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Abstract

Matrix elements of physical operators are required when the accurate theoretical determination of atomic energy levels,
orbitals and radiative transition data need to be obtained for open-shell atoms and ions. The spin-angular part for these matrix
elements is typically based on standard quantities such as matrix elements of the unit tensor, the (reduced) coefficients of
fractional parentage as well as a number of other reduced matrix elements concerning various products of electron creation
and annihilation operators. Therefore, in order to facilitate the access to the matrix elements of one- and two-particle scalar
operators, we present here an extension to theAR program for the full set of standard quantities and the pure spin-angular
coefficients inLS- and j j-couplings. A flexible notation is introduced for defining and manipulating the electron creation and
the electron annihilation operators. This will allow us to solve successfully various angular momentum problems in atomic
physics.
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Operating systems under which the program has been testiedx 8.1+

Program language usedMAPLE, Release 8 and 9

Memory required to execute with typical datd0 MB

Number of lines in distributed program, including test data, €26.875

Number of bytes in distributed program, including test data, etc104 604

Distribution format: tar.gz

Nature of the physical problemThe accurate computation of atomic properties and level structures requires a good under-
standing and implementation of the atomic shell model and, hence, a fast and reliable access to its standard quantities. Apart
from various coefficients of fractional parentage and the reduced matrix elements of the unit tensors, these quantities include
the so-called spin-angular coefficients, i.e. the spin-angular parts of the many-electron matrix elements of physical operators,
taken in respect of a basis of symmetry-adapted subshell and configuration state functions.

Method of solution:The concepts of quasispin and second quantized (creation and annihilation) operators in a spherical tensor-
ial form are used to evaluate and calculate the spin-angular coefficients of one- and two-particle physical operators [G. Gaigalas,
Lithuanian J. Phys. 39 (1999) 7&tp://arXiv.org/physics/040507&. Gaigalas, Z. Rudzikas, C. Froese Fischer, J. Phys. B: At.

Mol. Phys. 30 (1997) 3747]. Moreover, the same concepts are applied to support the computation of the coefficients of fractional
grandparentage, i.e. the simultanedescouplingof two electrons from a single-shell configuration. All these coefficients are

now implemented consistently within the framework of thed&H program [S. Fritzsche, Comput. Phys. Comm. 103 (1997)

51; G. Gaigalas, S. Fritzsche, B. Fricke, Comput. Phys. Comm. 135 (2001) 219].

Restrictions on the complexity of the problein:the present version of theAR AH program, all spin-angular coefficients are
restricted to the case of a single open shell. For the symmetry-adapted subshell states of such single-shell configurations, the
spin-angular coefficients can be calculated for (tensorial coupled) one-particle operators of arbitrary rank as wetbéar for
two-particle operators. As previously [S. Fritzsche, Comput. Phys. Comm. 103 (1997) 51; G. Gaigalas, S. Fritzsche, B. Fricke,
Comput. Phys. Comm. 135 (2001) 219], thedAH program supports all atomic shells witkC 3 in LS-coupling (i.e.s-, p-,

d- and f-shells) and all subshells with< 9/2 in jj-coupling, respectively.

Unusual features of the progranfrom the very beginning, theA&RAH program has been designed as an interactive environ-
ment for the (symbolic) manipulation and computation of expressions from the theories of angular momentum and the atomic
shell model. With the present extension of the program, we provide the user with a simple access to the coefficients of fractional
grandparentage (CFGP) as well as to the spin-angular coefficients of one- and two-particle physical operators. To facilitate
the specification of the tensorial form of the operators, a short but powerful notation has been introduced for the creation and
annihilation operators as well as for the products of such operators as required for the development of many-body perturbation
theory in a symmetry-adapted basis. All the coefficients and the matrix elements from above are equally supportedSor both

and jj-coupled operators and functions. The main procedures of the present extension are described below in Appendix B. In
addition, a list of all available commands of the®&xH program can be found in the fiRacah- commands. ps which is
distributed together with the code.

Typical running time: The program replies promptly on most requests. Even large tabulations of standard quantities and pure
spin-angular coefficients for one- and two-particle scalar operat@S-iand jj-coupling can be carried out in a few (tens of)
seconds.

0 2004 Elsevier B.V. All rights reserved.

PACS:3.65.F; 2.90.+p

Keywords:Angular momentum theory; Atomic shell model; Atomic structure theory; Coefficients of fractional parentage; Complex atom and
spectra; Electron creation and annihilation operators; Coefficients of fractional grandparentage; Irreduciblejjeacsopding;
LS-coupling; One- and two-particle operators; Racah algebra within three spaces (orbital, spin and quasispin space); Second quantization
in a coupled tensorial form; Spin-angular integration; Subshell state; Symmetry-adapted function; Unit tensor

1. Introduction

During the last few decades, the atomic shell theory has been found to be a very powerful frame for studying
the level structure and properties of free atoms and ions. In this theory, the concepts of angular momentum and
spherical tensor operators are combined in an intricate way to make use of both the spherical symmetry of free


http://arXiv.org/physics/0405078

G. Gaigalas et al. / Computer Physics Communications 166 (2005) 141-169 143

atoms and the indistinguishability of identical particles in quantum mechanics. Since the pioneering work of Racah
[1,2] in the 1940s, many people have helped to develop this powerful theory which is used today in a large number
of atomic codes and case studies on the behavior of free atoms and ions.

However, despite the successful implementation of the atomic shell theory in various structure and collision
programs, the use of this theory is a far from trivial task, particularly if one wishes to apply it to new research
areas. Apart from the mathematical complexity of the expressions in this theory, serious difficulties are caused
today by a large number of notations and conventions which are not consistent with each other. Various conventions
(which are often not even fully apparent in the literature) make it difficult, for instance, to trace the more elaborate
expressions back to the definition of the appropriate subexpressions, and hence the progress in describing atomic
(and molecular) structures and processes has been hampered during the last decades. A well-known case of such
a slow-downin the theoretical development refers, for example, to (atomic) many-body perturbation theory built
on a symmetry-adapted many-particle basighgsical conceptvhich one has wished to work out for a long time
but which up to the present could not be realized in any satisfactory way. Therefore, to facilitate the treatment of
the expressions from the theory of angular momentum and the atomic shell model, we have developedthe R
program during recent past yedBs-7]. At present, this program is able not only to provide the standard quantities
from the atomic shell theory but also to support the symbolic manipulations and the numerical computations of the
expressions from the angular momentum theory. With the present extension tedhe Rrogram, we enlarge the
application of the atomic shell model and hope to lay down a basis which help combine various concepts in atomic
physics for the spin-angular integration of many-electron matrix elements. Quite different computational schemes
were developed in the past, including

(i) Fano (S-coupling)[8] and Grant {j-coupling)[9] scheme, based on the coefficients of fractional parentage

(CFP),

(ii) the scheme of Cowafil0] and Glass and Hibbe[L1] that combines CFP and unit tensdr, V¥ in LS
coupling,

(i) Ki €kin and Rudzikas spin-angular computational schgiBgbased on a combination of CFP and unit tensors
T* in jj-coupling,

(iv) aspin-angular computational scheme based on the coefficients of fractional grandparentage (CSS#) in
jj-couplings[13,14],

(v) Rudzikas and Kaniauskas spin-angular computational schieshbased on the reduced coefficients of frac-
tional parentage,

(vi) Gaigalas spin-angular computational schdfrtg based on a combination of the reduced coefficients of frac-
tional parentage and reduced matrix elements of unit tensors in three spaces (quasispin, orbital fr&].spin)

Surely, one of the central topics of the atomic shell model concerns the efficient evaluation and computation
of the many-electron matrix elements for different one- and two-particle operators, as obtained from the electron—
electron interaction or the interaction of atoms and ions with external particles and fields. In further applications
such as the coupled-cluster and many-body perturbation theories, even effective three-particle operators—and up to
n-particle operators—may occur and have to be dealt with efficiently. In the atomic shell theory (and by using the
technigues of Racah algebra), these matrix elements can often be simplified considerably, if the integration over all
the spin and angular coordinates is carried out analytically. In the past, therefore, several techniques were developed
for the analytic integration, including, for example, second quantizgtidhor Fano’s approacf8], and they are
implemented today within a number of powerful programs. For any properly adapted many-particle basis, then,
the matrix elements can always decomposethto the (so-called) spin-angular coefficients and radial integrals,
which are théouilding blockdor most atomic structure computations as well as for the atoms and molecules within
crystals (ligand field effects).

In the present extension of theaRAH program, we make use of the concepts of quasispin and second quan-
tization (in a tensorial form) for the classification of operators and symmetry functions, in order to support the
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computation of the spin-angular coefficients for one-particle operators of arbitrary rank as welsealéwitwo-
particle operators. Moreover, the same concepts were applied to express and calculate CFGP as well as the reduced
matrix elements of certain products of creation and annihilation operators. Although, the program is presently
restricted to one- and two-particle operators, efforts have been made to ‘prepare’ our notations (and the implemen-
tation) also foreffective operatorsf three and more particles as well as for non-zero ranks as needed, for example,
in many-body perturbation theory.

In the next section we start with a brief description of previous version of theAaR package. In Sectio
we present the new extension to the package. We also briefly discuss the approach of spin-angular integration for
single-shell configurations. The fourth section contains detailed examples for understanding this new contribution
to RACAH and the possibilities of its application in the theory of atoms. Finally, the comments on our future work
with the RaCcAH package are given in Sectién

2. Short description of previousversionsof RACAH package

During the last decade, theARAH package has been extended within several steps. In its original design, the
emphasis was placed mainly on the algebraic manipulations of the so-Bal=h expressiongf. Ref. [18],
Fig. 1) which may include any number of the Wigne+ j symbols and Clebsch—Gordan coefficients, as well as
(various) integrals over the spherical harmonics. In order to obtain a simplification of such Racah expressions, a
large number of sum and orthogonality rules were implemented earlier. More recently, in addition, attention was
paid to enlarging the number symbols and functiorfsom angular momentum theory and to support their fast and
reliable computation. A third line of approach concerned the incorporation of the basic knowledge and quantities
from the atomic shell model. In this way, we firstimplemented the reduced coefficients of fractional parentage and
the matrix elements of the unit tensqB. The brief description of the previous versions ofdRH package is
presented ifMable 1

3. New extension to the RACAH package

With the present extension to theaBaH package, we follow again the ‘third’ line of approach and provide
the spin-angular coefficients for one- and scalar two-particle spherical tensor operators, i.e. the pure spin-angular
matrix elements of such operators if taken with respect to the shell states from a single open shell and supporting
bothLS- andjj-coupled shell states and operators, respectively.

