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Abstract

Today, the ‘hydrogen atom model’ is known to play its role not only in teaching the basic elements of quantum mechanics but
also for building up effective theories in atomic and molecular physics, quantum optics, plasma physics, or even in the design
of semiconductor devices. Therefore, the analytical as well as numerical solutions of the hydrogen-like ions are frequently
required both, for analyzing experimental data and for carrying out quite advanced theoretical studies. In order to support a
fast andconsistent access to these (Coulomb-field) solutions, here we presentithecprogram which has been developed
originally for studying the properties and dynamical behavior of the (hydrogen-like) ions. In the present version, a set of
MAPLE procedures is provided for the Coulomb wave and Green'’s functions by applying the (wave) equations from both, the
nonrelativistic and relativistic theory. Apart from the interactive access to these functions, moreover, a number of radial integrals
are also implemented in thei®ac program which may help the user to construct transition amplitudes and cross sections as
they occur frequently in the thepof ion—atom andan—photon clisions.
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No. of bytesin distributed program, including test data, etc.: 162591

Distribution format: tar gzip file

CPC Program Library subprograms required: None

Nature of the physical problem: Analytical solutions of the hydrogen atom are widely used in very different fields of physics
[2,3]. Despite of the rather simple structure of the hydrogen-like ions, however, the underlying ‘mathematics’ is not always that
easy to deal with. Apart from the well-known level structure of these ions as obtained from either the Schrédinger or Dirac
equation, namely, a great deal of other properties are often needed. These properties are related to the interaction of bound
electron(s) with external particles and fields and, hence, require to evaluate transition amplitudes, including wavefunctions
and (transition) operators of quite different complexity. Although various special functions, such as the Laguerre polynomials,
spherical harmonics, Whittaker functions, or the hypergeamftnctions of various kinds cape used in most cases in order

to express these amplitudes in a concise form, their derivation is time consuming and prone for making errors. In addition to
their complexity, moreover, there exist a large number of mathematical relations among these functions which are difficult to
remember in detail and which have often hampered quantitative studies in the past.

Method of solution: A set of MAPLE procedures is developed which provides both the nonrelativistic and relativistic (analytical)
solutions of the ‘hydrogen atom model’ andhieh facilitates the syiolic evaluation of vandus transition amplitudes.

Restrictions onto the complexity of the problem: Over the past decades, a large number of representations have been worked out
for the hydrogenic wave and Greeffiisctions, using diffrent variables and coordinated.[From these, the position—space
representation in spherical coordinates is certainly of most practical interest and has been used as the basis of the present im-
plementation. No attempt has been made by us so far to provide the wave and Green’s functions also in momentum space, for
which the relativistic momentum functions would have to be constructed numerically.

Although the DRAC program supports both symbolic and numerical computations, the latter one are basee agis\dtan-
dardsoftware floating-point algorithms and on the (attempted) precision as defined by the Giopat s variable. Although

the default numbeDi gi ts = 10, appears sufficient for many computations, it often leads to a rather dramatic loss in the
accuracy of the relativistic wave functions and integrals, mainly owing taeM’s imprecise internal evaluation of the cor-
responding special functins. Therefore, in order to avoid $ucomputational difficulties, th®i gi t s variable is set to 20
whenever the IRAC program is (re-)loaded.

Unusual features of the program: The DIRAC program has been designed for interactive work which, apart from the standard
solutions and integrals of the hydrogen atom, also support the use of (approxéemaite)ativistic wave functions for both, the

bound- and continuum-states of the electron. To provide a fast and accurate access to a number of radial integrals which arise
frequently in applications, the analytical expressions for these integrals have been implemented for the one-particle operators
rk e=or dom jdr™ | j; (kr) as well as for the (so-called) two-particle Slater integrals which are needed to describe the Coulomb
repulsion among the electrons. Further procedures of trRa®program concern, for instance, the conversion of the physical
results between different unit systems or for different sets of quantum numbers. A brief description of all procedures as available
in the present version of thelRAC program is given in the user manu@lr ac- cormands. pdf which is distributed together

with the code.

Typical running time: Although the program repliggomptly on most requests, the running time also depends on the particular
task.
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1. Introduction

Since the beginning of quantum mechanics, the hydrogen atom has been one of the best studied models in
physics[1,2]. In a large number of textbooks and monographs, therefore, its (well-known) solutions from either
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the nonrelativistic Schrédinger equation or Dirac’s (relativistic) wave equation have served as standard examples
in introducing atomic theory. But apart from the educational insight as obtained frohydhagen atom model,

the theory of the one-electron atoms and ions has found its way also into quite different fields of modern physics
including molecular and plasma physics, quantum optics, or the theory of quantum information. When combined
with the atomic shell model, i.e. the successive filling of shells as established for instance by the periodic table of
elements, the (analytical) solutions of the ‘hydrogen atom’ help understand many atomic processes in Nature, at
least qualitatively. During the last decades, moreod@@ac’s theory of the hydrogen-like ions has been applied
successfully for describing energetic collisions of high-Z ions with atomic taf@éter for testing quantum-
electrodynamical (QED) effecid], if Furry’s picture and field-theoretical concepts are taken into account.

