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Abstract

Today, the ‘hydrogen atom model’ is known to play its role not only in teaching the basic elements of quantum mecha
also for building up effective theories in atomic and molecular physics, quantum optics, plasma physics, or even in th
of semiconductor devices. Therefore, the analytical as well as numerical solutions of the hydrogen-like ions are fr
required both, for analyzing experimental data and for carrying out quite advanced theoretical studies. In order to s
fast andconsistent access to these (Coulomb-field) solutions, here we present the DIRAC program which has been develop
originally for studying the properties and dynamical behavior of the (hydrogen-like) ions. In the present version, a
MAPLE procedures is provided for the Coulomb wave and Green’s functions by applying the (wave) equations from b
nonrelativistic and relativistic theory. Apart from the interactive access to these functions, moreover, a number of radial
are also implemented in the DIRAC program which may help the user to construct transition amplitudes and cross sect
they occur frequently in the theory of ion–atom and ion–photon collisions.
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No. of bytes in distributed program, including test data, etc.: 162 591
Distribution format: tar gzip file
CPC Program Library subprograms required: None
Nature of the physical problem: Analytical solutions of the hydrogen atom are widely used in very different fields of ph
[2,3]. Despite of the rather simple structure of the hydrogen-like ions, however, the underlying ‘mathematics’ is not alw
easy to deal with. Apart from the well-known level structure of these ions as obtained from either the Schrödinger
equation, namely, a great deal of other properties are often needed. These properties are related to the interaction
electron(s) with external particles and fields and, hence, require to evaluate transition amplitudes, including wave
and (transition) operators of quite different complexity. Although various special functions, such as the Laguerre poly
spherical harmonics, Whittaker functions, or the hypergeometric functions of various kinds canbe used in most cases in ord
to express these amplitudes in a concise form, their derivation is time consuming and prone for making errors. In ad
their complexity, moreover, there exist a large number of mathematical relations among these functions which are d
remember in detail and which have often hampered quantitative studies in the past.
Method of solution: A set of MAPLE procedures is developed which provides both the nonrelativistic and relativistic (anal
solutions of the ‘hydrogen atom model’ and which facilitates the symbolic evaluation of various transition amplitudes.
Restrictions onto the complexity of the problem: Over the past decades, a large number of representations have been wor
for the hydrogenic wave and Green’sfunctions, using different variables and coordinates [2]. From these, the position–spa
representation in spherical coordinates is certainly of most practical interest and has been used as the basis of the p
plementation. No attempt has been made by us so far to provide the wave and Green’s functions also in momentum
which the relativistic momentum functions would have to be constructed numerically.
Although the DIRAC program supports both symbolic and numerical computations, the latter one are based on MAPLE’s stan-
dardsoftware floating-point algorithms and on the (attempted) precision as defined by the globalDigits variable. Although
the default number,Digits = 10, appears sufficient for many computations, it often leads to a rather dramatic loss
accuracy of the relativistic wave functions and integrals, mainly owing to MAPLE’s imprecise internal evaluation of the co
responding special functions. Therefore, in order to avoid such computational difficulties, theDigits variable is set to 20
whenever the DIRAC program is (re-)loaded.
Unusual features of the program: The DIRAC program has been designed for interactive work which, apart from the sta
solutions and integrals of the hydrogen atom, also support the use of (approximate)semirelativistic wave functions for both, the
bound- and continuum-states of the electron. To provide a fast and accurate access to a number of radial integrals w
frequently in applications, the analytical expressions for these integrals have been implemented for the one-particle
rk , e−σr , dm/drm, jL(kr) as well as for the (so-called) two-particle Slater integrals which are needed to describe the C
repulsion among the electrons. Further procedures of the DIRAC program concern, for instance, the conversion of the phys
results between different unit systems or for different sets of quantum numbers. A brief description of all procedures as
in the present version of the DIRAC program is given in the user manualDirac-commands.pdfwhich is distributed togethe
with the code.
Typical running time: Although the program repliespromptly on most requests, the running time also depends on the part
task.
References:
[1] Maple is a registered trademark of Waterloo Maple Inc.
[2] H.A. Bethe and E.E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms, Springer, Berlin, 1957.
[3] J. Eichler and W. Meyerhof, Relativistic Atomic Collisions, Academic Press, New York, 1995.
 2004 Elsevier B.V. All rights reserved.

Keywords: Analytical solution; Coulomb–Green’s function; Coulomb problem; Dirac equation; Energy level; Expectation value;
Hydrogen-like ion; Hydrogenic wavefunction; Matrix element; Radial integral; Special functions

1. Introduction

Since the beginning of quantum mechanics, the hydrogen atom has been one of the best studied m
physics[1,2]. In a large number of textbooks and monographs, therefore, its (well-known) solutions from
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the nonrelativistic Schrödinger equation or Dirac’s (relativistic) wave equation have served as standard e
in introducing atomic theory. But apart from the educational insight as obtained from thehydrogen atom model,
the theory of the one-electron atoms and ions has found its way also into quite different fields of modern
including molecular and plasma physics, quantum optics, or the theory of quantum information. When co
with theatomic shell model, i.e. the successive filling of shells as established for instance by the periodic ta
elements, the (analytical) solutions of the ‘hydrogen atom’ help understand many atomic processes in N
least qualitatively. During the last decades, moreover,Dirac’s theory of the hydrogen-like ions has been app
successfully for describing energetic collisions of high-Z ions with atomic targets[3] or for testing quantum
electrodynamical (QED) effects[4], if Furry’s picture and field-theoretical concepts are taken into account.