A whole series of methods allowing for very accurate investigations of energy spectra and other characteristics
of atoms and ions exist in the theory of atoms. Probably the most popular are the multiconfiguration Hartree—Fock,
the multiconfiguration Dirac—Hartree—Fock, the configuration interaction methods, various versions of perturbation
theory and semiempirical methods. All of them require the calculation of the matrix elements of the physical
operators or the effective operators from perturbation theory. The symmetry properties of the atomic states allow
the calculation of matrix elements to be divided into the calculation of spin-angular terms and the accompanying
radial integrals. So, while implementing any of the methods mentioned above, the treatment of the spin-angular
coefficients is necessary.

Considering all this the RcAH package is sufficiently developed to provide the treatment of the spin-angular
coefficients in its own frame. The above-mentioned coefficients may be treated inside a single opeh Shatidh
jj-couplings, both analytically and numerically. This enables the new version of the package to perform various
manipulations with the matrix elements of one- and two-particle operators and thus makes it easier to solve the
problems in the theory of atoms.
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Table 1

A brief explanation of what is includedA&CAH
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Version of program
RACAH

Ref.

Catalogue identifier

Short description

|. Data structures and [3]
numerical computations

II. Sum rule evaluation [4]

11l. Standard quantities for [5]
evaluating many-patrticle
matrix elements

IV. Spherical harmonics [18]

V. Recoupling coefficients [19]

VI. LS jj transformations [6]

VII. Extended and [7]
accelerated computations

VIII. Spin-angular
coefficients for
single-shell configurations

ADFV

ADHW

ADNM

ADOR

ADOS

ADQP

ADRW

This contains the first definite proper data structures to deal with Racah algebra.
These structures are the basis for providing the procedures for various numerical
computations. The use of recursion formulas and simplifications of the typical
expressions due to special values is also supported. The impact of this interactive
tool on atomic many-body perturbation theory is briefly discussed.

The set of MAPLE procedures mainly concerns the numerical computations on
Clebsch—Gordan coefficients and Wigner j symbols, the simplification by
special values as well as the use of recursion relations. BoaR program also
facilitates the evaluations of the sum rules. More than 40 sum rules known from
the literature and the involving products of up to six Wigner j symbols have
been implemented and are available for interactive use.

An extension to the RCAH program is presented for calculating standard
guantities of fractional parentage: the reduced coefficients of fractional
parentage as well as the reduced and completely reduced matrix elements for
several standard operators withi§- and j j-coupling schemes.

In the RacAH program the behavior and the properties of the spherical
harmonics are incorporated. It supports various useful expansions for these
functions, for recursion relations as well as for the algebraic evaluation of
integrals.

The RcAH program supports the application and evaluation of the general
recoupling coefficients. Compared with a previous version of the program, a
considerably faster evaluation has now been achieved by exploiting graphical
rules and by making the use of the symmetries of the Racah expressions more
efficiently.

A set of additional commands tcARAH program now facilitates the
transformation of symmetry-adapted functions with a quite different complexity,
from jj- to LS-couplings and vice versa. For such transformations, all partially
filled sub-shells withl < 4 are supported and, hence, the program extends the
previously available tabulations and implementations considerably. In the study
of atomic spectra, for example, the new version of taeR+ program may

help to identify atomic and ionic levels as obtained from relativistic calculations
in jj-coupling. A flexible notation is introduced for defining and manipulating
the open-shell configurations at different level of complexity.

In this revision, the emphasis is put on the efficient computation of standard
guantities by supporting both the default software model as well as fast
(hardware) floating-point computations. MoreoveadAH is now organized

and distributed as a MpLE module which can be installed and used like any
other modules, including help pages and the use of internally recognized data
structures.

In order to facilitate the access to the spin-angular coefficients from the atomic
shell theory, a further extension to the®H program is provided. It helps to
calculate the coefficients of fractional grandparentage as well as the spin-angular
coefficients for one- and scalar two-particle operators, supporting
symmetry-adapted functions and operators in bio8,and j j-couplings,

respectively. In addition a flexible notation within the®H code in order to
simplify the definition and communication of the creation and annihilation
operators in spherical tensorial form is introduced.
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3.1. Theoretical background

3.1.1. Matrix elements of one-particle operators
The interaction of atoms with light and external fields is usually described in terms of one-particle operators

N
F=) f()) @)

which are symmetric in all the electron coordinatgsr, ..., ry. To exploit the concepts of the atomic shell
model, these operators must first be re-written in terms of their (spherical) tensor components as, for instance, in
LS-coupling

N

Flkiks) — Z f(kl’k‘)(l’i), 2)

4
in order to be invariant with respect of ‘rotations’ In and S-space, respectively. Of course, an analogous form is
also applied injj-coupling

N

FOD =3 p®D(r)) 3)

1

if proper coupled (Dirac) spin-orbitals are used. In the present extension tathe-Hprogram, though, we restrict
ourselves to a single open shell. Here we only need to consider the matrix elements

(1N av LS| F 0k nlN/a’v’L/S/)=\/ﬁ(nl”f(klk5) nl) (M QLS| WHR 1N o Q'L'S') @)
in LS-coupling, or
(e e [ P4 e &'/ 1) = — (| 42 i) (¥ @ [ W V' 0' ) (5)

LA
in jj-coupling. These expressions are general and can be applied to any one-particle operator in a tensorial form.
In LS-coupling, for example, the spin-orbit interaction operator has the tensorial stréctarg, k;, = 1, and the

1

3

reduced (one-particle) matrix element
3
(nl | £33 |n1) = =z 210 + 12 + D) (nl nl)
r
3 r 1
= —Zd? él(l + 12+ 1) / P;(nl; r)—3Pj/(nl; r)dr, (6)
r
0

whereZ is the nuclear charge of the atomz= 1/137 the fine-structure constant, aj’ﬁ P;(nl;r) }3 Pji(nl;r)dr—
the radial integral. The functio® (n/; r) is the radial part of the one-electron spin-orbital. It depends only/on
guantum numbers.

The total factors ofnl|| £ %) ||nl) on the right-hand side @#) and of(n« || £/ ||nk) on the right-hand side of
(5) are thepure spin-angularcoefficients.

In most atomic structure programs, in contrast, the spin-angular coefficients are defined with an additional fac-
tor ﬁ in LS-coupling (orﬁ in jj-coupling) to facilitate large-scale computations because, for the scalar
operators, these coefficients then become the same for any combinatioaraf S (or J). In the RACAH pro-

gram, the pure spin-angular coefficients can be obtained in dithewr jj-coupling by means of the command
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Racah_angul ar _coefficient (“F",...), including an additional factor of, respectivejlyﬁ or ﬁ

in the final numerical value. As before, these coefficients are supported for all subshell state< \Bith LS
coupling andj < 9/2 in jj-coupling.

3.1.2. Matrix elements of scalar two-particle operators

The efficienttreatment of the interaction among the particles remains one of the greatest challenges of modern
many-particle physics. For the systems of the identical particles, the interaction operators typically are scalar and
symmetric in the particle coordinates

N
G=Zg(ri,rj), gri,rj)=g(r;,ry. (7
i<j
Well-known examples of such interaction operators include the instantaneous Coulomb repulsion, the (relativistic)
Breit interaction among fast electrons and the various harmonic forces as applied in nuclear physics. However,
when compared with the expressions from the last subsection the matrix elements of the two-particle operators
usually exhibit a much higher complexity. This appears to be particularly true for all coupled tensorial operators
with non-zero(intermediate) ranks as, for instance, found in the ‘expansion’ of the Breit interaction in the Breit—
Pauli approximation, and to be even more pronounced for all non-scalar two-particle operators. Below we shall
therefore restrict our treatment to thealar operatorsand to matrix elements which are between subshell states
from a single open shell. In general, up to four open shells may be involved within a single (two-particle) matrix
element since the operator may ‘tie’ two active electrons on each side of the matrix elements.
To consider the operators in a tensorial form, we have to distinguish betvgemd j j-coupling. Let us start
here with the case of drS-coupled tensorial operator which takes the form

N
G Wakoki,0102ks )k =0 _ 5 (k1roki,0102ks) _ Z g(l(11(2k1ﬂ1c72r’<:)(ri7 r, (8)
i<j
wherek; = 0 for any scalar operator and where #ig andk; denote the individual ranks ih-space, and the's
andk, those inS-space. They are the result of a proper decomposition of the operator into (sub-)components that
refer to the individual particles 1 and 2 in the matrix elements. As usual in the literature thé riardmitted in

the notation of the operator for a scalar operator. The full ‘physical interaction’ operator is expressed as a proper
linear combination of such tensor operators wjtk= k; = k,

Gk,:O — Z G(Kll{zk,ﬁlo’zk)’ (9)
k's,0's,k
and where the expansion coefficients are ‘included’ into the definition of the scalar tensorial operators. An explicit
expression of the matrix element taken with respect to the subshell states of a single open shell for a particular
tensorG (1¥2k.9192K) js shown below irAppendix A.2in terms of (various) tensor products of the electron creation
and annihilation operators from R§20] and the reduced matrix element

(nl, nl H g("l’{zk"’lgzk) Hnl, nl) (10)

that only refers to the interaction among the particles and is otherwise independent of the remaining electrons in the
subshell. Again, this expression is general and can be used for any scalar two-particle operator. The electrostatic
(Coulomb) interaction among the electrons, for instance, has the tensorial stricttke =k, k; = 0,01 =02 =

0, andk = 0 and the reduced matrix element

(nl, nl]| g®*000 |1, nl) = 24/2k + 1(1] €™ |1)? Ric(nl , nl; nl, ). (11)

The total factor ofnl, nl|| g “12k-21920) || » 1 ni) on the right-hand side @¢A.15)is thepure spin-angulacoefficient.
In summarizing this result, we find that the matrix element of a scalar two-particle operator, evaluated for the shell
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states from a single open shell, can always be written in the form
(nlNowLSH G (kax2k,0102k) HnlN/a’v’L’S’) = Zd("l"zk’glazk) (nl,nl ”g('(l"zk’”l"zk) |nt, nt). 12)

This is also valid for the matrix element@/¥avLS||G*=9|niN'a/v'L'S’) of the operator(9), where the
d2k.0102k) denotes the pure spin-angular coefficients. These can be obtained immediately fromcthie R
program by means of the commaRdcah_angul ar _coefficient (“G’,...). To evaluate these coeffi-
cients, the method by Gaigal§l5,20] has been implemented, combining the concepts of the irreducible tensor
operators and second quantization in a coupled tensorial form as briefly outlined in Qemibiove.