As seen from this wide-spread use of the hydrogen atom mth@éeefore, a fast and interactive access to the so-
lutions and properties of the one-electron ions is highly desirable. In the past, several program have been developed
and implemented into thepc program library for calculating the hydrogenic wave and Green’s functions, both
within the nonrelativisti¢5,6] and relativistid7,8] framework. Beside of providing these functions explicitly, they
have been implemented also—at least to a certain extent—in a large number of further codes including those for
studying the two-photon ionization of hydrogen-like id8$, their interaction with laserf9] and electron$§10],
the excitation and ionization of such ions by Coulomb figlH), their bound—bound traitions in the presence
of external magnetic fieldd.2], and at many places elsewhere. But although these programs have certainly found
useful for understanding the properties and behavior of one-electron atoms and ions, they have two drawbacks in
common which restrict their further application: Since these programs are designed for a very particular task, they
often (i) cannot be extended so easily to other prokldvioreover, by using standard languages suchoasrRAN
or C, these programs do (ii) not support any algebraim{sylic) access to the wave functions and matrix element
as required by more advanced studies. The lack of symbolic techniques, in particular, and together with the low
flexibility in dealing with the input ad output of the programs from above have hampered their use for a much
wider range of applications.

Today, a new and promising alternative for havingadgebraic access to complex (symbolic) expressions is
offered by computer algebra including the general purpose systems suchtasEMATICA or MAPLE. In the
last decade, they have been increasingly utilized to provide a fast and reliable gateway to a large set of complex
expressions and computations. With the development of tira®program, we here provide a set ofALE
procedures for studying the properties and the dynarbigladvior of the hydrogen-like ions. In the past two years,
this program has been used to support not only the interpretation of experiments but also for a detailed analysis of
the polarization and correlation properties of the X-ray radiation as emitted by relativistic col[&h4]. Owing
to its interactive design, moreover, theRAC program may help the user not only in his or her daily research work
but also in teaching the physics of (hydrogen-like) atoms and ions.

Obviously, however, a program about tingdrogen atom model can neither be implemésd comprehensively
nor explained within a single step. Therefore, th&BC package will be presented several steps, each of them
dedicated to a well defined part of theetiry. To provide access to the very basic elements of the theory, here we first
describe a set of procedures for the symbolic (as well as numerical) computation of the wave and Green'’s functions.
These functions are provided for both, the bound- and continuum-state solutions of the nonrelativistic as well as
relativistic theory. Having once a simple access to tHasetions, of course, they can be rather easily applied
to construct the transitions amplitudes and matrix elements for a large number of other properties. For several—
frequently required—matrix elements, an algebraic evaluation of the radial integrals has been implemented also
explicitly.

Although the main purpose of this work is to describe the design and the use oirhe Package, in the
next section we first compile the basic equations and expressions from the theory of the hydrogen atom with
emphasis on those which have been implemented in the code. In Sgctienlater describe the organization of
the program and how it is distributed. This sections &de all the user-accessible commands together with a short
description, while a detailed explanation of the paramsetgptional arguments and some additional information for
each procedure is given in an additional user manual and is appended to the code. This is followed id Sgetion
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number of selected examples to illustrate the interactive use ofikedprogram within its MaPLE environment.
A short outlook onto future developments and extensions of the program is finally given in Section

2. Theoretical background

Since the quantum-mechanical theory of the one-electron atoms has been worked out long time ago, both within
the nonrelativistic and relativistic framework, we may reffie most details to the literature. Helpful introductions
into this topic can be found, for instance, in the texts by Bethe and Salfigtdviessiah[15], Bransden and
Joachair2], Eichler and Meyerhof3], and by many others. In the present work, therefore, we will restrict our-
selves to rather a short compilation of the basic esgimns, just enough in order to introduce the notations and
formulas as implemented within thei®ac program. In the following two Sectioris1 and 2.2in particular, we
briefly recall the (analytically well known) radial-angulrepresentation of the hydrogen wave and Green'’s func-
tions which are later applied in Secti@3 for evaluating a number of radial integrals. Emphasis has first been
paid to those integrals which are of frequent use in thematation of the structural and dynamical properties of
the hydrogen-like ions. In this paper (and also in most parts of the underlying implementation okt ddde),
atomic Hartree unité = m, = ¢2/4n€g = 1, whereg is the permittivity of free pace, are used throughout unless
specified otherwise.

2.1. Wavefunctions and energy levels
2.1.1. Nonrelativistic framework

In a pure Coulomb potentidl (r) = —Z/r of a given (nucleus with) charggé, the motion of an electron is
described by the time-ingendent Schrodinger equation

Z
Aw<r>+z(E+7>w<r>=o 1)
which, in polar coordinates ¢, andg, can be separated into three independent equations owing to the [Afsatz
P(r)
V(r, 0, ¢) = R(r)Yim(9, ¢) = Yim (9, ¢). (2)

,
As seen from this ansaf2), the electronic wavefunctioth (r) = ¥ (r, 0, ¢) is therefore given as a product of a
radial function R(r) or P(r)/r, respectively, and a spherical harmoiig, (%, ¢) which describes thangular
structure and which depends on the orbital angular momehtana its projection onto the quantization axis as
denoted by the magnetic quantum numhberHowever, not much need to be said here about the properties and
treatment of the spherical harmonics as one of the standard tasks from the theory of angular mda®rfarm
which meanwhile also a number of symbolic tools are avail§blel8). The (radial) functionP (r) from ansatz
(2) obeys theadial Schrédinger equation

[1 i <r2i>_l(l+1)+272+2E}P£r)=o (3)

r2ar\" ar r2
and are known to belong either to the discrete part of the spectrum with the (negative) energies
72
En:—ﬁ<0, n=12 ..., 4)

the so-calledound states, or to its continuous part for all energkes- 0, for which the functions’(r) are said
to represent théree-electron (or continuum) states. For a Coulomb potential in E®), an analytic solution of
the radial functionsP(r) in terms of the confluent hypergeometric functibit, 8; x) are known for both, the
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bound-states

1 (n+10)! 27\ 3/2+ - 27Zr
P — I+1 — ( Zr/n)F _ —1—-1).2 2 ==
= e oy (n—l—l)!Zn( n > € (n—i=D.2+2 =" ), ®)

with n and/ being the principal and the orbital angular momentum quantum numbers, as well asdamthaum
(E >0)

Pgi(r) = e % F(in' +14 1,20+ 2, 2ikr) (6)

1—[ \/7/2 (Zkr)
/1 e727rn + 1!
with k = +/2E andn’ = Z/k. In the standard theory, moreover, the radial functi@snd (6)are normalized due
to the conditions

/ R,%l(r)rzdr = / Pnzl(r) dr=1 (7
0 0

for having a single particle per bound state and due to
o0
/ Pg(r)Pg(r)dr =8(E — E") (8)
0

for representing one particle per unit energy as far as electrons in the continuum are concerned.
In the DIRAC package, both the full wavefunctio(®) and their radial componengS) and (6)are provided for
the bound- and free-electron states by using the procedires orbital() andDirac_radial_orbital(), respectively.