As seen from this wide-spread use of the hydrogen atom model, therefore, a fast and interactive access to the
lutions and properties of the one-electron ions is highly desirable. In the past, several program have been d
and implemented into theCPC program library for calculating the hydrogenic wave and Green’s functions,
within the nonrelativistic[5,6] and relativistic[7,8] framework. Beside of providing these functions explicitly, th
have been implemented also—at least to a certain extent—in a large number of further codes including t
studying the two-photon ionization of hydrogen-like ions[8], their interaction with lasers[9] and electrons[10],
the excitation and ionization of such ions by Coulomb fields[11], their bound–bound transitions in the presenc
of external magnetic fields[12], and at many places elsewhere. But although these programs have certainly
useful for understanding the properties and behavior of one-electron atoms and ions, they have two draw
common which restrict their further application: Since these programs are designed for a very particular ta
often (i) cannot be extended so easily to other problems. Moreover, by using standard languages such as FORTRAN

or C, these programs do (ii) not support any algebraic (symbolic) access to the wave functions and matrix elem
as required by more advanced studies. The lack of symbolic techniques, in particular, and together with
flexibility in dealing with the input and output of the programs from above have hampered their use for a
wider range of applications.

Today, a new and promising alternative for having analgebraic access to complex (symbolic) expression
offered by computer algebra including the general purpose systems such as MATHEMATICA or MAPLE. In the
last decade, they have been increasingly utilized to provide a fast and reliable gateway to a large set of
expressions and computations. With the development of the DIRAC program, we here provide a set of MAPLE

procedures for studying the properties and the dynamicalbehavior of the hydrogen-like ions. In the past two yea
this program has been used to support not only the interpretation of experiments but also for a detailed an
the polarization and correlation properties of the X-ray radiation as emitted by relativistic collisions[13,14]. Owing
to its interactive design, moreover, the DIRAC program may help the user not only in his or her daily research w
but also in teaching the physics of (hydrogen-like) atoms and ions.

Obviously, however, a program about thehydrogen atom model can neither be implemented comprehensivel
nor explained within a single step. Therefore, the DIRAC package will be presented in several steps, each of the
dedicated to a well defined part of the theory. To provide access to the very basic elements of the theory, here w
describe a set of procedures for the symbolic (as well as numerical) computation of the wave and Green’s fu
These functions are provided for both, the bound- and continuum-state solutions of the nonrelativistic as
relativistic theory. Having once a simple access to thesefunctions, of course, they can be rather easily app
to construct the transitions amplitudes and matrix elements for a large number of other properties. For s
frequently required—matrix elements, an algebraic evaluation of the radial integrals has been implemen
explicitly.

Although the main purpose of this work is to describe the design and the use of the DIRAC package, in the
next section we first compile the basic equations and expressions from the theory of the hydrogen at
emphasis on those which have been implemented in the code. In Section3, we later describe the organization
the program and how it is distributed. This sections alsolists all the user-accessible commands together with a s
description, while a detailed explanation of the parameters, optional arguments and some additional information
each procedure is given in an additional user manual and is appended to the code. This is followed in Secti4 by a
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number of selected examples to illustrate the interactive use of the DIRAC program within its MAPLE environment.
A short outlook onto future developments and extensions of the program is finally given in Section5.

2. Theoretical background

Since the quantum-mechanical theory of the one-electron atoms has been worked out long time ago, bo
the nonrelativistic and relativistic framework, we may refer for most details to the literature. Helpful introductio
into this topic can be found, for instance, in the texts by Bethe and Salpeter[1], Messiah[15], Bransden and
Joachain[2], Eichler and Meyerhof[3], and by many others. In the present work, therefore, we will restrict
selves to rather a short compilation of the basic expressions, just enough in order to introduce the notations
formulas as implemented within the DIRAC program. In the following two Sections2.1 and 2.2, in particular, we
briefly recall the (analytically well known) radial-angular representation of the hydrogen wave and Green’s f
tions which are later applied in Section2.3 for evaluating a number of radial integrals. Emphasis has first b
paid to those integrals which are of frequent use in the computation of the structural and dynamical properties
the hydrogen-like ions. In this paper (and also in most parts of the underlying implementation of the DIRAC code),
atomic Hartree units̄h = me = e2/4πε0 = 1, whereε0 is the permittivity of free space, are used throughout unle
specified otherwise.

2.1. Wavefunctions and energy levels

2.1.1. Nonrelativistic framework
In a pure Coulomb potentialV (r) = −Z/r of a given (nucleus with) chargeZ, the motion of an electron i

described by the time-independent Schrödinger equation

(1)�ψ(r) + 2

(
E + Z

r

)
ψ(r) = 0

which, in polar coordinatesr, ϑ , andϕ, can be separated into three independent equations owing to the ans[1]

(2)ψ(r,ϑ,ϕ) = R(r)Ylm(ϑ,ϕ) = P(r)

r
Ylm(ϑ,ϕ).

As seen from this ansatz(2), the electronic wavefunctionψ(r) ≡ ψ(r, θ,φ) is therefore given as a product of
radial function R(r) or P(r)/r, respectively, and a spherical harmonicYlm(ϑ,ϕ) which describes theangular
structure and which depends on the orbital angular momentuml and its projection onto the quantization axis
denoted by the magnetic quantum numberm. However, not much need to be said here about the propertie
treatment of the spherical harmonics as one of the standard tasks from the theory of angular momentum[16] for
which meanwhile also a number of symbolic tools are available[17,18]. The (radial) functionP(r) from ansatz
(2) obeys theradial Schrödinger equation

(3)

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
− l(l + 1)

r2
+ 2Z

r
+ 2E

]
P(r)

r
= 0

and are known to belong either to the discrete part of the spectrum with the (negative) energies

(4)En = − Z2

2n2 < 0, n = 1,2, . . . ,

the so-calledbound states, or to its continuous part for all energiesE > 0, for which the functionsP(r) are said
to represent thefree-electron (or continuum) states. For a Coulomb potential in Eq.(3), an analytic solution o
the radial functionsP(r) in terms of the confluent hypergeometric functionF(α,β;x) are known for both, the
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(5)Pnl(r) = rl+1 1

(2l + 1)!

√
(n + l)!