Similarly, although slightly simpler, the expressions are applied for the (tensorial) operators and the matrix
elements inj j-coupling where any scalar operatér = 0) can be decomposed into the tensor components

N
GE=0 = 37 GHk=0 = § GO — § 3 WOy ). (13)

k k k oi<j

An explicit expression of the scalar two-particle matrix element for a particular spherical ©f48¥ is given
in Appendix A.lbelow. As in the case dfS-coupling, the matrix elements depend on the effective interaction
strengths (reduced matrix elements)

(nic, nic | %40 e, ) (14)

that are multiplied by the corresponding pure spin-angular coefficients for a given intermediatle oénke
operator.

As for the one-particle operators, in practice, the matrix elements are often defined with an additional factor
\/ﬁ in LS-coupling (orﬁ in jj-coupling). To facilitate the comparison with most of the atomic structure
programs, these additional factors are also included in the final results that can be obtained from the proce-
dureRacah_angul ar _coefficient(“G',...).Inaddition, the same restrictions are applied to the spin-

angular coefficients of scalar two-particle operators, having well-defined tensorial properties.
3.2. Description of the code

Following MAPLE's philosophy, the RCAH program is organized in a hierarchical order where each command
can either be used for interactive work or simply as a language element for building up commands at some higher
level of the hierarchy. The whole package now includes about 300 procedures from which about 10 are sufficient
for daily work. More detailed information about arguments and functions can be obtained from the user manual
provided with the code.

The great benefit for the implementation of large software packagesawLMarises from the proper use of
moduleswhich help to encapsulate, to maintain, and to install the code. Moreover, the use of modules facilitates
the hiding of internal data and program structures since all commands, which are provided to the user, must be
exportedexplicitly. We also make use of this feature for thedAH program which is provided in terms of two
modules (se€ig. 1). While theRacah module comprises all procedures for the symbolic and numerical treatment
of Racah expressior8,4,18,19] theJucys module mainly contains quantities from the atomic shell mdgsigl
from the LS — j;j transformation matriceg] as well as from spin-angular coefficients for single-shell configu-
rations (program presented in this paper). Both modules can be invoked simply by wgiig Racah) and
wi t h(Jucys) . To make use oducys’ functionality requires that thRacah module has been loaded before.

Students, engineers, and scientists of today more and more come across problems whose solution requires them
to derive formulae, to evaluate them numerically, and to perform other complicated transformations. In this case, the
general computer algebra are of considerable help. They provide a unified super-high level interactive programming
environment to the user. Nowadays the versatile integrated computer algebra systems are a modern tool in scientific
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P
e | with(Jucys) |
O  frerememenass | | -memn et |
G|----- | with(Racah) | |
R femmmememeees | |
Al I I
M | | -- RACAH | | -- RACAH I11
I I I
R | | -- RACAH I | -- RACAH VI
Al I I
C| |-- RACAH IV |-- RACAH VI 1|
Al I
H | | -- RACAH V
I

Fig. 1. The structure of the &ZAH program.

Table 2
Modified procedures from RcaH 111 [5] and RacaH 1V [18]. A more detailed description for this procedure is givedppendix Band by
the fileRacah- comrands. ps which is distributed with the program

Racah_cfp() Calculated a coefficients of fractional parentage$or jj-coupling.

Racah_r educed_T() Calculates a reduced matrix element of the oper&tbt in j j-coupling.

Racah_reduced_U() Calculates a reduced matrix element of the operafé? in LS-coupling.

Racah_r educed_V() Calculates a reduced matrix element of the opert{f{SI in LS-coupling.

Racah_shel | _print() Return a string “I'N, nu, "2S+1, L” or«, "N, nu, J” to facilitate the printout dfS- or jj-coupling,
respectively.

shell _jj(),shell _LS() To represent a (sub-)shell state in eithigr or LS-coupling.

research and are systematically applied in the teaching process. One of the best computer algebra systems for this

purpose is MPLE. The key elements of it, as well as of other similar systems, are the commands for data input and

output, mathematical operations, transformations or reduction of complex expressions, drawing graphs, invoking

help, etc. They all are grouped into separate libraries according to their purpose, particularity, and the circle of tasks

that are addressed. TheNALG library is used for solving the linear algebra problems, tlEr@oLslibrary con-

tains commands for solving differential equations, etc. The packagaR presented in the paper is also one of

the independent libraries. It is no different from the standard M libraries in its structure and ideology, whereas

it is meant for the topics of theoretical atomic physics. Like the standard packages, this package has no peculiar

structure. All its use is based on the commands that are set in our papers, and all the detailed descriptions and syn-

taxes are available in the help. In atomic structure calculations, one has to deal with atomic shells containing a lot of

information stored as quantum numbers. Various selection rules must be controlled and although graphical rules are

well developed, keeping track of all information and performing spin-angular integration can take a long time and is

only achieved by intensive table look up, checking of phase conventions and manipulations. Various programs exist

for specific (mostly large scale) atomic structure calculations, but none of them is embedded into an environment

allowing the user to have fast access to single functions or using parts for testing and deriving own expressions.
The MAPLE system itself and the separate libraries presenting it are developing wildly nowadays. This is related

to their popularity and is determined by the need of users to have a more and more efficient interactive program-

ming environment that allows one to solve more complex and more varying problems AtheiRackage is not

an exception. We present frable 2the modifications to commands found in the previous versionaafA¥. This

moves the RCAH package closer to the formalism of the atomic physics and to simplify the use of the package in
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Table 3

Additional procedures for the &ZAH package to compute the spin-angular coefficients and matrix elements for the subshell states of a single
open shell. A more detailed description for this procedure is givékpjpendix Cand by the fileRacah- conmands. ps which is distributed

along with the program. Apart from three main procedures to evaluate the coefficients of fractional grandparentage and spin-angular coefficients
of various types, a few auxiliary procedures are provided in order to facilitateotienunicatiorwith and within the RCAH program

ajj(),a_LS() Auxiliary procedures to represent a tensorial operai?)f) either injj- or LS-coupling,
respectively.
Racah_angul ar _coefficient() To return the pure spin-angular coefficients for one- and two-particle operators for a
single open shell ihS- or jj-coupling.
Racah_cfgp() To return the coefficients of fractional grandparentag® v, I’y ||yN*2(va‘p), yzrz)
in LS or jj-coupling.
Racah_shel | state() To generate proper subshell state§ 8 or jj-coupling from the spectroscopic notation.
Racah_shel | _coeffi cients() To return the (reduced) matrix element of the tensorial opetaf,f)qi‘l) x a,(,?qyz)](k) or
lla (qqyl) x a,(,‘,”’z)](kl) x [a,(,?qy?’) x af,?q);)](kZ)](k) in LS or jj-coupling, respectively.
Wij(),WLS() To represent the tensorial opera[mffy) x a,(,?yz)](k> in either jj- or LS-coupling.
W product _jj (), Wproduct _LS() To represent the tensorial opera[pr(‘”) x a,(,?}’)](kﬂ X [a,(,?q‘;) X a,(,?;:‘)](kZ)](“ in

either jj- or LS-coupling.

doing so. Moreover, the main goal of this work is to introduce the spin-angular integration method commonly used
in atomic physics into the MPLE package. As this integration is closely tied up with the peculiarities of the theory

of atoms and very often used in various theoretical considerations of atomic physics, it is natural that it should exist
as a RcaH package. In this work we further observe the principle that the commands should reflect the formalism
used as closely as possible, so we classify the commands into the auxiliary procedures and the commands for the
execution.

Let us discuss the new auxiliary procedures first.

By making use of the concepts of quasispin and second quantization within a coupled tensorial form, it often
appears helpful to have a simple notation in order to specify the shell states and the second-quantized operators.
For the specification of the shell states (and even for more elaborate symmetry-adapted configuration state func-
tions), such a notation was introduced already earlier by using a few auxiliary procedures, sheth bsLS( ) ,
shel | _jj (), and several others. These procedures were defined separately for each coupling scheme and could
be considered mainly as a simple ‘device’ in order to keep alr¢heted informationtogether. These auxiliary
procedures basically return back their arguments inrevaluatedorm. With the present revision of theAR AH
package, we extent this idea to specify the creation and annihilation operators as well as various products of such
operators. As done before for the shell states, here we introduce a number of auxiliary procedurea sL& ps
andW LS() to determine either a single creation (annihilation) operaﬁﬁ’r) or a product of such operators.

Table 3lists these new auxiliary procedures in both coupling schemes as well as the additional main commands,
which have been added to the®aH package and which accept the auxiliary commands in their input.

Having determined the tensorial structure of the operators, the computation of the coefficients of the fractional
parentage or of the matrix elements of the various operators is a quite simple task. For the CFP coefficients and
unit tensors, such examples have been discussed before ifR&fsWith the present extension to thea&aH
program, we also provide the CFGP (for the decoupling of two electrons from a single open shell) as well as the
pure spin-angular coefficients for (tensorial) one-particle operattrsof arbitrary rankk and for the scalar two-
particle operators, evaluated with respect to the shell states of a single open shell. For all these quantities, both,
LS and;jj-coupled operators and the subshell states were equally supported; internally a valid classification of the
subshell states is known for all shells witkl 3 in LS-coupling andj < 9/2 in jj-coupling.