2.1.2. Relativistic framework
Similar to Schrédinger’s equatidi), the Dirac (eigenvalue) equation with a Coulomb potential

(icopV—i—g—(ﬂ—l)cz+E)w(r)=O 9)
r

can be used to describe thetativistic motion of a spin-12 electron in the field of a nucleus with chargevhich,

apart from the kinetic and potential energy of the electron, now also contains its rest energy as well as contributions
due to the electron spif2,3]. Analogue to the nonrelativistic case, the solutib¢r) of Eq. (9) can be separated

again into a radial and angular part

P(r)2,m (9, @) )
QM R2_icm (D, @)
where2,,, (¢, ¢) denotes a standard Dirac spin-orbital function and wketet(j +1/2) for/ = j+1/2is called
the relativistic angular momentum quéum number. Owing to the definition af= +1, +2, ..., this quantum
number carries information about both, the total angular momeritana the parity—1)' of the wavefunction. As
usual, the Dirac spin-orbitals can be written in terms of the spin-1/2 Pauli spinoasid the spherical harmonics
by

$2iem (0, QD) = ZU’ mi, 1/27 m—mj |jm)Ylm1 (CA (p)Xm—ml- (11)

my

1
Yiem (r, U, @) = ; ( (10)

As seen from ansaid0), moreover, the radial part of the wavefunctions is now given by the two funcfiéng
and Q(r) which are called théarge andsmall components, respectively. Similar to the nonrelativistic case, an
analytic representation of these two components is known and is different for an electron in a bound or continuum
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state where, apart from the continuum wiibsitive energiest > 0 an additional continuous branch (of solutions)
with negative energiest < —2¢? exists. As known from Dirac’s theory, these solutions with negative energies
require special care and can be méerpreted, for instance, in terms of positron states. Foibtiuad states of
hydrogen-like ions, the (discrete eigen-)energies of(Bpare given by
po_ W=D 1 1

nk = a2 - a?[1+ (%)2]1/2 a2’

12)

while the corresponding radial compone®s and Q,, can be written again in terms of the confluent hypergeo-
metric functionF («, 8; x). They read as

Puc(r) = Nue/ 1+ Wn,(r(qu)sfle*q’

Z
x [—”/F(—”/ +1.25+129r) - (K - >F(—n/, 25 +1; 2qr)], (13)
qhic
QnK (V) - _Nm( 1- WnKV(qu)S_le_qr
Z
X |:n/F(—n/ +1,2s +1;2qr) — (K _ ¢ >F(—n’, 2s +1; qu)}, (14)
qAic

wheren’ =n — k| =0, 1, 2, ... denotes the number of nodes of the radial compongpts,/i/m.c the Compton
length of the electron, and

s=+vk2—(aZ)?, (15)

. z , (16)
V(@Z)2+ (' +5)?
Moreover, the normalization factor
V2¢5/%. [ T@s+n+1 72
" T2s + 1) [n'!(aZ)(az - quc)} (27

is chosen in such a way that the twali@ components satisfy the condition

o0

/ (P () + Qfc () dr =1, (18)

0

i.e. that the wavefunctio(l0) represents one electron per bound state.

For the free-electron states with energles. —2¢? or E > 0, the explicit expressions of the radial components
Pg (r) and Qg (r) are quite elaborate when compared with the bound solutions in(Egsand (14)and are
not displayed here. They are shown and discussed, for example, in the text by Eichler and M&jeHmfever,
these continuum states are also implemented in tira® package and can be accessed as well by means of the
procedure®irac_spinor() andDirac_radial_component().

2.1.3. Semirelativistic framework

The two radial function$§13) and (14Yepresent, together with E(LO), anexact solution of the Dirac equation
for a pure Coulomb potential. In practice, however, the use of these radial components often leads to rather lengthy
and complicated computations. Instead of the exact form, thereforapfineximate Darwin wavefunction$19]
have been widely used in applications such as the theoretical description of the Coulomb iofi2@timnthe
electron—positron pair creatigfl]. For a Coulomb potential: Z/r, the Darwin wavefunctions

45,(1;2(") = (1 — é(x . V>u(i>1/fn1m(l’) (19)
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are expressed in terms of the nonrelativistic soluti@ys(5)of the Schrodinger equation from Sect@i1.1, where

u™ =(1,0,0,00t andu'~) = (0,1,0,0)" are the two four-component spinors for a particle at rest with either
spin-up or spin-down, respectively. Obviously, the Darwin functi@®) have a much simpler structure when
compared with the exact bound-state solutifit®) and (14)from above; they are accurate to first-ordetis in

the expansion of the Dirac equation and are normalized to the same order.