(n − l − 1)!2n

(
2Z

n

)3/2+l

e(−Zr/n)F

(
−(n − l − 1),2l + 2,

2Zr

n

)
,

with n andl being the principal and the orbital angular momentum quantum numbers, as well as for thecontinuum
(E > 0)

(6)PEl(r) = 2
√

Z√
1− e−2πn′

l∏
s=1

√
s2 + n′2 (2kr)l

(2l + 1)!e
−ikrF (in′ + l + 1,2l + 2,2ikr)

with k = √
2E andn′ = Z/k. In the standard theory, moreover, the radial functions(5) and (6)are normalized due

to the conditions

(7)

∞∫
0

R2
nl(r)r

2 dr =
∞∫

0

P 2
nl(r)dr = 1

for having a single particle per bound state and due to

(8)

∞∫
0

P ∗
El(r)PE‘ l (r)dr = δ(E − E′)

for representing one particle per unit energy as far as electrons in the continuum are concerned.
In the DIRAC package, both the full wavefunctions(2) and their radial components(5) and (6)are provided for

the bound- and free-electron states by using the proceduresDirac_orbital() andDirac_radial_orbital(), respectively.

2.1.2. Relativistic framework
Similar to Schrödinger’s equation(1), the Dirac (eigenvalue) equation with a Coulomb potential

(9)

(
icα · ∇ + Z

r
− (β − 1)c2 + E

)
ψ(r) = 0

can be used to describe therelativistic motion of a spin-1/2 electron in the field of a nucleus with chargeZ which,
apart from the kinetic and potential energy of the electron, now also contains its rest energy as well as cont
due to the electron spin[2,3]. Analogue to the nonrelativistic case, the solutionψ(r) of Eq. (9) can be separate
again into a radial and angular part

(10)ψκm(r,ϑ,ϕ) = 1

r

(
P(r)Ωκm(ϑ,ϕ)

iQ(r)Ω−κm(ϑ,ϕ)

)
,

whereΩκm(ϑ,ϕ) denotes a standard Dirac spin-orbital function and whereκ = ±(j +1/2) for l = j ±1/2 is called
the relativistic angular momentum quantum number. Owing to the definition ofκ = ±1,±2, . . . , this quantum
number carries information about both, the total angular momentumj and the parity(−1)l of the wavefunction. As
usual, the Dirac spin-orbitals can be written in terms of the spin-1/2 Pauli spinorsχ± and the spherical harmonic
by

(11)Ωκm(ϑ,ϕ) =
∑
ml

〈l,ml,1/2,m − ml |jm〉Ylml (ϑ,ϕ)χm−ml .

As seen from ansatz(10), moreover, the radial part of the wavefunctions is now given by the two functionsP(r)

andQ(r) which are called thelarge andsmall components, respectively. Similar to the nonrelativistic case
analytic representation of these two components is known and is different for an electron in a bound or co
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state where, apart from the continuum withpositive energiesE > 0 an additional continuous branch (of solution
with negative energiesE � −2c2 exists. As known from Dirac’s theory, these solutions with negative ene
require special care and can be re-interpreted, for instance, in terms of positron states. For thebound states of
hydrogen-like ions, the (discrete eigen-)energies of Eq.(9) are given by

(12)Enκ = (Wnκ − 1)

α2
= 1

α2[1+ ( αZ
n′+s

)2]1/2
− 1

α2
,

while the corresponding radial componentsPnκ andQnκ can be written again in terms of the confluent hyperg
metric functionF(α,β;x). They read as

Pnκ(r) = Nnκ

√
1+ Wnκr(2qr)s−1e−qr

(13)×
[
−n′F(−n′ + 1,2s + 1;2qr) −

(
κ − αZ

qλc

)
F(−n′,2s + 1;2qr)

]
,

Qnκ(r) = −Nnκ

√
1− Wnκr(2qr)s−1e−qr

(14)×
[
n′F(−n′ + 1,2s + 1;2qr)−

(
κ − αZ

qλc

)
F(−n′,2s + 1;2qr)

]
,

wheren′ = n − |κ | = 0,1,2, . . . denotes the number of nodes of the radial components,λc = h̄/mec the Compton
length of the electron, and

(15)s =
√

κ2 − (αZ)2,

(16)q = Z√
(αZ)2 + (n′ + s)2

.

Moreover, the normalization factor

(17)Nnκ =
√

2q5/2λc

�(2s + 1)

[
�(2s + n′ + 1)

n′!(αZ)(αZ − κqλc)

]1/2

is chosen in such a way that the two radial components satisfy the condition

(18)

∞∫
0

(
P 2

nκ (r) + Q2
nκ (r)

)
dr = 1,

i.e. that the wavefunction(10) represents one electron per bound state.
For the free-electron states with energiesE � −2c2 or E > 0, the explicit expressions of the radial compone

PEκ (r) andQEκ(r) are quite elaborate when compared with the bound solutions in Eqs.(13) and (14)and are
not displayed here. They are shown and discussed, for example, in the text by Eichler and Meyerhof[3]. However,
these continuum states are also implemented in the DIRAC package and can be accessed as well by means o
proceduresDirac_spinor() andDirac_radial_component().

2.1.3. Semirelativistic framework
The two radial functions(13) and (14)represent, together with Eq.(10), anexact solution of the Dirac equatio

for a pure Coulomb potential. In practice, however, the use of these radial components often leads to rathe
and complicated computations. Instead of the exact form, therefore, theapproximate Darwin wavefunctions[19]
have been widely used in applications such as the theoretical description of the Coulomb ionization[20] or the
electron–positron pair creation[21]. For a Coulomb potential,−Z/r, the Darwin wavefunctions

(19)φ
(±)
nlm(r) =

(
1− i

2c
α · ∇

)
u(±)ψnlm(r)
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are expressed in terms of the nonrelativistic solutions(2)–(5)of the Schrödinger equation from Section2.1.1, where
u(+) = (1,0,0,0)+ andu(−) = (0,1,0,0)+ are the two four-component spinors for a particle at rest with ei
spin-up or spin-down, respectively. Obviously, the Darwin functions(19) have a much simpler structure wh
compared with the exact bound-state solutions(13) and (14)from above; they are accurate to first-order inαZ in
the expansion of the Dirac equation and are normalized to the same order.