In the RACAH program, the shell statds/¥«LS) in LS-coupling and|nj¥vJ) in jj-coupling are uniquely
defined in terms of (all of) their quantum numbers. For the interactive use of the program (and for several other
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applications) the specification of all these quantum numbers is often cumbersome and quite prone of making errors.
Therefore, to facilitate the use of the shell states, the procdRarah_shel | st at e() was designed in order

to return a list of all those shell states which are in accordance with the given coupling scheme and some ‘partial
specification’ of the states. The procedure accepts, for instance, th&mpah_shel | st at e(" d2") toreturn

all subshell states df/2) in the form of

[shell LS(2, 2, 0, 0, 0),shell LS(2, 2, 2, 1, 1),

shel | _LS(2, 2, 2, 2, 0),shell _LS(2, 2, 2, 3, 1),

shell _LS(2, 2, 2, 4, 0)]

orRacah_shel | stat e("4f~5 2" P") to generate all the individual subshell stategigf® 2P) in the form of

[shell LS([4, 3], 5 1, 3, 1, 1/2),shell _LS([4, 3], 5 2, 5 1, 1/2),
shel | _LS([4, 3], 5, 3, 5 1, 1/2),shell LS([4, 3], 5 4, 5 1, 1/2)].

A similar input is now accepted also by the comm&aadtah_angul ar _coef fi ci ent () and by some others
in order to generate the pure spin-angular coefficients for all the subshell states as partially specified.

3.3. Distribution of the code

As before, the whole RCAH package is distributed by the tar fiRacah2004.t ar from which the
Racah2004 root directory is (re-)generated by the commarat - xvf Racah2004. t ar. This directory
contains the source code libraries (formMLE 8 and 9), aRead. e for the installation of the program as well
as the documerRacah- conmands. pdf . The document provides the definition of dita structureof the
RAcAH program as well as an alphabetic list of all user relevant (and exported) commandRacldie2004 root
also contains an example of.amapl ei ni t file which can easily be modified and incorporated into the user's
hone. Making use of such anapl ei ni t file, then, the two moduleBacah andJucys should be available
like any other module of MPLE.

The source file of the RcAH package that is presented in this work includes all earlier versions as well. After the
installation as described above, all the versions aE R+ (I-V1I1) will be installed into the computer in one step.

4. Examples

The new procedures are explained in the appendix using the styleedfaple Handbooky Redfern[21]. In
the examples shown below we illustrate a few typical applications to give a general understanding on how to inter-
face these new procedures. We start by computing the numerical value of a coefficient of fractional grandparentage
(CFGP). Secondly we do the spin-angular integration for the Coulomb operator in case pPthe Qate. In a
third example we define a new procedure to calculate the contact contribution of the hyperfine structure showing
how the new procedures can be used in own programs. As a fourth example we calculate one of the basic quan-
tities behind the spin-angular integration and compare th@ M output with the physical calculation. All these
examples are given as aAWLE script distributed with the package. It is assumed that the two packagesHR
and bcvs have been loaded:

> W th(Racah): with(Jucys):
4.1. TestCase 1

Let us start with the computation of a coefficient of fractional grandparentage (CFGP) for a partiallyfiled
shell, say

(f220 = 22| f7,2((v =2)2), f7,(v =0)0),
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where theV = 6 electron (daughter) state and thie= 4 (parent) state have both quantum numbess7/2,v = 2,
andJ = 2, while the (de-coupled) two-electron subshell statejhas’/2, v = 0, andJ = 0, respectively. We may
either assign these three subshell states explicitly to some variables as, for instance, with

> wa := shell jj("f+ 6 J=2 nu=2");

wa := shell _jj(-4, 6, 2, 2)
> wb := shell _jj("f+ 4 J=2 nu=2");

wh := shell _jj(-4, 4, 2, 2)
> we := shell _jj("f+ 2 J=0 nu=0");

we = shell _jj(-4, 2, 0, 0)

> Racah_cf gp(wa, wb, we) ;
. 1825741860

or definethem directly inside the call tBacah_cf gp() by typing
> Racah_cfgp(shell jj("f+ 6 J=2 nu=2"), shell jj("f+ 4 J=2 nu=2"),

shell jj("f+"2 J=0 nu=0"));
. 1825741860

The MAPLE output is the numerical value of the GCFP,

(f32(v = 22| f112. (v =2)2), f5,(v = 0)0) = 0.1825741860
4.2. TestCase 2

We now evaluate the electrostatic interaction up to the radial factor. In first order approximation fpr two
electrons coupled tdS, this interaction can be expressed as a sum of scalar two-particle operators with rank
ki =k;=0:

(207 1S|r5]2p? 1) = 3 GHRO(2p2 15, 2p? 15) g *KO000 (1 1) RE(2p2p, 2p2p). (15)
k=0,2

The pure spin-angular coefficient of the interactingé&ectronsG *<0(2p2 1§, 2p? 1) can be calculated using
theRacah_angul ar _coeffi ci ent () command. The first rank is defined in the angular space, the second in
the spin and the third in the combined space. The submatrix element has the tensorial f{d22]REf. (9)

’ 2
§¥4090 (. pp) = 20k12(p V)| )7 = 2[k]1/2[<—1>l[<zz s@+ 0] (g g ’O)]
I=I'=1

2
_ 12(1 k1
= 18[k] (0 0 0). (16)

The first three ranks are given in the angular space, for the first and second electron and for their combination. The
second three are defining the spin space in the same manner. The radifi @m2p, 2p2p) can be found, for
example, iM23]. To evaluate this formula, one first calculates the pure spin-angular coefficient:

> Racah_angul ar_coefficient("G',[0,0,0],shell _ LS("2p"2 1°S"),
shel | _LS("2p~2 1°S"), al gebraic);
[[1/6,"([0,0,0,0].[2,1].[2,1].[2,1].[2,1])"],
[+v/3/18, "X([1,1,0,0],[2,1],[2,1],[2,1],[2,1])"],
[+/5/30, "X([2,2,0,0],[2,1],[2,1],[2,1],[2,1])"],
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[v/3/18, "X([0,0,1,1],[2,1],[2,1],[2,1],[2,1])"],
[1/18, "X([1,1,1,1],[2,1],[2,1],[2,1].[2,1])"],
[v/15/90, "X([2,2,1,1],[2,1],[2,1].[2,1],[2,1])"]].

From the output list we have to select the pure coefficients with appropriate tensorial structure. The tensorial
structure is given after th¥ in square brackets:X ([k;,, ki,, ks, , ks,], .. .)". For k =0, the ranks, , ki, ks, and
ks, must be (00, 0, 0)—the first entry in the list. The entries following the ranks define for the two bra and two
ket electrons thea and! values. The pure spin-angular coefficient is the number in front, in our exanpld e
submatrix elemeng (0°2000 eyaluates to

> 18*Racah_w8j (1,0,1,0,0,0, al gebraic)”2;
6.

For k = 2, the ranks are (2, 0,0)—we have to take the third entry with pure spin-angular coefficiébt30.
Together with the submatrix elemegi?22%°% we end up with

> sqrt(5)/30 * 18 * sqrt(5) * Racah_ w3j(1,2,1,0,0,0,algebraic)”2;

2/5.
Combining the two results, the Coulomb energy is given in terms of spin-angular factor times radial part:
Ecouomb= R°(2p2p, 2p2p) + 2R?(2p2p, 2p2p), the same as calculated, for example, in f24], Eq. (6.39).

4.3. Test Case 3

We show now how the procedures can be used to define customized programs. We will define a new procedure
calculating the contact term of the hyperfine structure. In the semiempirical approach according to Sanders and
Beck][25], the contribution to the fine structure splitting arising from the density probability of the electrons in the
nuclear core is defined by

Econtact= FOP IV, ni™) OV 1, hROY (1, nl). (17)

The submatrix element is particularly simplel® D (7, 1) = \/3/2[I]. The pure coefficienf @D IV niV) again
can be calculated bigacah_angul ar _coef fi ci ent (). We define a new procedure to calculate the contact
energy up to the radial pa©® (nl, ni):

> E contact := proc (Shell)

|l ocal Result, Qr;
if Shell<>[] then
r ;= Racah_tabul ate(Shell);
Result := Racah_angul ar_coefficient ("F",[0, 1], Shell, Shell, al gebraic);
Resul t Resul t[1] * sqrt (3/2*Qnr[I]*2+1);
Result := conbine(Result * R([0,1],[ r[n],Qr[I] 1, [ @ur[n],xr[1] 1));
el se
error ("No valid shell given.")
end if;
end proc:

We now can evaluate the contact contribution for various shells, for example:
> E contact(shell _LS("1s"1 2S");
1/2v/2 R([0,1],[1,0],[1,0]).
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4.4, Test Case 4

In the past, we often referred to the (reduced) coefficients of the fractional parentage and to the reduced matrix
elements of thaunit tensors as thetandard quantitie®f the atomic shell model. Typically, all these quantities
can be written as matrix elements of the (variously combined) electron creation and annihilation operators in a
tensorial form, calculated with properly antisymmetrized subshell states. As seen above, there are several further
(and slightly more complicated) matrix elements of such operators which may appear in the evaluation of many-
electron matrix elements within the atomic shell model. But although the appearance of these matrix elements is
rather straightforward to understand, their computation may become quite tedious in practice. In a last example
we therefore demonstrate how such matrix elements can be computed (and tabulated) for different types of such
operators. For this purpose, let us consider the second-quantized (one-particle) c[pé%%\?ox a(’f 2/3)]<21) for
which we shall calculate the matrix elements

4 (q 2?) (q 25)12D | ;4
(d*avLs| [“1/2 1/2] |a*a'v'L'S")
for all the (LS-coupled) subshell states of thé configuration. In practice, this is achieved simply by typing
> Racah_shel | _coefficients(WLS(a_LS(2,1/2),a_LS(2,-1/2),2,1),
shel | _LS("d"4"), shel | _LS("d"4"));

The MapPLE output looks like this:

[[-2.618614683, WLS(a_LS(2,1/2),a_ LS(2,-1/2),2, 1), shel | _LS(2, 4, ,shel | _LS(2,

[- 4,0,0) 4,4,2,1)"]
[ 3.549647869, WLS(a_LS(2,1/2),a_LS(2,-1/2),2,1), shell _LS(2,4,2,1,1),shell _LS(2,4,21,1)"],
[ 2.121320343, WLS(a_LS(2,1/2),a _LS(2,-1/2),2,1),shel | _ LS(2,4,2,1,1),shel | _LS(2,4,2,20)"],
[-3.794733194, WLS(a_LS(2,1/2),a _LS(2,-1/2),2,1),shel | _ LS(2,4,2,1,1),shel | _LS(2, 4,2, 3,1)"]
[...1,...1.