Apart from the bound statgd9), approximate continuum wavefunetis can be derived which are accurate
to «Z in the relativistic motion of the electron and which are known as Sommerfeld—Maue wavefurji2pns
from the literature. Again, these functions can be expessterms of the nonrelativistic functions and have been
widely used in applicationi21,23] Although the explicit form of these functions is slightly more complicated than
in the bound case, their derivation follows very similar lines. Here, we will not display these functions in detail but
simply refer to the procedur&srac_Darwin() andDirac_Sommerfeld_Maue of the DIRAC code which facilitates
the access to both, the Darwin and the Somneérdaue semirelativistic approximations.

2.2. Green'sfunction

Apart from the wavefunctions, which describe the electron in some particular quantum state, one often needs the
summation over all the (unoccupied) states, especially if parts of the atomic interaction are treated as a perturbation.
Such a summation over tltemplete spectrum is required, for example, for describing the two- (and multi-)photon
processes in hydrogen-like iofiz4] or for the computation of hyperpolaabilities. Athough, in prirciple, it
appears straightforward to carry out such a summation explicitly by using the function from above, the large
number of terms and the need for integrating over the electron continuum may hamper such an approach. Instead,
the use of the Green’s function

r r'

G(r r E)_i va( ) K[/v( )| (20)
E,—E

is usually much more favorable since it provides a sergiicess to the perturbativeatment of various types of

interactions in the computation of atomic properties.

As easily shown, the Green’s functi¢20) can be obtained generally as solution of the inhomogeneous differ-
ential equation

[H E1G(r,t; E)=68(r —r1'), (21)

whereH denotes the Hamiltonian operator of the system. Similar to the case of the wavefunctions, the form of the
HamiltonianH and, hence, the explicit expressions for the Green’s function depends of coursefiamiveor k

in which the system is described. For the Schrddinger opefﬁtﬁr—vz/z — V(r) (the nonrelativistic case), for
example, the solutions of E§21) can be separated—again—into radial and angular functions by means of the
ansatz

1 o
Gr.riE)y=—73 3 ar.r’s E)Y;, (0, ) Yin(®. ¢). (22)

=0 m

For a Coulomb-potentidl' (r) = —Z/r in the Hamiltonian above, the radial functions are known analytically in
terms of (special) Whittaker functions of the first and second kind

. _KF(Z+1—V) 2r .7 2r-Z
gi(r,r's E) = 2 T2+ 2 My 112 — Whi+1/2 ) (23)

wherev = Z/+/—2E andr- = max{, r’) and where-. = min(r, ') refer to the larger and smaller values of the
two radial coordinates, respectively.

A similar radial-angular representation can be found for the (tefistic) Dirac Hamiltonian in Eq(21) but
leads to a quite complicated form for thedial part which is given then by ax22 matrix. In the DRAC program,
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we provide the procedui®rac_Greens_radial() which supports the computation of the radial functi¢23) or of
the corresponding relativistic Green'’s functions.

2.3. Integralswith hydrogenic wavefunctions

The Coulomb wave and Green'’s functions from the previous subsections can be applied for studying the proper-
ties and dynamics of hydrogen-like ions. Usually, they are #stdingredients in defing the transition amplitudes
and cross sections and, by using theilial-integral decompositions in Eq$2), (10), and (22)mmediately lead
to a number ofadial-integrals including various types of (transition) operators. While, of course, these integrals
can always be determinedimerically, ananalytic (pre-)evaluation of these integrals is in many cases possible
and results in a considerable gain in the computation of the transition amplitudes. Often, moreover, the analytic
evaluation of the radial integrals is faster and more esteuwhen compared with a (straightforward) numerical
integration. For several integrals, which frequently arise in applications, therefore, the analytic formulas have been
implemented explicitly into the IRAC code. Below, we first discuss the matrix elements containing the operators
rk, e~ d"/dr™, the integrals for studying theght-matter interaction or for collisions with external particles,
but turn later also to the (well-known) Slater integrals for treating the interaction among the electrons.

2.3.1. Radial integrals of r-dependent operators

Nonrelativistic framework: For calculating the structure of the hydrogen-like ions and their cross sections in
collisions with atoms and electrons, one often needs the matrix elements for the operatBrsdr”, €7, or

various combinations of these operators. Within the nonrelativistic Schrodinger theory, the analytic calculation of
suchr-dependent matrix elements hdveen analyzed and discussed esplgcby Sdnchez and Lopez Pife[2b]

who applied the hypervirial theorem along with a second quantization formalism. They showed that these matrix
elements can be typically reduced to radial integrals of the form

[o,8]

(nt)rke=or|n'l) = / Pui(r)r*e=®" Py (r)dr
0
n—l—1n'—1'-1 ’
(_l)m+m n/ +l/ n +l
= N Nui Z Z mlm' n—=U—-1—m n—Il—1—-m
m=0 m'=0
27 U'+m’ 27 I+m 7 7 —(k+H+"+m+m’+3)
“\ 7 _ —t+t—-+t0
n n n n
xTk+1+10'+m+m +3), (24)

which can then be utilized also (if necessary) in order to compute the matrix elements including some derivatives
d”/dr™ P, (r) of the wave functions. For the sake of brevity, however, we will not display these recursion formulas
but only mention that, for all the operators from above, the corresponding radial integrals can be evaluated by means
of the procedur®irac_r_matrix_element() of the DIRAC program. In this procedure, an analytic evaluation of the
integrals is carried out whenever possible.

Relativistic framework:  Of course, an analytical expression of the matrix elements with opendters” can
be found also for the relativistic Dirac wavefunctions. However, in order to derive such expressions it is more
convenient not to start from the standard representation of the hydrogenic fur{@®)+néL4)but first to re-write
them in terms of a series expansionriras it was suggested originally by Rog6]. By using suchr-series
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representation, the‘e~°” matrix elements can be written, similar(@4), in term of '-functions as

(nK‘r Gr

(Put (r) Parer () + Qi () Qi (1)) r* €77 dr

0\8

n—|x|n'—|k’ |
—Nn/c n'x’ E E nchn’K’u’+cnKV n'x’, v)
v=0 v'=0
s+v—1_rs'+1 =1
q q

/ /
(q + q' + o) 1HvHv/s+s'+k F+vitktst+s +1), (25)

Where the parameteys s and the normalization factay,,, were defined by Rog@6], and where the coefficients
nK , are given by

1/2((=n + |k])v2")
i = (11— ) P o [ =+ e £ (@2 /g — )] (26)

with (a), being the Pochhammer symbol.