Apart from the bound states(19), approximate continuum wavefunctions can be derived which are accur
to αZ in the relativistic motion of the electron and which are known as Sommerfeld–Maue wavefunction[22]
from the literature. Again, these functions can be expressed in terms of the nonrelativistic functions and have be
widely used in applications[21,23]. Although the explicit form of these functions is slightly more complicated t
in the bound case, their derivation follows very similar lines. Here, we will not display these functions in de
simply refer to the proceduresDirac_Darwin() andDirac_Sommerfeld_Maue of the DIRAC code which facilitates
the access to both, the Darwin and the Sommerfeld–Maue semirelativistic approximations.

2.2. Green’s function

Apart from the wavefunctions, which describe the electron in some particular quantum state, one often n
summation over all the (unoccupied) states, especially if parts of the atomic interaction are treated as a pert
Such a summation over thecomplete spectrum is required, for example, for describing the two- (and multi-)ph
processes in hydrogen-like ions[24] or for the computation of hyperpolarizabilities. Although, in principle, it
appears straightforward to carry out such a summation explicitly by using the function from above, th
number of terms and the need for integrating over the electron continuum may hamper such an approach
the use of the Green’s function

(20)G(r, r′;E) =
∑∫

ν

|ψν(r)〉〈ψν(r′)|
Eν − E

is usually much more favorable since it provides a simple access to the perturbative treatment of various types o
interactions in the computation of atomic properties.

As easily shown, the Green’s function(20) can be obtained generally as solution of the inhomogeneous d
ential equation

(21)[Ĥ − E]G(r, r′;E) = δ(r − r′),
whereĤ denotes the Hamiltonian operator of the system. Similar to the case of the wavefunctions, the form
HamiltonianĤ and, hence, the explicit expressions for the Green’s function depends of course on theframework
in which the system is described. For the Schrödinger operatorĤ = −∇2/2 − V (r) (the nonrelativistic case), fo
example, the solutions of Eq.(21) can be separated—again—into radial and angular functions by means
ansatz

(22)G(r, r′;E) = 1

rr ′
∞∑
l=0

∑
m

gl(r, r
′;E)Y ∗

lm(ϑ ′, ϕ′)Ylm(ϑ,ϕ).

For a Coulomb-potentialV (r) = −Z/r in the Hamiltonian above, the radial functions are known analyticall
terms of (special) Whittaker functions of the first and second kind

(23)gl(r, r
′;E) = ν

Z

�(l + 1− ν)

�(2l + 2)
Mν,l+1/2

(
2r<Z

ν

)
Wν,l+1/2

(
2r>Z

ν

)
,

whereν = Z/
√−2E andr> = max(r, r ′) and wherer< = min(r, r ′) refer to the larger and smaller values of t

two radial coordinates, respectively.
A similar radial-angular representation can be found for the (relativistic) Dirac Hamiltonian in Eq.(21) but

leads to a quite complicated form for theradial part which is given then by a 2× 2 matrix. In the DIRAC program,
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we provide the procedureDirac_Greens_radial() which supports the computation of the radial functions(23)or of
the corresponding relativistic Green’s functions.

2.3. Integrals with hydrogenic wavefunctions

The Coulomb wave and Green’s functions from the previous subsections can be applied for studying the
ties and dynamics of hydrogen-like ions. Usually, they are the basic ingredients in defining the transition amplitude
and cross sections and, by using theirradial-integral decompositions in Eqs.(2), (10), and (22)immediately lead
to a number ofradial-integrals including various types of (transition) operators. While, of course, these inte
can always be determinednumerically, an analytic (pre-)evaluation of these integrals is in many cases pos
and results in a considerable gain in the computation of the transition amplitudes. Often, moreover, the
evaluation of the radial integrals is faster and more accurate when compared with a (straightforward) numer
integration. For several integrals, which frequently arise in applications, therefore, the analytic formulas ha
implemented explicitly into the DIRAC code. Below, we first discuss the matrix elements containing the oper
rk , e−σr , dm/drm, the integrals for studying the light–matter interaction or for collisions with external particl
but turn later also to the (well-known) Slater integrals for treating the interaction among the electrons.

2.3.1. Radial integrals of r-dependent operators
Nonrelativistic framework: For calculating the structure of the hydrogen-like ions and their cross sectio
collisions with atoms and electrons, one often needs the matrix elements for the operatorsrk , dm/drm, e−σr , or
various combinations of these operators. Within the nonrelativistic Schrödinger theory, the analytic calcul
suchr-dependent matrix elements havebeen analyzed and discussed especially by Sánchez and López Piñeiro[25]
who applied the hypervirial theorem along with a second quantization formalism. They showed that these
elements can be typically reduced to radial integrals of the form

〈
nl

∣∣rke−σr
∣∣n′l′

〉 = ∞∫
0

Pnl(r)r
ke−σrPn′l′(r)dr

= Nn′ l′Nnl

n−l−1∑
m=0

n′−l′−1∑
m′=0

(−1)m+m′

m!m′!
(

n′ + l′
n′ − l′ − 1− m′

)(
n + l

n − l − 1− m

)

×
(

2Z

n′

)l′+m′(
2Z

n

)l+m(
Z

n′ + Z

n
+ σ

)−(k+l+l′+m+m′+3)

(24)× �(k + l + l′ + m + m′ + 3),

which can then be utilized also (if necessary) in order to compute the matrix elements including some de
dm/drmPnl(r) of the wave functions. For the sake of brevity, however, we will not display these recursion for
but only mention that, for all the operators from above, the corresponding radial integrals can be evaluated b
of the procedureDirac_r_matrix_element() of the DIRAC program. In this procedure, an analytic evaluation of
integrals is carried out whenever possible.