Translated into physical formulae this output reads:

(d*v =45[[a73” x a“7)] %P [a = —2618614683
(a*v=23P|[al3” xa<q12/~;> @D ||d4v 3p) =3.549647869

(@*v=22P|[a7,” x a5

@4y = 2P [aff" x %3y

A *D) =
] )=
](2 1 ”d4v D) =2.121320343

](2 1 Hd4” ) —3.794733194

Apart from the (known) specification of one or several subshell states by meahgbf _LS() , the procedures
a_LS() andW LS() are used here to specify a single creation (annihilation) operator or a product of such oper-
ators with well defined tensorial properties. In the output of the command in angle brafkets* * * * * * *x*
"WLS(a_LS(2,1/2), a_LS(2,-1/2),2,1), shell _LS(2,4,4,0,0), shell_LS(2,4,4,2,

1) "]1 the information on a single matrix element is presented. In the output the syhWdlS(a_LS( 2, 1/ 2),
alLs(2,-1/2),2,1), shell _LS(2,4,4,0,0), shell LS(2,4,4,2,1)" |nd|cate that the matrix
element of an operatdrW LS(a_LS(2,1/2), a _LS(2,-1/2),2,1)" = [ai/zz) (q y ](21) is calcu-

lated, between the subshell stateshel | _LS(2, 4, 4,0,0)" = |d* =41S) and" shel | _LS( 2,4,4,2,

1)" =|d% =43D).
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5. Summary and outlook

During the last few years, the incorporation of variaiandard quantitie$rom the atomic shell model into
the RacAH program has certainly helped to open the door towards the new applications of atomic structure and
collision theory. Apart from the (reduced) CFP coefficients and the matrix elementsiofithensors (which were
compiled before in various tabulations), we also supportlifie- jj transformation matricefs] and a variety
of spin-angular coefficients, related to a single open shell. In practice, these coefficients are needed not only to
extent the available structure codes, such a8 €92 [26] or RATIP [27], towards more complex shell structures
but also tadevelopmany-body perturbation techniques within a symmetry-adapted basis. Although the benefits of
such an approach were pointed out already many years ago, a reliable implementation had been hampered since
that time by the complexity of the expressions and the inconvenience with which the necessary ingredients could
be accessed. With the recent developments on #@AR program, therefore, we may accelerate the use of such
many-body perturbation techniques for real open-shell atoms.

However, several requirements still need to be worked out before the advanced many-body technigques can
be applied successfully to the open-shell atoms and ions with, say, more than two electrons or holes outside of
otherwise closed shells. Besides leading to more complex configurations in the input of the spin-angular procedures
such shell structures quickly give riseeéfectivetwo-, three-, or even four-particle operators (with either zero or
nonzero rank), if one wants to proceed beyond the first- or the second-order perturbation theory. For such effective
operators, the explicit expressions for the matrix elements still need to be derived. First steps into these directions
are currently in progress.
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Appendix A. Matrix elements of tensorial one- and two-particle operator s within the framework of
second-quantization

In this appendix, we compile the explicit expressions of the coefficients of fractional grandparentage (CFGP)
and of those matrix elements as now provided by the &4 program. All these coefficients and matrix elements
were finally traced back to the completely reduced matrix elements of the opetafots) and w kakik) in jj-
andLS-coupling, respectively, which were the subject of our earlier WbfkA more detailed compilation of the
matrix elements for the general one- and two-particle operators of the atomic shell model was given previously by
Gaigalag16,20]

A.l. Expressions irij-coupling
Coefficients of fractional grandparentage (CFGP):
(e QI i@ Q). 2 )
(=)@ Me o 1 ¢

= _ ) (Geoa||wE2 || o 0'J). (A.1)
N(N—l)[J]< Mo 1 MQ)

Matrix elements of the operatdv «/) = —[a() x a)1%) | reduced inj-space:
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(jNotQJH[ @ 5 g% Vo' @' 1)

2]+ ./ J18(QJ, Q'J)8(Mo, Myy) if kj =0,
= (-n2-Mo L ( Qo 1 Q,/ )(J“QJ|||W(1k)|||106QJ) if k; is even (A.2)
V2 MQ 0O M J .
g8 (Mo, Q)<JaQJ|||W<°k llje’ 07" if k; is odd.

In these and the following matrix elements, the (spherical conjugate) opéfdtds defined due tdz,ﬁ{/) =

(1)~ ’"/a“,{l)‘ where, as usuak;(’ ) and aT(’ ) refer to the standard creation and annihilation operators of an
electron in the (uncoupled) quantum stpter ; )
Matrix elements of the operat@i/) x a(f)](k ), reduced inj-space:

(jNeQJ|[a" x a(j)](kj)” Na' Q')

2];;1+N‘/[J 5(QJ. Q'1)8(Mg., M) if kj =0,
0o 1 ¢ .
=1 (=19 MQﬁ( My 0 M )(jonJ|||W(1k)|||JonJ) if &; is even (A.3)
Z[Q Zg0 (Mo, Q)(]aQJ|||W(0k Nije' QI if k; is odd.

Matrix elements of the operat@az(q’) (qu)]“‘f), reduced inj-space:
. ' D | N
(N0 |[af] < a1 Yo' Q')

e 01 0, M s o 1
= (-1? MQ(—MQ my +m, M’Q>(J“QJ|HW(”‘”HINQJ), (A.4)

Whereai%) =a) anda(_"{/)2 =0

Matrix elements of the operat@[m,ﬁ?q’) x a,(,,q’)](kfl) x [a(q/) ,(,,qq{l)](kfz)](kﬂ, reduced inj-space:

(Ve |[[ash]) x af)]*5) x [alfl) x alf) 21 | a0
= () i Y {"; ki ﬁi}}(jNaQJ||[a,5?,,'fxa,if;;]“fﬂn N'a"Q" ")
//Q//J//
% (jNHa”Q”J””[ (qua) % a;?{]/4)](k 2)” N’ a0 J) (A.5)

Matrix elements of scalar one-particle operatBf® for the case of a single open shell:
(nKNav]HF(O) |lneNa'v'J") = (nx ||f(0) |ne) (Ve Q| w© |iNe' Q). (A.6)

Generally, a one-particle operator has the tensorial struétiie which has rank in the j-space. For any scalar
one-particle operator the total rakks= 0. So this operator has tensorial structé/é@ .
Matrix elements of scalar two-particle operat6r$*® for the case of a single open shell:

(n/cNavJ H G *k0) Hn/cNo/v'J')

[ <@ P)P x [0 x a0 O] Fav' )

= (¢4 nx){

(1)2j+k
[k, j]

(j avJ”[ @) Xa(/)](O)HJN / /J/)}, (A.7)
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Generally, the two-particle operator has the tensorial struciff&2%), which has rank; for electron 1, rank»
for electron 2, and a resulting rarik in the j. For any scalar two-particle operator the total répk= 0. So this
operator has tensorial structugékk20)

A.2. Expressions in LS-coupling

Coefficients of fractional grandparentage:

(INaQLS||IN 72/ Q'L'S"), 2L S5)

Oy (L, 12 Yorsiwe o) o
Matrix elements of the operatd¥ iks) = —[a(9) x G(9)1kiks)  reduced in- ands-spaces:
(INaQLS||[a™ x a"] o Q'L'S')
~ a5 VL. SI(QLS, Q'L'S3 (Mg, M) if k) 1k, =0,
= (=hete fz< ,%,Q é ,3,/ )(laQLSIIIW(l"”‘ i/ Q'L'S"y if k; + ky is even (A.9)
o010 Mo Q)(laQLSIIIW(O"”‘“IIIla Q'L'S") if k; + k, is odd

In these and the following matrix elements, the spherical conjugate opéf4tds defined by
als)  _ (_1)I+Av—m,—msa’r(15) (A.10)

mpmg —my—myg?

where, as usuab,(,ﬁf,)ns and aL(,’,f,)s refer to the standard creation and annihilation operators of an electron in the

(uncoupled) quantum statlen;, sm;).
Matrix elements of the operat@i®) x o) ]%k) reduced ir- ands-spaces:

(ZNOZQLSH[N(IS) (ls)] OI/Q/L/S/)
2N JTLSI8(QLS, Q'L'S)8(Mg, M) it ki + ks =0,
1 ¢ . .
={ (12" MQﬁ<_1%Q 0 A%Q>(laQLS|||W(1k’kf)|||la’Q’L’S’) if k; + k, is even (A.11)
2[ T8 (Mo. M) (la QLS||W Ok |lia’ Q'L'S") if k; + k is odd

(qIS)

Matrix elements of the operat@m(q“) 1®iks) reduced irl- ands-spaces:

(ZNO[QLS” [afnqqh) X afgqlx)](klks) ||ZN/a/Q/L/S/)
o \0-M Q 1 Q'
=D Q(—MQ mg+mg M, >(

wherea(’jm a anda(qu) =g,

Matrix elements of the operatfi

«Q'L'S), (A.12)

als) ("”)]("11 s1) x [a ("“) xaﬁfjj)]("lzksz)](klkf), reduced iri- ands-spaces:

mql
N (qls) (qls)q (ki ks ) (qls) (qls)7(kipksy) /
(l O[QLSH[[amql x aqu ] v [amqg x amq4 ] 2 ] Q L/S/)
48 , ki, ki, ki k k k
— (_1)L+S+L +8" -k +kg [kl’ ks]l/z Z { L]/_ L2 L// SY} §2 S*/Y/

o Q//L// 4
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% (ZNOlQLSH [ar(r;]qlf) « a(qls)](kllksl)||ZN“a//Q//L//S//)

qu

% (ZN”a//Q//L//S// “ [ar(’?ql;) % ar(f?,f:)](klzkgz) ”lN/Ol/Q/L/S/). (A.13)
Matrix elements of scalar one-particle operatst§%s) for the case of a single open shell:

(N av LS| FE5) [niN o'V L'S") = (nl]| fE* | nl) (N QLS| WHRR | IVo/ Q'L'S").  (A.14)

1
A% [klv ks]
Generally, the one-particle operator has the tensorial struéttfte)*: | which has rank; in the! space, the rank
ks in thes-space, and total rank. For any scalar one-particle operator the total rgr 0. So this operator has
tensorial structurg k)0 = pkiks),

Matrix elements of scalar two-particle operat@t1<2k-7192k) for the case of a single open shell:

(1" avL S| G2k Vel L'S')
= St g2 ot ) i, 01,0212
. (ZNO”}LS” [[a(ls) y é(ls)](’(lal) « [a(ls) % a(ls)](f(zaz)](kk) ||ZN0[/1)/L/S/)

k1 k2 k|fJor o2 k| N Is) o ~(s)1KK) ;N
—{ il }{ P } ((NavLS|[a®™ x @] 1N/ Vv'L'S') . (A.15)
Generally, the two-particle operator has the tensorial strucife2<-9192k)k which has ranlk for electron 1,
rank «x, for electron 2, and a resulting rakk in the [-space, the corresponding rankgrk, in the s-space, and

total rankk,. For any scalar two-particle operator the total rank= 0. So this operator has tensorial structure
G (k1k2ki,0102k1)0 — (5 (k1k2k,0102k)

Appendix B. Modified proceduresfrom RACAH |11 and RACAH VI

The introduction of the proceduresf LS(),shel | _LS() may considerably simplify the input communi-
cation with the program. Therefore, it seems very appropriate to ‘work through’ the procedures afi R to
introduce theshel | () notation as standard—as far as reasonable. The previous parameter lists should be kept
available as optional arguments.