In contrast to the radial integré25), no analytic expressions for the matrix elements containing the deriva-
tive d” /dr™ within the relativistic framework are implemented explicitly inFAC program. For all such matrix
elements, however, the (straightforward) numerical integration is applied by making use of the stangasl M
command nt ().

2.3.2. Grant'sintegrals

Relativistic framework:  As known from relativistic collision theorf3,27], the interaction of (atomic) electrons
with the radiation field or with other atoms and ions canally be traced back to the computation of the following
three radial integrals

o8]

Iz:(q;a,b)z/deL(qV)(Pa(”)Qb(”):t Qa(r) Py (1)), (27)

0
0o

12(g;a,b) = / dr jr(qr)Pa(r)Qp(r), (28)

0
0o

JL(q;a,b)=/dr JL(qr)(Pa(r) Po(r) 4+ Qa(r) Qp (1)), (29)
0

where j; (¢r) denotes a spherical Bessel function of ordeand, as beforeP () and Q(r) are the radial com-
ponents of the one-electron wavefunctida®). Because of the oscillations in the Bessel as well as the radial
wavefunctions, however, an accurate value of thesgiiatgis not always easy to obtain numerically. In the &c
program, we therefore implemented the analytic formulas for these integrals in terms of a finite series over the con-
fluent hypergeometric functions as known for thand—bound and bound—free transitions[28,29] While this
typically results in a much faster (and more accurate) coatjmut of the integrals, it requires however that at least

one set of radial components—either(r), Q,(r) or Py(r), QO (r)—has to represent some bound-state electron.

Nonrelativistic framework: ~ Since, in the limitc — oo, the small componer®(r) becomes negligible, only con-
tributions from the last integrgR9) survives in the nonrelativistic description of interaction processes with the
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radiation field and gives rise to the integral
o0
JL(g;a,b) = / drjL(qr) Pa(r) Py(r). (30)
0

An analytic evaluation of this integral with nonrelativistic radial orbital functions is supported by the procedure
Dirac_|J_radial() of the DIRAC program for bothbound-bound andbound—free electronic transitions.

2.3.3. Jater integrals

Although the main emphasis in developing therRBc program has been placed on studying the properties and
behaviors of the hydrogen-like ions, the wave functions from above can be used also to estimate the effects of the
electron—electron interaction féew-electron atoms and ions. For such systems, one often needs to compute the
(two-electron) matrix elements for the Coulomb repulsion operater,which, after some algebra, leads to the
so-called Slater integrals

k

o o
-
RMa.b,c.d)= / dr1 / dr2 P, (r1) Payiy, (r2) =57 Prcte (r1) Pty (r2), (31)
r>
o 0

wherer- = max(r1, r2) andr- = min(ry, ) refer to the larger and smaller values of the two radial coordinates,
respectively. The analytic evaluation of this integratérms of confluent hypergeometric functions has been im-
plemented in the IRAC package for the nonrelativistic framework. For reasons of efficiency, however, no attempt
has been made to incorporate also the ‘relativistic version’ of the Slater integrals which would raise much larger
demands regarding the accurate computation of these values.

3. Program organization
3.1. Overview about the DIRAC package

The DIRAC package has been developed as an interactive tool within the framework®feV(version 8).
It is designed in order to provide a simple and consistecess to the wave functions, the excitation and decay
properties as well as the dynamical belbaof the hydrogen-like ions. To allow for a rather large flexibility in the
use of the program, most of the functions and quantities frorhytieoxgen atom model are supported both, within
the nonrelativistic as well as the relativistic theory. With the present versionA® we start with compiling
different (analytical) representations of the Coulomb wave and Green’s functions using polar coordinates. In addi-
tion, both the analytical and numerical evaluation of the—maost frequently—required integrals are supported and
now facilitate their accurate computation for a large number of properties.

Following MAPLE's philosophy, the DRAC program is organized intgierarchical order. In the current version,
there are about 50 procedures at quite different level of complexity from which most however are kept hidden
to the user. As in MPLE’s own design, these procedures mainly serve as language elements in order to build up
commands at some higher level of the hierarchy. Therefore, only about 15 procedures at top level need to be known
by the user and are briefly summarizedrable 1 More detailed information about the use of these procedures,
their optional arguments, or the output can be obtained from the user mainuat- commands. pdf which
is distributed together with code. In this mahuse mainly follow the style of the help pages ofA¥LE and
The Maple Handbook by Redfern30] from earlier years. To illustrate some of the basic features of the program,
moreover, a few selected examples are displayed below.

As known from MaPLE'’S recent up-grades, most of its intercalmmands make use of rather short names and
often of some abbreviations for thvarious quantitiesrad methods. Although such a name convention might be
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Main commands of the RAC package. A more detailed description of these and a és& important procedures is given in the user manual
Di rac- commands. pdf and is distributed together with the code

Procedure

Description

Dirac_convert()
Dirac_energy()

Dirac_evalf()
Dirac_Greens_radial()

Dirac_|J_radial()
Dirac_orbital()
Dirac_r_matrix_element()

Dirac_radial_component()

Dirac_radial_orbital()
Dirac_settings()
Dirac_Slater_radial()
Dirac_spin_orbital()
Dirac_spinor()
Dirac_YIm()

Converts the physical results between different unit systems.