Relativistic framework: Of course, an analytical expression of the matrix elements with operatorsrke−σr can
be found also for the relativistic Dirac wavefunctions. However, in order to derive such expressions it i
convenient not to start from the standard representation of the hydrogenic functions(13)–(14)but first to re-write
them in terms of a series expansion inr as it was suggested originally by Rose[26]. By using suchr-series
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representation, therke−σr matrix elements can be written, similar to(24), in term of�-functions as

〈
nκ

∣∣rke−σr
∣∣n′κ ′〉 = ∞∫

0

(
Pnl(r)Pn′κ ′(r) + Qnl(r)Qn′κ ′(r)

)
rke−σr dr

= NnκNn′κ ′
n−|κ|∑
ν=0

n′−|κ ′|∑
ν ′=0

(
c+
nκ,νc

+
n′κ ′,ν ′ + c−

nκ,νc
−
n′κ ′,ν ′

)
(25)× qs+ν−1q ′s ′+ν ′−1

(q + q ′ + σ)1+ν+ν ′+s+s ′+k
�(ν + ν′ + k + s + s′ + 1),

where the parametersq, s and the normalization factorNnκ were defined by Rose[26], and where the coefficien
c±
nκ,ν are given by

(26)c±
nκ,ν = (

1±
√

1− q2
)1/2 ((−n + |κ |)ν2ν)

ν!(2s + 1)ν

[
(ν − n + |κ |) ± (αZ/q − κ)

]
with (a)ν being the Pochhammer symbol.

In contrast to the radial integral(25), no analytic expressions for the matrix elements containing the de
tive dm/drm within the relativistic framework are implemented explicitly in DIRAC program. For all such matri
elements, however, the (straightforward) numerical integration is applied by making use of the standardAPLE

commandint().

2.3.2. Grant’s integrals
Relativistic framework: As known from relativistic collision theory[3,27], the interaction of (atomic) electron
with the radiation field or with other atoms and ions can usually be traced back to the computation of the followi
three radial integrals

(27)I±
L (q;a, b) =

∞∫
0

dr jL(qr)
(
Pa(r)Qb(r) ± Qa(r)Pb(r)

)
,

(28)I0
L(q;a, b) =

∞∫
0

dr jL(qr)Pa(r)Qb(r),

(29)JL(q;a, b) =
∞∫

0

dr jL(qr)
(
Pa(r)Pb(r) + Qa(r)Qb(r)

)
,

wherejL(qr) denotes a spherical Bessel function of orderL and, as before,P(r) andQ(r) are the radial com
ponents of the one-electron wavefunctions(10). Because of the oscillations in the Bessel as well as the r
wavefunctions, however, an accurate value of these integrals is not always easy to obtain numerically. In the DIRAC

program, we therefore implemented the analytic formulas for these integrals in terms of a finite series over
fluent hypergeometric functions as known for thebound–bound andbound–free transitions[28,29]. While this
typically results in a much faster (and more accurate) computation of the integrals, it requires however that at le
one set of radial components—eitherPa(r),Qa(r) or Pb(r),Qb(r)—has to represent some bound-state electr

Nonrelativistic framework: Since, in the limitc → ∞, the small componentQ(r) becomes negligible, only con
tributions from the last integral(29) survives in the nonrelativistic description of interaction processes with
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radiation field and gives rise to the integral

(30)JL(q;a, b) =
∞∫

0

drjL(qr)Pa(r)Pb(r).

An analytic evaluation of this integral with nonrelativistic radial orbital functions is supported by the proc
Dirac_IJ_radial() of the DIRAC program for both,bound–bound andbound–free electronic transitions.

2.3.3. Slater integrals
Although the main emphasis in developing the DIRAC program has been placed on studying the properties

behaviors of the hydrogen-like ions, the wave functions from above can be used also to estimate the effec
electron–electron interaction forfew-electron atoms and ions. For such systems, one often needs to compu
(two-electron) matrix elements for the Coulomb repulsion operator 1/r12 which, after some algebra, leads to t
so-called Slater integrals

(31)Rk(a, b, c, d) =
∞∫

0

dr1

∞∫
0

dr2Pna la (r1)Pnblb (r2)
rk
<

rk+1
>

Pnclc (r1)Pnd lb (r2),

wherer> = max(r1, r2) andr< = min(r1, r2) refer to the larger and smaller values of the two radial coordina
respectively. The analytic evaluation of this integral in terms of confluent hypergeometric functions has been
plemented in the DIRAC package for the nonrelativistic framework. For reasons of efficiency, however, no at
has been made to incorporate also the ‘relativistic version’ of the Slater integrals which would raise muc
demands regarding the accurate computation of these values.

3. Program organization

3.1. Overview about the DIRAC package

The DIRAC package has been developed as an interactive tool within the framework of MAPLE (version 8).
It is designed in order to provide a simple and consistent access to the wave functions, the excitation and de
properties as well as the dynamical behavior of the hydrogen-like ions. To allow for a rather large flexibility in t
use of the program, most of the functions and quantities from thehydrogen atom model are supported both, withi
the nonrelativistic as well as the relativistic theory. With the present version of DIRAC, we start with compiling
different (analytical) representations of the Coulomb wave and Green’s functions using polar coordinates.
tion, both the analytical and numerical evaluation of the—most frequently—required integrals are suppor
now facilitate their accurate computation for a large number of properties.

Following MAPLE’s philosophy, the DIRAC program is organized in ahierarchical order. In the current version
there are about 50 procedures at quite different level of complexity from which most however are kept
to the user. As in MAPLE’s own design, these procedures mainly serve as language elements in order to b
commands at some higher level of the hierarchy. Therefore, only about 15 procedures at top level need to b
by the user and are briefly summarized inTable 1. More detailed information about the use of these procedu
their optional arguments, or the output can be obtained from the user manualDirac-commands.pdf which
is distributed together with code. In this manual, we mainly follow the style of the help pages of MAPLE and
The Maple Handbook by Redfern[30] from earlier years. To illustrate some of the basic features of the prog
moreover, a few selected examples are displayed below.