* Racah_cfp(shell_jj1(),shell_jj2())

Returns the coefficient of fractional parentage (CEPYv1J1(j¥ ~1(v2J2)j) for the subshells with angular
momentaj = 1/2, 3/2,5/2 and 72 in jj-coupling using seniority notation.

Output: A (floating-point) number is returned.

Argument options: (shell_ji(),shell_jp(),algebraig to return the CFR N v1J1]j¥~1(v2J2) /) in algebraic
form for any subshell witly =1/2, 3/2, 5/2 and 72.

& (shell_jjip(),shell_jp(),prime) to return the CFP in a prime-number representation.

& (shell_ji (" d-"2"),shell_jp(" d-2").{...}) to return the list of all possible CFPj{'v1J1||j¥ ~1(v2J>) j) for
the subshells with angular momenta= 1/2, 3/2 and 52 in jj-coupling.

& (.N,Q1,91,Q,1.{.. ) toreturn the CFP (N Q11| jV~1(Q2J2)j) for the subshells with angular momenta
Jj=1/2,3/2,5/2 and 72 using the quasispin notation jii-coupling.

& (,N,v1,d1,v2,F,{seniority, ...}) to return the CFP (N vy J1| jN~1(v2J2) j) using the seniority notation if the
coupling schemg; _seniorityhas not been specified explicitly.
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&(9/2,N,wi,Q1,d,W2,Q0,5.{...}) to return the value of the CFPi{ w1Q1J1|j¥ ~Y(w202J5) j) for the sub-
shell with angular momenta= 9/2 and for the additionally specifiad; » =0, 1, or 2[28, Table 2]

& (shell_LS(),shell_LS(),{...}) to return the CFPI v1L181[[/¥~1(v2L2S>)I) for the subshells witt = 0,
1, and 2 inLS-coupling using seniority notation.

& (shell_LS("d"2"),shell_LS("d2"),{...}) toreturn the list of all possible CFRYv1 L1511V "1 (v2L2S2)0)
for the subshells with= 0, 1, and 2 irLS-coupling.

& (I,N,Q1,L1,51,Q5,L2,5.{.. .}) to return the CFPI¥ Q1L1S1[1¥ ~1(Q2L255)I) in LS-coupling for the sub-
shells with/ = 0, 1 and 2 using the quasispin notatiorLia-coupling.

& (3,Nwp,Q1,L1,5,W2,Q0,L2,5,{. . .}) to return the value of the CFFﬂ\’lelLlSlan_l(wz 02L2852) f)
for the subshell with orbital angular momenturs 3 and for the additionally specifiad; 2 =0, ..., 10 using
the quasispin notation ibS-coupling[28, Table 2]

Additional information: The list and a number of arguments depend on the definition of the under-
lying classification and the coupling scheme which has to be defined before by calling the procedure
Racah_set coupling_schene() iftheshell _LS() orshell _jj () notations are not used. The
current definition of the coupling scheme is kept in the global variRaleah_save_coupl i ng_schene.

& A set of keywords can be provided in any order as the last argument; the current sueyreddsare
algebraicandprimeif the notations shell_jj() or shell_LS() are used and in other cases the supgeytedrds
arealgebraig prime andsenioritywherealgebraicandprimemust be used exclusively. The keywaehiority
‘overwrites’ the currently defined classification scheme.

& Argumentsshel | _jj1() andshel | _jj2() must belong to the same physical shgll £ j» = j or

[n1j1] = [n2j2] = [nj]).

& Argumentsshel | _LS;() andshel | _LSy() must belong to the same physical shéjl£ 1, =1 or

[n1l1] = [n2lo] = [nl]).

& The notationshel | _LS() andshel | _jj () allow us a very compact input and output. They support
the set of quantum numbers in seniority notation (integer or half-integer numbers) or the string of spectroscopic
notations. As usual the procedure returns the single value, butsfiteel _LS() orshel | _jj () notation

uses the incomplete spectroscopic notation (li#2" in LS-coupling or' d-2" in jj-coupling) or is not unique

(like "5 2°P_5 in LScoupling or"f + 4 J= 4 nu= 4" in jj-coupling), due to the need to specify the
and/orw quantum numbers explicitly, a list of all possible CSF is returned.

& The calculation of the CFP is based on a list of RCFP which is stored internally.

& For details of the prime-number representationReeah_cal cul ate_pri ne().

Seealso: Racah_set coupling scheme(),shell _jj(),shell LS().
Racah_reduced_T([k],shell_jj1(),shell_jj2())

Returns the reduced matrix element reduced-space(j¥ a1v1J1||T® || j N aov0J5) of the unit tensor ®)
with rankk and for the subshells with=1/2, 3/2, 5/2 and 72 using seniority notation irij-coupling.

Output: A (floating-point) number is returned.

Argument options: ([k],shell_ji1(),shell_jp(),algebraid to return the reduced matrix element'(, J1 || T®|

N v2J2) in algebraic form.

& ([K],shell_jj1(),shell_jp(),prime) to return the reduced matrix element in a prime-number representation.
& ([K], shell_jj1(" d-"2"), shell_jp(" d-"2"),{...}) to return the list of all possible matrix elements reduced in
j space (Na1v1J1||T® || jN azv2J5) with rankk in it and for the subshells withi = 1/2, 3/2, 5/2 and 72.

& (K,j,M0,Q1,51,Q2,%.{. . .}) to return the reduced matrix element@1J1 M || T®| j 02J2M ) for the sub-
shells with angular momenta=1/2, 3/2, 5/2 and 72 using the quasispin notation jri-coupling.

& (k,j,N,v1,31,v2,F,{seniority, .. }) to return the reduced matrix elementNvyJ1||T® || j¥v2J2) using se-
niority notation if the coupling schemg _seniorityhas not been specified explicitly.
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& (k,9/2,Mg,w1,Q1,d1,W2,Q,%.{. . .}) to return the reduced matrix elements Q11 Mo | T® || jw202 x
JoM p) for the subshells with orbital angular momentyre= 9/2 and for the additionally specified quantum
numberswi 2 =0, 1, or 2 using quasispin notation jii-coupling[28, Table 2]

Additional information: The reduced matrix elements of the operatéy are only defined iry j-coupling.

& The list and a number of arguments depend on the definition of the underlying classification and the coupling
scheme which has to be defined before by call the procegacah_set _coupl i ng_schene() if the

shel | _jj () notation is not used. This current definition of the coupling scheme is kept in the global variable
Racah_save_coupl i ng_schene.

& A set of keywords can be provided in any order as the last argument; the current sueyreddsare
algebraic and prime if the notationshel | _jj () is used and in other cases the suppokegwordsare
algebraig prime, andsenioritywherealgebraicand prime must be used exclusively. The keywadniority
‘overwrites’ the currently defined classification scheme.

& Argumentsshel | _jj1() andshel |l _jj 2() must belong to the same physical shell £ jo = j or

[n1j1] = [n2j2] = [nj]).

& The rankk is an arbitrary integer save for the fact that it must obey the triangular conditioh € 2;.

&Theshel | _jj () notation allows us a very compact input and output. It supports the set of quantum num-
bers in seniority notation (integer or half-integer numbers) or the string of spectroscopic notations. As usual
the procedure returns the single value, butifghel | _jj () notation uses the incomplete spectroscopic no-
tation (like" d-2") or is not unique (like' f + 4" ), due to the need to specify thequantum number explicitly,

a list of all possible reduced matrix element§ ¢1v1J1||T® || jN apvoJ5) is returned.

& The calculation of the reduced matrix element8 ¢1v1J1]|7® || j¥ azv2J5) is based on a list of RCFP
which are stored internally.

Seealso: Racah_set _coupl i ng_schene(), Racah_cal cul ate_prine(),shell _jj().
Racah_reduced_U([Kk],shell_L S;(),shell_L S,())

Returns the reduced matrix element reducett iand s-spacesi(" a1v1L151(|U® ||IN apv2L2S5) of the unit
tensorU® with rank k and for the subshells with orbital angular momehta 0, 1 and 2 using seniority
notation inLS-coupling.

Output: A (floating-point) number is returned.

Argument options: ([k],shell_LS;(),shell_LS(),algebraid to return the reduced matrix elemeft iv1 L1 x
S1lUR 1IN w10 L2 S5) in algebraic form with rank and for the subshells with= 0, 1 and 2 using seniority
notation.

& ([K],shell_LS(),shell_LS(),prime) to return the reduced matrix element in a prime-number representation.
& ([k],shell_LS;("d"2"),shell_LS("d2"),{...}) to return the list of all possible matrix elements reduced in
I- ands-spacesi( a1v1L1S1|U R 1N aav2L2S2) with rankk and for the subshells with= 0, 1 and 2 using
seniority notation.