Returns the nonrelativistic enerdy, from Eqg. (4) or the relativistic energye,, from Eq. (12) for bound—
electron states.

Attempts to simplify an algebraic expression for either the energies, wavefunctions, or matrix elements by
substituting the numerical values for some fundamental constants.

Calculates the radial part of either thenrelativistic Coulomb Green’s functioif3) or of the corresponding
relativistic Green'’s functions.

Evaluates the radial integral®7)—(30)for both, the bound—bound and bound—free electron transitions.
Returns the nonrelativistic hydrogenic orbitéls g, (r, 9, @) from Eq.(2) as function of the given arguments.
Evaluates the radial matrix elements for variotdependent operators betwdgrdrogenic wavefunctions, both
within the nonrelativistic and the relativistic framework.

Returns the large and small radial componeRigg), () and

On(E)« (1), of the relativistic orbital function§l3)—(14) These components are supported for both, the bound
and free-electron states.

Returns a nonrelativistic radial orbit&), ), () for both, the bound and free-electron states.

Specifies the framework, nuclear charge and the units which are to be used byr#e fogram.

Evaluates the Slater integrgd1) with nonrelativistic orbital functions.

Returns the Dirac spherical spin@,, from Eq.(11).

Returns the relativistic hydrogenic spingj; )., (. 9, ) from Eq.(10).

Return the spherical harmonig,, (¢, ¢).

favorable for the frequent use of the commands, theseesare usually not easy to remember and to recognize in
their output if implemented in a code. In theHAC program, therefore, we follow a slightly different concept by
making use of rather long names to better explain the perpbthe procedures. In the long run, hopefully, this will
simplify the readability and the maintenance of the program. Moreover, all the commands aRthe ffackage
begin with the additional prefi®i r ac__ in order to distinguish them from MPLE's internal functionality.

3.2. Getting started with DIRAC

The DIRAC package is distributed as a compressed tadifileac. t ar from which thedi r ac root directory
is obtained by the commandr -xvf dirac.tar.Thisrootcontains the source code library (fonRLE 8),
a Read. ne for the installation of the package as well as the program madiuahc- conmands. pdf . This

latter document explains all the user relevant commands along with the output format, their optional arguments

and some additional information which might be of interest for the application of the procedures. iTae root
directory also contains an example of mapl ei ni t file which can be easily modifiechd incorporated into the
user'shomne. Making use of such anapl ei ni t file, the moduleli r ac should then be available like any other
module of MAPLE simply by typing

> with(dirac);

Wel cone to Dirac

Di rac_save_nucl ear _charge := Z

Dirac_save_franmewor k
Dirac_save units :

= nonrelativistic
= atomc

As seen from the printout above, the settings of theAa program are specified by the thrgkbal variables
which must not be overwritten interactively. The (global) varidble ac_save  f r amewor k, for instance,
specifies the theoretic&ddamework in which the various commands will respond to the user; it may take the two
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valuesr el ati vi sti c andnonr el ati vi sti ¢ and determines of how the input and output of the procedures

is to be treated internally. In practice, of course, the input/output data of the procedures depend not only on the
framework but often also on the present choice ofuhi¢s as specified by the variabl® r ac_save_uni ts.In

the DIRAC program, we presently support atomic Hartreée<(m, = ¢?/4mweg = 1), natural f1, = c = e = 1), SI,

and Gaussian units which are recognized by seflingac_save_uni t s to one of its allowed valuest oni c,

nat ural , Sl , or cgs, respectively. Moreover, most of the solutions and output of interest will depend on the
nuclear charge Z as internally specified by the global varialider ac_save_nucl ear _char ge. To change

these particular specifications of the”RAC program, the commanmirac_settings() can be used; if instead of
‘atomic’ units, the user wishes to employ ‘natural’itsnfor the input and output of the procedures, the initial
specification can be modified by entering

> Dirac_settings(units, natural);
Units are changed to natural

Therefore, by specifying the global variables properly due to the demands of the user, the proceduresrafche D
program can be adapted to the particular task. A proper choice of these global definitions makes the program
appropriate for a wide range of applications.

4. Interactive work with the DIRAC program

To illustrate the use of the IRAC program and to provide some test cases, below we will display and explain
a few examples concerning the fine-structure oftiidrogen-like ions as well as the (algebraic) access to their
wave functions. A more advanced example later showsohneputation of matrix elements within the relativistic
framework as they arise frequently in the study of light—matter interactions. For all these examples, we assume the
DIRAC program to be loaded into the currentlFILE session as explained in the previous Sec8dh

4.1. Fine structure of hydrogen-likeions

In the nonrelativistic Schrédinger theory, the level ener@@@®nly depend on the principal quantum number
n and, hence, ardegenerate with respect to the orbital quantum numbieand the magnetic quantum number
This 2¢2 degeneracy (the factor 2 arises from the spin of the electrons), however, is partially removed if Dirac’s
theory is applied. In the relativistic cagE?), namely, the nonrelativistic levels with energy split inton different
sublevels according tdé total angular momentum=1/2,3/2,...,n — 1/2 of the state. This splitting, which
is known as the fine-structure of the hydrogen-liges, can be easily illustrated below by means of theAd
program.

