma mb mc

)
= 0 (B.1)

with



442 S. Fritzsche et al. / Computer Physics Communications 153 (2003) 424–444

√ √ √

alues

d
al
A(a)= a2 − (b− c)2 (b+ c+ 1)2 − a2 a2 −m2
a,

(B.2)
B(a)= −(2a + 1)

[
b(b+ 1)ma − c(c+ 1)ma − a(a + 1)(mc −mb)

]
,

and

C(ma + 1)

(
a b c

ma + 1 mb − 1 mc

)
+D(ma)

(
a b c

ma mb mc

)
+C(ma)

(
a b c

ma − 1 mb + 1 mc

)
= 0

(B.3)

with

C(ma)=√
(a −ma + 1)(a +ma)(b+mb + 1)(b−mb),

D(ma)= a(a + 1)+ b(b+ 1)− c(c+ 1)+ 2mamb. (B.4)

These linear three-term recursions (B.1) and (B.3) reduce to just two terms for the minimal and maximal v

amin = |b− c|, amax= b+ c,

mamin = | − a|, mamax = a
(B.5)

and, hence, can be utilized for anddownwardor upwardrecursion. In the RACAH program, we apply Eq. (B.1) an
a downward recursion for therecursivecomputation of single Wigner 3–j symbols, by starting from the speci
value(

b+ c b c

ma mb mc

)
= (−1)−b+c−mb−mc [b+ c]−1/2

×
[
(2b)!(2c)!(b+ c+mb +mc)!(b+ c−mb −mc)!
(2b+ 2c)!(b+mb)!(b−mb)!(c+mc)!(c−mc)!

]1/2

(B.6)

and by using a re-arrangement of the arguments so thata = max(a, b, c) is always achieved.
A similar (one-step) recursion relation also applies for the Wigner 6–j symbols [12]

aE(a+ 1)

(
a + 1 b c

d e f

)
+ F(a)

(
a b c

d e f

)
+ (a + 1)E(a)

(
a − 1 b c

d e f

)
= 0 (B.7)

with

E(a) =
√
a2 − (b− c)2

√
(b+ c+ 1)2 − a2

√
a2 − (e− f )2

√
(e+ f + 1)2 − a2,

F (a) = (2a + 1)
{
a(a+ 1)

[−a(a + 1)+ b(b+ 1)+ c(c+ 1)
]

+ e(e+ 1)
[
a(a + 1)+ b(b+ 1)− c(c+ 1)

]
+ f (f + 1)

[
a(a + 1)− b(b+ 1)+ c(c+ 1)

]− 2a(a+ 1)d(d + 1)
}

(B.8)

and withnon-zeroa-values in the range

amin = max
(|b− c|, |e− f |) . . . amax= min(b+ c, e+ f ). (B.9)

Again, this recursion equation (B.7) is applied for therecursivecomputation of single Wigner 6–j symbols by
arranging the arguments to havea = max(a, b, c, d, e, f ) andamax= b+ c, and by using the special value{

b+ c b c

d e f

}
= (−1)b+c+e+f

[
(2b)!(2c)!(b+ c+ e+ f + 1)!(b+ c− e+ f )!
(2b+ 2c+ 1)!(−b− c+ e+ f )!(b+ f − d)!

× b+ c+ e− f )!(−b+ f + d)!(−c+ e+ d)!
(b− f + d)!(b+ f + d + 1)!(c+ e− d)!(c− e+ d)!(c+ e+ d + 1)!

]
. (B.10)
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Apart from the (recursive) computation of single Wigner 3–j and 6–j symbols, the recursion equations (B.
(B.3), and (B.7) above can be also utilized to generate a whole range of coefficients such as(

amin..amax b c

ma mb mc

)
=
(
amin b c

ma mb mc

)
,

(
amin + 1 b c

ma mb mc

)
, . . . ,

(
amax b c

ma mb mc

)
, (B.11)

(
a b c

−a..a . mc

)
=
(

a b c

−a a −mc mc

)
,

(
a b c

−a + 1 a − 1−mc mc

)
, . . . ,

(
a b c

a −a −mc mc

)
,

(B.12)

for the Wigner 3–j symbols and, similarly,{
amin..amax b c

d e f

}
=
{
amin b c

d e f

}
,

{
amin + 1 b c

d e f

}
, . . . ,

{
amax b c

d e f

}
(B.13)

for the 6–j symbols. For such arange of coefficients, however, the recursions must be carried out both, downw
and upward from the two non-classical domains and towards the intermediate region of large coupling coe
as pointed out by Schulten and Gordon [12]. In this case, moreover, the recursion equations are bette
to determine the Wigner 3–j and 6–j symbols only up to a constant factor which is finally obtained from
following unitary properties and phase conventions [12]∑

a

[a]
(

a b c

ma mb mc

)2

= 1, sign

[(
amax b c

ma mb mc

)]
= (−1)b−c−ma, (B.14)

∑
a

[a]
(

a b c

ma mb −ma −mb

)2

= 1, sign

[(
a b c

a mb −a −mb

)]
= (−1)2a+b−mb, (B.15)

∑
a

[a, d]
{
a b c

d e f

}2

= 1, sign

[{
amax b c

d e f

}]
= (−1)b+c+e+f . (B.16)

A two-siderecursion is generally necessary in order to ensure a numerically stable procedure since the
coefficients may oscillate rapidly in the intermediate region of the quantum numbers but decay exponen
zero towards their boundaries.

In the RACAH program, a recursive computation of single Wigner 3–j and 6–j symbols is implemented, i
the keywordrecursiveis given explicitly; moreover, such a recursive procedure is also utilized, ifa + b + c � 30
for the Wigner 3–j symbols anda + b + c + d + e + f � 40 for the 6–j symbols, respectively. In the prese
implementation, moreover, we always utilize—if possible—MAPLE’s hardware floating-point model for th
computation of these symbols. The recursion relations (B.1), (B.3), and (B.7) are also applied if a (complet
of coefficients such as (B.11)–(B.13) is to be calculated by a call toRacah_w3j_range() or Racah_w6j_range(),
respectively. For all further details, see the user manual in the document Racah-command.ps which is di
with the program.

B.2. Cruzan’s algorithm for the Gaunt coefficients

The efficient computation of the Gaunt coefficients, i.e. the integrals over products of three spherical har
has been recently reviewed and improved by Sebilleau [15]. From his analysis of various algorithms, he su
to start from the representation of the Gaunt coefficients in terms of the Wigner 3–j symbols

〈lama|lbmb|lcmc〉 = (−1)ma

( [la, lb, lc]
4π

)1/2(
la lb lc
0 0 0

)(
la lb lc

−ma mb mc

)
, (B.17)
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use of

.
988.
which was first introduced by Cruzan [16], and to use the recurrence procedures from Appendix B.1 The
these recursions is supported by the commandRacah_Gaunt() if an additional keywordrecursiveis given explicitly
or, as default, ifa + b+ c � 30.
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