& (k,M0,Q1,L1,51,Q2,L2,5,{.. .}) to return the reduced matrix elemerit'(Q1L151 Mo ||U® |1V Q2L x
S2M ) of the unit tensolU % for the subshells with orbital angular momeita 0, 1 and 2 using quasispin
notation inLS-coupling.

& (K,I,N,v1,L1,S1,v2,L2,Sp,{seniority, .. .}) to return the reduced matrix elemedt (1 L1 S1|U® |1V voL2S>)
using seniority notation if the coupling schefn®_seniorityhas not been specified explicitly.

& (k,3,Mo,w1,Q1,L1,51,W2,Q2,L2,S.{. . .}) to return the reduced matrix element{ w1 Q1L151Mo |U®|
FNw202L282M) for the subshell with orbital angular momenture: 3 and for the additionally specified
quantum numbers1 2 =0, ..., 10 using the quasispin notati¢®8, Table 2]

Additional information: The reduced matrix elements of the operdfdf are only defined in.S-coupling.
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& The list and a number of arguments depend on the definition of the underlying classification and the coupling
scheme which has to be defined before by call the procegacah_set _coupl i ng_schene() if the

shel | _LS() notation is not used. This current definition of the coupling scheme is kept in the global variable
Racah_save_coupl i ng_schene.

& A set of keywords can be provided in any order as the last argument; the current suegvteddsare
algebraic and prime if the notationshel | _jj () is used and in other cases the suppokegwordsare
algebraig prime, andsenioritywherealgebraicandprime must be used exclusively. The keywadniority
‘overwrites’ the currently defined classification scheme.

& Argumentsshel | _LSi() andshel | _LS;() must belong to the same physical shéjl£ 1> =1 or

[n1l1] = [n2lo] = [nl]).

& The rankk is arbitrary integer save for the fact that it must obey the triangular conditioh & 2/.

& Theshel | _LS() notation allows us a very compact input and output. It supports the set of quantum num-
bers in seniority notation (integer or half-integer numbers) or the string of spectroscopic notations. As usual
the procedure returns the single value, but if ¢eel | _LS() notation uses the incomplete spectroscopic
notation (like" d2") or is not unique (like' f'5 2°P_5'), due to the need to specify theand/orw quantum
numbers explicitly, a list of all possible reduced matrix elemeite{v1L151]|U ® |1V apv2L2S>) is returned.

& The calculation of the reduced matrix elemeitsa(v1 L1571 |U® ||I¥ a2v2 L2 S5) is based on a list of RCFP
which are stored internally.

Seealso: Racah_set _coupl i ng_scheme(), Racah_cal cul ate_prine(),shel | _LS().
Racah_reduced_V([k],shell_L S;(),shell_LS,()

Returns the reduced matrix element reduced iand s-spaces iV v1L1S1||V* D |INvaL02S5) of unit tensor
VD with rankk and for the subshells with orbital angular momehta0, 1 and 2 using seniority notation in
LS-coupling.

Output: A (floating-point) number is returned.

Argument options: ([k],shell_LS;(),shell_LS(),algebraid to return the reduced matrix elemeft ¢1L1 x
S1|VED 1IN 1oL, S5) in algebraic form with rank and for the subshells with orbital angular momenta0,

1 and 2 using seniority notation.

& ([K],shell_LS(),shell_LS(),prime) to return the reduced matrix element in a prime-number representation.
& ([K],shell_LS (" d"2"),shell_LS(" d"2"),{...}) to return the list of all possible matrix elements reduced in
I- ands-spacesif’ a1v1L1 51|V 1N aav2 L2 S2) with ranksk and for the subshells with= 0, 1 and 2 using
seniority notation.

& (kI Mp,Q1,L1,51,Q2,L2,S.{. . .}) to return the reduced matrix elemet'(Q1L151 Mg ||V * V|1V Q2L x
S2M ) of unit tensorV * with rankk and for the subshells with orbital angular momeirte0, 1 and 2 using
quasispin notation ihS-coupling.

& (K,,N,v1,L1,S1,v2,L2,S,{seniority, . . .}) to return the reduced matrix elemedt (1 L1571 |V D |1V v, L5S5)
using seniority notation if the coupling schein® _seniorityhas not been specified explicitly.

& (k,3,Mp,wi1,Q1,L1,51,W2,Q2,L2,S,{. . .}) to return the reduced matrix elementw1Q1L151 M|V &Y
wazQszszMQ) for the subshell with orbital angular momentura: 3 and for the additionally specified
quantum numbers1 2 =0, ..., 10 using the quasispin notati¢®8, Table 2]

Additional information: The reduced matrix elements of the operdiéf are only defined i.S-coupling.

& The list and a number of arguments depend on the definition of the underlying classification and the coupling
scheme which has to be defined before by call the procdgaicah_set coupl i ng_schene() if the

shel | _LS() notation is not used. This current definition of the coupling scheme is kept in the global variable
Racah_save_coupl i ng_schene.

& A set of keywords can be provided in any order as the last argument; the current suegrteddsare
algebraic and prime if the notationshel | _LS() is used and in other cases the suppokegwordsare
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algebraig prime, andsenioritywherealgebraicand prime must be used exclusively. The keywaedniority
‘overwrites’ the currently defined classification scheme.

& Argumentsshel | _LS;() andshel | _LSy() must belong to the same physical shéjl£ 1> =1 or

[n1l1] = [n2lo] = [nl]).

& The rankk is arbitrary integer save for the fact that it must obey the triangular condition & 2.

& Theshel | _LS() notation allows us a very compact input and output. It supports the set of quantum
numbers in seniority notation (integer or half-integer numbers) or the string of spectroscopic notations. As
usual the procedure returns the single value, but ifsthel I _LS() notation uses the incomplete spectro-
scopic notation (likeé' d2') or is not unique (like' f'5 2°P_5'), due to the need to specify theand/orw
quantum numbers explicitly, a list of all possible reduced matrix elemeMts ¢1L151 |V * V(1IN a2v2L055)

is returned.

& The calculation of the reduced matrix elemedtsv1 L151]|V * V(1IN aov2L585) is based on a list of RCFP
which are stored internally.

See also: Racah_set _coupl i ng_schemre(), Racah_cal cul ate_prine(),shel | _LS().
e Racah_shell_print(shel_jj())

Returns a string «, "N, nu, J to facilitate the printout of j-coupled subshell states. The valuepfs printed
in spectroscopic notation such as @23f 7/2,...; if, moreover, the principal quantum numbers given, a
string like 3d_5272, ... is returned.

Output: A string is returned.

Argument options: (shell_jj() staté to return” |«, "N, nu, J".
& (shell_jj(" d-"2"){...}) to return the list of all possible strindsc, "N, nu, J .
& (shell_LS()) to returd I'N, nu, "2S+1, ! or"I'N, w, nu, "2S+1, L'. The values of | and L are printed in
spectroscopic notation such as s, p,.dand S, P, D.. ., respectively.
& (shell_LS()statg to return" |I'N, nu, "2S+1, b" or" |[I'N, w, nu, "2S+1, )" .
& (shell_LS( d"2"){...}) to return the list of all possible strinds"N, nu, "2S+1, I or"I'N, w, nu, "2S+1,
L".
Additional information: These strings facilitate the line-mode printout of (coupled) subshell states and CSF.
Seealso: shel | _LS(),shell jj() andRacah_csf _print().
e shdl_jj(kappa,N,nu,J)
Auxiliary procedure to representjg-coupled subshell stateVvJ) for j =1/2,...,7/2.
Output: An unevaluated calltehel | _jj (kappa, N, nu, J) is returned.

Argument options. (kappa,N,nu,&hecR to check, in addition, that the given quantum numbers give rise to a
valid jj-coupled subshell state; the program terminates with a pRRORMessage if this is not the case.

&S ("d2J=2nu=2")or ("d+ 4J= 2 nu= 2") to represent g j-coupled subshell state from its
spectroscopic notation. This may simplify the interactive work.

Additional information: All quantum numbers must evaluate to tyipet eger .

& All occupation numbers must be in the range=0, ..., (2j + 1).

& For N = 0, an (non-physical) subshell angular momentjm —1/2 is formally allowed to facilitate the
input for several procedures.

& The relationj =1 + 1/2 is always checked.

& If the spectroscopic notation is incomplete (likd-2") or is not unique (like'f + 4 J= 4"), due to the
need to specify the quantum number explicitly, a list of all possible shell states is returned from which the
required one can be selected as single list arguments.
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Seealso: csf_jj(),Racah_angul ar _coefficient(),Racah_cfp(),Racah _cfgp(),shell _
LS(),Racah_r educed_T(),Racah_shel | _coefficients().

e shell LS(I,N,nu,L,S)
Auxiliary procedure to representlss-coupled subshell statgV vLS) for 1 =0, ..., 2.
Output: An unevaluated calltehel | _LS(1, N, nu, L, S) is returned.

Argument options: (I,N,w,nu,L,S) to representlaS-coupled subshell statg" wvLS) for / = 3 and the addi-
tional quantum numbep =0, ..., 10.

& (I,N,nu,L,SchechR to check, in addition, that the given quantum numbers give rise to a k&hcbupled
subshell state with=0, ..., 2; the program terminates with a proggrRORmMessage if this is not the case.

& ("d23P_2)or ("d2 3P2) to represent &S-coupled subshell state from its spectroscopic notation. This
may simplify the interactive work.

Additional information: All guantum numbers must be of typet eger .

& All occupation numbers must be in the range=0, ..., 22/ + 1).

& If the spectroscopic notation is incomplete (likd2") or is not unique (like' f'5 2°P_5'), due to the need

to specify thev and/orw quantum numbers explicitly, a list of all possible shell states is returned from which
the required one can be selected as single list arguments.

Seealso: csf _LS(),Racah_angul ar _coefficient(),Racah_cfp(),Racah_cfgp(),shell _
ij (),Racah_reduced_U(),Racah_reduced_V(),Racah_shel | coefficients().

Appendix C. Additional proceduresfor the RAcaH package

To support a set of general spin-angular coefficients, several new procedures and subprocedures have been
designed for the RcaH package. These commands are described and providethhaatditionto the previously
established code. As before, we display only a short description of the input and output of the procedures in order
to facilitate the reader’s understanding of the examples in Sedtidrmore complete description of all currently
supported commands of theaARAH package (as seen by the user) is distributed along with the source code in the
file Racah- commands. pdf .