To obtain insight into this splitting as a function of the nuclear chafgéet us first compare the relativistic
and nonrelativistic level energies for= 2. Since thenonrelativistic framework is predefined whenever thelac
program is (re-)loaded, we start with the Schrédinger en&ywhich is returned for an arbitrary nuclear charge
Z = Zop by entering

> Dirac_settings(charge, Z0);
Nucl ear charge is changed to Z0

> E_2(Z0) := Dirac_energy(2);



A. Surzhykov et al. / Computer Physics Communications 165 (2005) 139-156 151

Of course, the well-known nonrelativistic energy expresdign, = —25/8 is returned, given iatomic units as
the default setting. Analogue, we may obtain the 2 energy levels as predicted by the Dirac theory. To this end,
we first need to change to theativistic framework for all subsequent calls of theRAC procedures

> Dirac_settings(framework, relativistic);
Framework is changed to relativistic

and, again, make use of the same comm@ndac_ener gy() . In the relativistic framework, this procedure
now expects the two argumentaind« to return the level energ,, from Eq.(12). To get the energy of asz)»
electron with quantum numbets= 2 andx = —1, we type

> E 2s(Z0) := Dirac_energy(2, -1);
1

__________________________________________________ -1
/ 2 2 \1/2

| Z0 Dirac_Constant _al pha |

I A S e |

| 2 2 1/2 2|

\ (1 + (1 - Dirac_Constant_al pha 2zZ0 ) )/

E 2S5(Z0) 1= -c-mmmmmmm i e e a o

Di rac_Const ant _al pha

which returns this energy in the most general form, including the nuclear charge Z0 and the (unevaluated) fine
structure constant as yet given by the global variabl r ac_Const ant _al pha. At the first glance, such a
general form may look quite complicated but it helps of course in treating the expressions algebraically. For our
discussion of the fine-structure behavior as a functio pive may first assume theZ parameter small when
compared with unity and apply the standardME commandser i es() to expand this expression for the; 2

energy in powers of

> series(E_2s(z0), z0):
> E_2s_exp(Z0) := convert(\% polynon;

2 2 4
E_2s_exp(Z0) = -1/8 zZ0 - 5/128 Dirac_Constant_al pha Z0

Subtracting from this expression the Schrédinger enéigy, from above

> E 2s_exp(Z0) - E_2(z20);
2 4
5 Di rac_Const ant _al pha Z0

we find the so-called relativistic Pauli correctisv,,,. to the (nonrelativistic) level enerdi,2] which, as seen
from the printout, scales Iikezza1 and, thus, will strongly increase for high-Z ions.

The result above for the Pauli correctiovE,,, displays the analytic behavior of the fine-structure splitting; to
get a better impression on the size of this splitting, we may evaluate this expressioa: dralsonumerically.
To substitute the value = 1/137.036 of the fine-structure constant fdirr ac_Const ant _al pha, we may use
the commanddi r ac_eval f () inthe DIRAC program and obtain

> E 2s(Z0) := Dirac_eval f (E_2s(Z20));
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18778. 865231694104538
E 2S(Z0) 1= --mmmmmmmmm oo

2 1/2 2|
(1. + (1. - 0.000053251353990881516089 Z0 ) ) /

- 18778. 865231694104538
By evaluating in a similar way also the level energy for thg,2shell (2 = 2, k = —2)

> E_2p(Z0)
> E_2p(Z0)

= Dirac_energy(2, -2);

= Dirac_eval f (E\_2p(Z20)):

we can finally calculate the level shifts of thie= 1/2 andj = 3/2 fine-structure levels with respect to the value
from the nonrelativistic theory. For atomic hydrogefy = 1), this gives rise to

> subs(Z0
> subs(Z0

= 1, E 2s(Z0) - E_2(Z0));

=1, E 2p(Z0) - E _2(Z0));
-5

-0.208018917100000 10

-5
-0.41602897100000 10

in atomic units and can be compared immediately to the values of 0.46 @R208x 10-° a.u.) and M9 cnT !
(0.416x 10 a.u.), respectively, as known from the literat{e2].

4.2. Relativistic contraction of the s-orbitals

In Section2, we have displayed the radial components for a bound-state electron for both, the nonrel@jvistic
and relativistic theory13)—(14) The spatial behavior of these one-electron solutions for different nuclear cl¥arges
has been discussed in detail at a number of plEc8%to illustrate the ‘relativistic effects’ for higl% ions. While,
for small chargesZ, the radial Schrédinger functiofb) and the large compone(it3) from the Dirac theory
are practically the same, a comparison of these functions for high-Z ions shows a clear contraction of the large
component towards the nucleus. This effects, which is known aselétévistic contraction of the wavefunctions,
influences not only the structure of heavy (hydrogen-like) ions but, for instance, also their ionization bEigvior
or the chemical binding in materials containing heavy elements.

To illustrate the contraction of the 3s wavefunction for a hydrogen-like uranium f3# by means of the
DIRAC program, we shall extract and compare the radial fundmvith the large componelif.3) from Dirac’s
theory. The algebraic expression for thg-3 ;—o(r) nonrelativistic function can be obtained by

> Dirac_settings(framework, nonrelativistic);
Franmework is changed to nonrelativistic
> Dirac_settings(charge, 92);

Nucl ear charge is changed to 92
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> P 3s(r) :=Dirac_radial __orbital (3, 0, r);
368 1/2 1/2 92 r 2
P_3s(r) :=---23 3 exp(- ----) (27 - 1656 r + 16928 r ) r
243 3

where, in the first two lines of printout, we set the nonrelativistic framework and define the nuclear charge to be
Z=92.

Returning to the relativistic framework as before, the large component of a éectron is generated in the
DIRAC program by calling

> P 3s r(r) := Dirac_radial _conponent(large, 3, -1, r):
for which, we suppress here the printout to screen (using the colon at the end of the line) as this would result in
quite a lengthy expression in terms of the hypergeoim&nction and various physical constants (cf. Et3)).
For the present purpose, instead, we first better ‘evaluate’ all the physical constants to their numerical values by
calling
> P_3s_r(r) := Dirac_eval f(P_rel(r));

0.74113463002424792093

P 3s_r(r) := 69.235282776899202095 r

exp(-32.599243267231110742 r) (3.8221513992160292467

hypergeom([-2.], [2.4822692600484958419], 65.198486534462221484 r) -

2. hypergeon([-1.], [2.4822692600484958419], 65.198486534462221484 r))
Having the 3s radial wave functions from the nonrelativistic and relativistic theory, we can plot them by using the
standard MPLE proceduregl ot () . Physically more important than the wave function, however, is the ‘contrac-
tion’ in the charge distribution as given by thadial distribution functions |Pn:3,1:o(r)|2 and |Pn:3,,(:_1(r)|2,
respectively.