As known from MAPLE’s recent up-grades, most of its internalcommands make use of rather short names
often of some abbreviations for thevarious quantities and methods. Although such a name convention migh
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Table 1
Main commands of the DIRAC package. A more detailed description of these and a few less important procedures is given in the user man
Dirac-commands.pdf and is distributed together with the code

Procedure Description

Dirac_convert() Converts the physical results between different unit systems.
Dirac_energy() Returns the nonrelativistic energyEn from Eq. (4) or the relativistic energyEnκ from Eq. (12) for bound–

electron states.
Dirac_evalf() Attempts to simplify an algebraic expression for either the energies, wavefunctions, or matrix eleme

substituting the numerical values for some fundamental constants.
Dirac_Greens_radial() Calculates the radial part of either thenonrelativistic Coulomb Green’s functions(23) or of the corresponding

relativistic Green’s functions.
Dirac_IJ_radial() Evaluates the radial integrals(27)–(30)for both, the bound–bound and bound–free electron transitions.
Dirac_orbital() Returns the nonrelativistic hydrogenic orbitalsψn(E)lm(r,ϑ,ϕ) from Eq.(2) as function of the given arguments
Dirac_r_matrix_element() Evaluates the radial matrix elements for variousr-dependent operators betweenhydrogenic wavefunctions, both

within the nonrelativistic and the relativistic framework.
Dirac_radial_component() Returns the large and small radial components,Pn(E)κ (r) and

Qn(E)κ (r), of the relativistic orbital functions(13)–(14). These components are supported for both, the bou
and free-electron states.

Dirac_radial_orbital() Returns a nonrelativistic radial orbitalPn(E)lm(r) for both, the bound and free-electron states.
Dirac_settings() Specifies the framework, nuclear charge and the units which are to be used by the DIRAC program.
Dirac_Slater_radial() Evaluates the Slater integral(31) with nonrelativistic orbital functions.
Dirac_spin_orbital() Returns the Dirac spherical spinorΩκm from Eq.(11).
Dirac_spinor() Returns the relativistic hydrogenic spinorψn(E)κm(r,ϑ,ϕ) from Eq.(10).
Dirac_Ylm() Return the spherical harmonicYlm(ϑ,ϕ).

favorable for the frequent use of the commands, these names are usually not easy to remember and to recogni
their output if implemented in a code. In the DIRAC program, therefore, we follow a slightly different concept
making use of rather long names to better explain the purpose of the procedures. In the long run, hopefully, this w
simplify the readability and the maintenance of the program. Moreover, all the commands of the DIRAC package
begin with the additional prefixDirac_ in order to distinguish them from MAPLE’s internal functionality.

3.2. Getting started with DIRAC

The DIRAC package is distributed as a compressed tar-filedirac.tar from which thedirac root directory
is obtained by the commandtar -xvf dirac.tar. This root contains the source code library (for MAPLE 8),
a Read.me for the installation of the package as well as the program manualdirac-commands.pdf. This
latter document explains all the user relevant commands along with the output format, their optional arg
and some additional information which might be of interest for the application of the procedures. Thedirac root
directory also contains an example of a.mapleinit file which can be easily modified and incorporated into the
user’shome. Making use of such a.mapleinit file, the moduledirac should then be available like any oth
module of MAPLE simply by typing

> with(dirac);
Welcome to Dirac

Dirac_save_nuclear_charge := Z
Dirac_save_framework := nonrelativistic
Dirac_save_units := atomic

As seen from the printout above, the settings of the DIRAC program are specified by the threeglobal variables
which must not be overwritten interactively. The (global) variableDirac_save_ framework, for instance,
specifies the theoreticalframework in which the various commands will respond to the user; it may take the
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is to be treated internally. In practice, of course, the input/output data of the procedures depend not onl
framework but often also on the present choice of theunits as specified by the variableDirac_save_units. In
the DIRAC program, we presently support atomic Hartree (h̄ = me = e2/4πε0 = 1), natural (me = c = e = 1), SI,
and Gaussian units which are recognized by settingDirac_save_units to one of its allowed values:atomic,
natural, SI, or cgs, respectively. Moreover, most of the solutions and output of interest will depend o
nuclear charge Z as internally specified by the global variableDirac_save_nuclear_charge. To change
these particular specifications of the DIRAC program, the commandDirac_settings() can be used; if instead o
‘atomic’ units, the user wishes to employ ‘natural’ units for the input and output of the procedures, the ini
specification can be modified by entering

> Dirac_settings(units, natural);
Units are changed to natural

Therefore, by specifying the global variables properly due to the demands of the user, the procedures of thIRAC

program can be adapted to the particular task. A proper choice of these global definitions makes the
appropriate for a wide range of applications.

4. Interactive work with the DIRAC program

To illustrate the use of the DIRAC program and to provide some test cases, below we will display and ex
a few examples concerning the fine-structure of thehydrogen-like ions as well as the (algebraic) access to
wave functions. A more advanced example later shows thecomputation of matrix elements within the relativis
framework as they arise frequently in the study of light–matter interactions. For all these examples, we ass
DIRAC program to be loaded into the current MAPLE session as explained in the previous Section3.2.

4.1. Fine structure of hydrogen-like ions

In the nonrelativistic Schrödinger theory, the level energies(4) only depend on the principal quantum numb
n and, hence, aredegenerate with respect to the orbital quantum numberl and the magnetic quantum numberm.
This 2n2 degeneracy (the factor 2 arises from the spin of the electrons), however, is partially removed if
theory is applied. In the relativistic case(12), namely, the nonrelativistic levels with energyEn split inton different
sublevels according to the total angular momentumj = 1/2,3/2, . . . , n − 1/2 of the state. This splitting, whic
is known as the fine-structure of the hydrogen-like ions, can be easily illustrated below by means of the DIRAC

program.
To obtain insight into this splitting as a function of the nuclear chargeZ, let us first compare the relativist

and nonrelativistic level energies forn = 2. Since thenonrelativistic framework is predefined whenever the DIRAC
program is (re-)loaded, we start with the Schrödinger energy(4) which is returned for an arbitrary nuclear char
Z = Z0 by entering

> Dirac_settings(charge, Z0);