> plot([(P_3s(r))"2, abs(P_3s_r(r))"2], r=0..0.3, linestyle=[DASH, SOLID]);

As expected, a clear contraction of the relativistic function (solid line) is found when compared with the nonrela-
tivistic radial wavefunction (dashed line) (sEmy. 1).

4.3. Evaluation of therelativistic radial integrals

Until now, we have demonstrated the use of th@AZ program by simple ‘textbook examples’ such as the
computation of the level energies or the hydrogenic wave functions. TRedprocedures, however, are able to
help the user with much advanced studies concernimgxhitation and decay properties or the dynamical behavior
of the hydrogen-like ions. For such investigations, we need to contpartgtion matrix elements including the
wavefunctions from above and the capending (transition) opet@rs. The exact relativistic treatment of tpleo-
toionization of hydrogen-like ions, for instance, can be tracadibto the computation of the bound—free transition
amplitude[3]

MJF:,Ib = <wEfomf |aukeikr|wizbkbub>9 (32)
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Fig. 1.

wherev,, ., (r) and VE my (1) are the (relativistic) wavefunctionsifthe initially bound and the final contin-

uum electron, respectivelgnd where the operatay€*” describes the electron—photon interaction.
The simplification of the transition amplitug®2) requires elements from the algebra of angular momentum and

has been discussed elsewh@;&4]. In particular, it was shown that this affitpde can be factorized into radial and
angular parts where the latter ones evaluate to WigngaBd 6-j symbols and a constant factor, while the radial

part is reduced to the integral87)—(29) Below, we therefore discuss how theRAc package can be utilized

to compute these radial integrals. We start with the straightforward numerical integration of the radial integral
12=1<q; a, b), which arises if a 15> electron g, = 1, x, = —1) is ionized by a photon with energy, = 70 eV

into a g,2 continuum state (partial s-wavey = —1). For this particular choice of the parameters and quantum

numbers, we may simply enter
> Dirac_settings(charge, 1):
> Dirac_settings(framework, relativistic):
> Pa(r) := Dirac_eval f(Dirac_radi al _conponent (large, 1, -1, r)):
> (r) := Dirac_eval f(Di rac_radial _conponent (small, 2.072432345, -1, r, free)):
> int(Pa(r)*Dirac_spherical j(1,0.01877198124*r)*Qo(r),r=0..70.);
-5

-0.23633058961153019500 10
where the keywordree in the procedur®irac_radial_component() is used to generate the small component of a

continuum state with (kinetic) energy; = 2.072432345 (a.u.) and where most of the intermediate printout has
been suppressed by using a colon to terminate the first 5 lines. Both the éheagyl the momentum transfge=
0.01877198124 (a.u.) are easily derived from the conservation of energy, assusidg (a.u.) as the ionization
potential for the 1s electron of atomic hydrogen. In the last input line, moreover, the proCéddrapherical_j()

is used to returns the spherical Bessel funciip@yr).
For the integral above, for instance AMLE requires about 145 s at a 1 GHz processor. An alternative and (much)
faster computation is achieved by using tr@lytical expressions for the radial integrgla7)—(29)in terms of
the special hypergeometric functiof@8]. Within the DIRAC program, such a (analytical) integration algorithm is

The (direct) numerical coputation of the integral@7)—(29)is typically reliable but also verrme consuming.
supported by means of the procedDieac_IJ_radial() which can be invoked with theasne parameters as above to

determine tha?_, (¢; a, b) integral
> Dirac\_IJ\ _radial (1LO, 0.01877198124, 1, 1, -1, 2.072432345, -1, free):
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-5
-0.23633058961153083452 10

Although, of course, the integral is the same for using both, the numerical or analytical integration scheme (at least
up to the 16th decimal digit), the procedubiac_IJ_radial() is faster by almost two orders of magnitude when
compared to MPLE’s numerical integration. It is also more acate as found by increasing the number of digits
toDigits := 30.

5. Summary and outlook

The DIRAC program has been presented to facilitate a fast and consistent access to the basic elements and
properties of the hydrogen-like ions. In its present form, this program consists out of a sepoErocedures for
the numerical and analytical evaluation of the Coulomb wave and Green'’s functions, both within the nonrelativistic
and relativistic framework. Apart from these functions, moreover, the computation of radial integrals (as they
frequently arise in the evaluation of transition amplitsifer various types operators) is supported by means of the
DIrRAC program by implementing the analytic formulas.

Of course, the procedures above can be seen also échimecal basis for more advanced studies concerning
the behavior of the hydrogen-like ions or, more generally, applications of the atomic shell model. In the future,
therefore, several lines are possible (andrdéte) for the further development of the®ac program. In a first
step, we want to extent the present set of procedures towards the interaction of hydrogen-like ions with the radiation
filed as it occurs in the ionizatibor capture of electrons by high-ions or in laser fields. Examples of very
desirable procedures refer to a simple access to the detesy amgular distributionsy ¢o the polarization of the
emitted radiation. Having collaborations with the atopiiysics community at GSI and elsewhere for many years,
we know that these developments will make th&r B package attractive to bothxgerimental and theoretical
investigations on energetic iortem and ion—electron collisions.
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