Nuclear charge is changed to Z0

> E_2(Z0) := Dirac_energy(2);

2
Z0

E_2(Z0) := - ---
8
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Of course, the well-known nonrelativistic energy expressionEn=2 = −Z2
0/8 is returned, given inatomic units as

the default setting. Analogue, we may obtain then = 2 energy levels as predicted by the Dirac theory. To this e
we first need to change to therelativistic framework for all subsequent calls of the DIRAC procedures

> Dirac_settings(framework, relativistic);

Framework is changed to relativistic

and, again, make use of the same commandDirac_energy(). In the relativistic framework, this procedu
now expects the two argumentsn andκ to return the level energyEnκ from Eq.(12). To get the energy of a 2s1/2
electron with quantum numbersn = 2 andκ = −1, we type

> E_2s(Z0) := Dirac_energy(2, -1);

1
-------------------------------------------------- - 1
/ 2 2 \1/2
| Z0 Dirac_Constant_alpha |
| 1 + -----------------------------------------|
| 2 2 1/2 2|
\ (1 + (1 - Dirac_Constant_alpha Z0 ) ) /

E_2s(Z0) := ------------------------------------------------------
2

Dirac_Constant_alpha

which returns this energy in the most general form, including the nuclear charge Z0 and the (unevalua
structure constantα as yet given by the global variableDirac_Constant_alpha. At the first glance, such
general form may look quite complicated but it helps of course in treating the expressions algebraically.
discussion of the fine-structure behavior as a function ofZ, we may first assume theαZ parameter small whe
compared with unity and apply the standard MAPLE commandseries() to expand this expression for the 2s1/2
energy in powers ofZ

> series(E_2s(Z0), Z0):
> E_2s_exp(Z0) := convert(\%, polynom);

2 2 4
E_2s_exp(Z0) = -1/8 Z0 - 5/128 Dirac_Constant_alpha Z0

Subtracting from this expression the Schrödinger energyEn=2 from above

> E_2s_exp(Z0) - E_2(Z0);
2 4

5 Dirac_Constant_alpha Z0
- ---------------------------

128

we find the so-called relativistic Pauli correction�Enκ to the (nonrelativistic) level energy[1,2] which, as seen
from the printout, scales likeα2Z4

0 and, thus, will strongly increase for high-Z ions.
The result above for the Pauli correction�Enκ displays the analytic behavior of the fine-structure splitting

get a better impression on the size of this splitting, we may evaluate this expression forn = 2 alsonumerically.
To substitute the valueα = 1/137.036 of the fine-structure constant forDirac_Constant_alpha, we may use
the commandDirac_evalf() in the DIRAC program and obtain

> E_2s(Z0) := Dirac_evalf(E_2s(Z0));
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E_2s(Z0) := ----------------------------------------------------------

/ 2 \1/2
| 0.000053251353990881516089 Z0 |
|1. + ------------------------------------------------|
| 2 1/2 2|
\ (1. + (1. - 0.000053251353990881516089 Z0 ) ) /

- 18778.865231694104538

By evaluating in a similar way also the level energy for the 2p3/2 shell (n = 2, κ = −2)

> E_2p(Z0) := Dirac_energy(2, -2);
> E_2p(Z0) := Dirac_evalf(E\_2p(Z0)):

we can finally calculate the level shifts of thej = 1/2 andj = 3/2 fine-structure levels with respect to the va
from the nonrelativistic theory. For atomic hydrogen (Z0 = 1), this gives rise to

> subs(Z0 = 1, E_2s(Z0) - E_2(Z0));
> subs(Z0 = 1, E_2p(Z0) - E_2(Z0));

-5
-0.208018917100000 10

-5
-0.41602897100000 10

in atomic units and can be compared immediately to the values of 0.46 cm−1 (0.208× 10−5 a.u.) and 0.09 cm−1

(0.416× 10−6 a.u.), respectively, as known from the literature[1,2].

4.2. Relativistic contraction of the s-orbitals

In Section2, we have displayed the radial components for a bound-state electron for both, the nonrelativ(5)
and relativistic theory(13)–(14).The spatial behavior of these one-electron solutions for different nuclear charZ

has been discussed in detail at a number of places[1,3] to illustrate the ‘relativistic effects’ for high-Z ions. While,
for small chargesZ, the radial Schrödinger function(5) and the large component(13) from the Dirac theory
are practically the same, a comparison of these functions for high-Z ions shows a clear contraction of t
component towards the nucleus. This effects, which is known as therelativistic contraction of the wavefunctions,
influences not only the structure of heavy (hydrogen-like) ions but, for instance, also their ionization behav[31]
or the chemical binding in materials containing heavy elements.

To illustrate the contraction of the 3s wavefunction for a hydrogen-like uranium ion U91+ by means of the
DIRAC program, we shall extract and compare the radial function(5) with the large component(13) from Dirac’s
theory. The algebraic expression for thePn=3,l=0(r) nonrelativistic function can be obtained by

> Dirac_settings(framework, nonrelativistic);

Framework is changed to nonrelativistic

> Dirac_settings(charge, 92);

Nuclear charge is changed to 92
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> P_3s(r) := Dirac_radial_orbital(3, 0, r);

368 1/2 1/2 92 r 2
P_3s(r) :=---23 3 exp(- ----) (27 - 1656 r + 16928 r ) r

243 3

where, in the first two lines of printout, we set the nonrelativistic framework and define the nuclear charg
Z = 92.

Returning to the relativistic framework as before, the large component of a 3s1/2 electron is generated in th
DIRAC program by calling

> P_3s_r(r) := Dirac_radial_component(large, 3, -1, r):

for which, we suppress here the printout to screen (using the colon at the end of the line) as this would
quite a lengthy expression in terms of the hypergeometric function and various physical constants (cf. Eq.(13)).
For the present purpose, instead, we first better ‘evaluate’ all the physical constants to their numerical v
calling

> P_3s_r(r) := Dirac_evalf(P_rel(r));

0.74113463002424792093

P_3s_r(r) := 69.235282776899202095 r

exp(-32.599243267231110742 r) (3.8221513992160292467

hypergeom([-2.], [2.4822692600484958419], 65.198486534462221484 r) -

2. hypergeom([-1.], [2.4822692600484958419], 65.198486534462221484 r))

Having the 3s radial wave functions from the nonrelativistic and relativistic theory, we can plot them by us
standard MAPLE proceduresplot(). Physically more important than the wave function, however, is the ‘con
tion’ in the charge distribution as given by theradial distribution functions |Pn=3,l=0(r)|2 and |Pn=3,κ=−1(r)|2,
respectively.

> plot([(P_3s(r))^2, abs(P_3s_r(r))^2], r=0..0.3, linestyle=[DASH, SOLID]);

As expected, a clear contraction of the relativistic function (solid line) is found when compared with the n
tivistic radial wavefunction (dashed line) (seeFig. 1).

4.3. Evaluation of the relativistic radial integrals

Until now, we have demonstrated the use of the DIRAC program by simple ‘textbook examples’ such as
computation of the level energies or the hydrogenic wave functions. The DIRAC procedures, however, are able
help the user with much advanced studies concerning the excitation and decay properties or the dynamical beha
of the hydrogen-like ions. For such investigations, we need to computetransition matrix elements including the
wavefunctions from above and the corresponding (transition) operators. The exact relativistic treatment of thepho-
toionization of hydrogen-like ions, for instance, can be traced back to the computation of the bound–free transit
amplitude[3]

(32)MPI
f,b = 〈

ψEf κf mf

∣∣αuλeikr
∣∣ψnbκbµb

〉
,



154 A. Surzhykov et al. / Computer Physics Communications 165 (2005) 139–156

-

and
d
ial
d
ntegral

tum

f a
t has

n

uch)

is
to
Fig. 1.

whereψnbκbµb(r) andψEf κf mf (r) are the (relativistic) wavefunctions for the initially bound and the final contin

uum electron, respectively,and where the operatoruλeikr describes the electron–photon interaction.
The simplification of the transition amplitude(32)requires elements from the algebra of angular momentum

has been discussed elsewhere[3,14]. In particular, it was shown that this amplitude can be factorized into radial an
angular parts where the latter ones evaluate to Wigner 3-j and 6-j symbols and a constant factor, while the rad
part is reduced to the integrals(27)–(29). Below, we therefore discuss how the DIRAC package can be utilize
to compute these radial integrals. We start with the straightforward numerical integration of the radial i
I0
L=1(q;a, b), which arises if a 1s1/2 electron (nb = 1, κb = −1) is ionized by a photon with energyEγ = 70 eV

into a s1/2 continuum state (partial s-wave;κf = −1). For this particular choice of the parameters and quan
numbers, we may simply enter

> Dirac_settings(charge, 1):
> Dirac_settings(framework, relativistic):
> Pa(r) := Dirac_evalf(Dirac_radial_component(large, 1, -1, r)):
> Qb(r) := Dirac_evalf(Dirac_radial_component(small, 2.072432345, -1, r, free)):
> int(Pa(r)*Dirac_spherical_j(1,0.01877198124*r)*Qb(r),r=0..70.);

-5
-0.23633058961153019500 10

where the keywordfree in the procedureDirac_radial_component() is used to generate the small component o
continuum state with (kinetic) energyEf = 2.072432345 (a.u.) and where most of the intermediate printou
been suppressed by using a colon to terminate the first 5 lines. Both the energyEf and the momentum transferq =
0.01877198124 (a.u.) are easily derived from the conservation of energy, assumingI = 0.5 (a.u.) as the ionizatio
potential for the 1s electron of atomic hydrogen. In the last input line, moreover, the procedureDirac_spherical_j()
is used to returns the spherical Bessel functionjL(qr).

The (direct) numerical computation of the integrals(27)–(29)is typically reliable but also verytime consuming.
For the integral above, for instance, MAPLE requires about 145 s at a 1 GHz processor. An alternative and (m
faster computation is achieved by using theanalytical expressions for the radial integrals(27)–(29)in terms of
the special hypergeometric functions[28]. Within the DIRAC program, such a (analytical) integration algorithm
supported by means of the procedureDirac_IJ_radial() which can be invoked with the same parameters as above
determine theI0

L=1(q;a, b) integral

> Dirac\_IJ\_radial(IL0, 0.01877198124, 1, 1, -1, 2.072432345, -1, free):
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-5
-0.23633058961153083452 10

Although, of course, the integral is the same for using both, the numerical or analytical integration scheme
up to the 16th decimal digit), the procedureDirac_IJ_radial() is faster by almost two orders of magnitude wh
compared to MAPLE’s numerical integration. It is also more accurate as found by increasing the number of dig
to Digits := 30.

5. Summary and outlook

The DIRAC program has been presented to facilitate a fast and consistent access to the basic elem
properties of the hydrogen-like ions. In its present form, this program consists out of a set of MAPLE procedures for
the numerical and analytical evaluation of the Coulomb wave and Green’s functions, both within the nonrel
and relativistic framework. Apart from these functions, moreover, the computation of radial integrals (a
frequently arise in the evaluation of transition amplitudes for various types operators) is supported by means o
DIRAC program by implementing the analytic formulas.

Of course, the procedures above can be seen also as thetechnical basis for more advanced studies concerni
the behavior of the hydrogen-like ions or, more generally, applications of the atomic shell model. In the
therefore, several lines are possible (and desirable) for the further development of the DIRAC program. In a first
step, we want to extent the present set of procedures towards the interaction of hydrogen-like ions with the
filed as it occurs in the ionization or capture of electrons by high-Z ions or in laser fields. Examples of ve
desirable procedures refer to a simple access to the decay rates, angular distributions, or to the polarization of the
emitted radiation. Having collaborations with the atomicphysics community at GSI and elsewhere for many ye
we know that these developments will make the DIRAC package attractive to both, experimental and theoretica
investigations on energetic ion–atom and ion–electron collisions.
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