C.1. Auxiliary procedures for representing the second-quantized operators

To simplify the application of the second quantization, a numbauafliary proceduresre introduced below to
represent the required creation and annihilation operators as well as various (tensorial) products of such operators.
The design of these auxiliary procedures is chosen in a way that further operators of this type could be added
later, if such requirements arise. These procedures basically return their parametedsiatecand, hence, serve
mainly for keeping the related information together. Since these procedures occur rather frequently in the input and
output of the main commands (of the present extensiomprefixRacah__ has been added to their name.

e ajj(.my)
Aucxiliary procedure to represent the tensorial operaf,?;j? in jj-coupling.
Output: An unevaluated callta_j j (j , m;) is returned.

Additional information: In this definition of the operator,ﬁ?f, Jj is the angular momentum,= 1/2 the rank
in the quasispin spacé(space) and, hence, = +1/2.
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& If, in addition tom, = 1/2, the projection; of the angular momentum is given explicitly, the operator
ai%)m is taken to create an electron with angular momentum quantum numlaerdm ;, while the adjoint

operator (inQ- space)a(q{/)2 m; = Zz,(,{) =(— 1)«/—mjai(,{;)j_ annihilates a corresponding electron from a subshell

state with angular momentum

Seealso:a LS(),Wjj().

a Ls(l,m,)

Auxiliary procedure to represent the tensorial operaﬁﬁ)jr‘) in LS-coupling.

Output: An unevaluated call ta_LS( |, m;) is returned.

Additional information: In this definition of the operatcnrm als) , L is the orbital angular momentum,= 1/2

the rank in quasispin spac@{space) and, hencey, = il/Z
& If, in addition tom, = 1/2, the projections:;, m, of the orbital angular momentum and the spin are given

explicitly, the operatomi’jlzxzmm is taken to create an electron with angular momentum quantum numbers

[, 1/2, m; andmg, while the adjoint operator (inQ- space)a("{;)2 e = G, = (=)l Hs—mimmsg 1D

annihilates a corresponding electron from a shell state with orbital angular momentum
Seealso:a_jj(),WLS().

W_jj(ajj10.aj20.k;)

Auxiliary procedure to represent the tensorial oper&téﬁ“) X a(‘m)]("f') in jj-coupling.

Output: An unevaluated call t&V j j (a_jj 1(),a_jj 2(), k;) isreturned.

Additional information: In jj-coupling, the operatc{n(q“) X a,(,?”)]("f) can be used to express the tensorial
part of any one-particle operator in atomic physics.

& ; is the { nt eger) rank of the operator iy-space and obeys the triangular conditign— jo| <k; <
J1+ Jj2.

Seealso:a_jj(),WLS(),Wjj_product(),Racah_shel|l coefficient().
W_jj_product(W_jj10.W_jj20.k)

Auxiliary procedure to represent the tensorial operator

@jp) o, @Dk 7, @i o, @027k %K)
[[amql Xamqi] ARG [aqu Xa’”qé] /2] J

in jj-coupling.
Output: An unevaluated call t&V j j _product (Wjj 1(), Wjj2(),k;) isreturned.

Additional information: In jj-coupling, this operator can be used to express the tensorial part of any two-
particle operator in atomic physics.

&k;, kj,, andk; represent thei (nt eger) ranks of the operator; they obey the three triangular conditions
lj1—Jjil <kj < ]1+]1, lj2 = jol < kj, < j2+ jy andlkj, — kj,| < kj < kj, + kj,, respectively.

Seealsora_jj(),Wjj(),WLS product(),Racah_shell _coefficient().
W_LS@ LSi(),a LSp() ki k)

Auxiliary procedure to represent the tensorial oper&tgﬁﬁjlm x a,ﬁ?lz”](k’k&‘) in LS-coupling.
Output: An unevaluated call tdV LS(a_LS1(), a _LSy(), ky, ky) is returned.
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Additional information: In LS-coupling, the operatc[m,(,,q;l”) X af,?jj”]“"kx) can be used to express the tenso-
rial part of any one-particle operator in atomic physics.
& k; andk, are the ( nt eger ) ranks of the operator ihspace (and-space, respectively); they obey the two
triangular conditionsly — I2| < k; <I1+ 12 and 0< &, < 1.

Seealso: a_LS(),Wjj(),WLS product(),Racah_shell _coefficients().
e W_LS product(W_LS]10),W_LS(),k;.Ks)
Auxiliary procedure to represent the tensorial operator

I Iy kiq ks 1} 173 ko ks kikg)
[[asfy x asfyt™] 45 [affy2? x itz ] He02]

in LS-coupling.
Output: An unevaluated call toV LS product (W LS;(), WLS,(), ky, k) is returned.

Additional information: In LS-coupling, this operator can be used to express the tensorial part of any two-
particle operator in atomic physics.

&k, ks, ki, ks, ki, andk, represent the (nt eger ) ranks of the operator; they obey the triangular conditions
=0 <k <41, 0<ky <1, |2 =15 <k, <lp+15 0< ky, <1, |ky — kip| < ky < kyy + ki, @nd

ks, — ks, | < kg < kgy + ks, reSpectively.

Seealso:a_LS(),WLS(),Wjj_product(),Racah_shell _coefficient().
C.2. Commands for spin-angular integration in the atomic shell model

In this version, thredigh-levelcommands help to evaluate the coefficients of fractional grandparentage (CFGP)
as well as the spin-angular integration of matrix elements which are taken between the subshell states of a single
open shell. Bothjj- andLS-coupled subshell states are supported, while the operators must represent valid one-
and two-particle operators. Then, by using the new auxiliary procedures of App€rntjim compact but still
very flexible notation is provided for the input and output of the procedures. Obviously, the same notation can
be extended rather easily to incorporate (i) operators of higher complexity [such as (effective) three- and four-
particle operators] as well as (ii) symmetry-adapted functions which might include several open shells. Both of
these extensions will be required in the future, for instance, in order to develop many-body perturbation tech-
nigues in a tensorial form. In the following, a notation l&ej j 1, a_j j 2 means that the user may type explicitly
a_jj(iz,my),a_jj(j2, m,) inthe parameter list or first assign these (unevaluated) caks pf () to
any variables, saya, wb, and later only use these variables at input time; wa, wb, .... An analogous no-
tation is applied also to the other auxiliary procedwies. S(), Wjj (), Wjj _product(),WLS(), and
W LS product (), respectively.

o Racah_angular_coefficient(" F" [k ;],shell_jj1(),shell_jj2())

Returns theure spin-angular coefficient for any one-particle operatdfi) of rankk; in jj-coupling, where
the two shell states shell1jand shell_jj must belong to theameopen shell with angular momentujn=1/2,
3/2,5/2, or 7/2, respectively.

Output: A (floating-point) number is returned.

Argument options: (" F",[k;],shell_jj1(),shell_jp(),algebraig to return the same spin-angular coefficient in
algebraicform.

& ("' F' [k;],shell_jji(),shell_jp(),prime) to return the same spin-angular coefficient in a prime-number repre-
sentation.
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& (" F' [k ki],shell_LS(),shell_LS(),{...}) to return thepure spin-angular coefficient for any one-particle
operatorF *iks) with ranksk; andk;, in LS-coupling.

& (" G" ,[O],shell_ji(),shell_jp().{...}) to return a set of alpure spin-angular coefficients including various
allowed combinations of the ranks andk, for the two-particle operata® *1%25) with rankk = 0 in jj-cou-
pling. A set of lists is returned is this case, see below.

& (" G" [Kk,0],shell_LS(),shell_ LS(),{...}) to return a set of albure spin-angular coefficients including
various allowed combinations of the ranks «», o1, ando for the two-particle operatag <1¥2K,01926) with
ranksK =k and coupled to zero. A set of lists in returned is this case, see below.

Additional information: In the present version, the two subshell states in the parameter list must always
belong to the same open shell, ijg.= jo = j or [n1j1] = [n2j2] = [nj] in jj-coupling andly =I> =1 or

[n1l1] = [n2l2] = [nl] in LS-coupling, respectively.

& In both, jj- andLS-couplings, the seniority notation is used to represent the subshell states by means of
shell jj () andshel |l LS().

& In this version, the (total) rank of two-particle operators are always restricté&d=t00. In LS-coupling,
therefore, the first two ranks in the parameter RB(,[k1,k2,ks], ...) must always be equak k= ko, and the

third rank ks = 0. A list of three arguments igsedalready here to represent later also the general case of
non-scalar operators.

& In jj-coupling, the one-electron angular momentum of the open shell carik/2, 3/2, 5/2, or 7/2.

& In LS-coupling, the one-electron orbital angular momentum of the open shell daa Bel, 2, and 3.

& Table 4displays the detailed expression of various matrix elementg-iandLS-couplings, respectively.

& For the one-particle operatdiF" , k; is the (integer) rank of the operator jaspace and must obey the
triangular condition|j1 — jo| < k; < j1 + j2. Similarly, k; and k; are the (integer) ranks of the operator

in L-space (ands-space, respectively); they obey the two triangular conditibns o] < k; <l1 + 2 and

0<ks <1,

&lifacalltoshell _jj () orshell _LS() does not uniquely specify a single subshell as, for example, in
shel | _LS("d2") orshell _LS("f"5 2" P_5"), thepurespin-angular coefficients are calculated for

all allowed combinations of subshell states. A list of unevaluated calls is returned.

& If a whole set of spin-angular coefficients is calculated, they are returned into the format [[.04714045212,
"X(0,1,0,11,13,21,[3,21,[3,2],[3.2)" ], [.. ], .. ] where [Q 1, O, 1] denotes the set of raksg, 2, o1 and

o> of two-particle operato6 (<1¥2K.91926) and[3, 2], [3, 2], [3, 21, [3, 2] corresponds ta,  (in the format{n/])
quantum numbers for the shells on which this operator is acting.

& For details of the prime number representationRaeah _cal cul ate_pri nme().

Seealso: Racah_set _coupling_scheme(),shell _jj(),shell _LS().
Racah_cfgp(shell_jja().shell_ij , (),shell_jj2())

Returns the coefficient of fractional grandparentag®v Ju || j¥ ~2(v, J,), j2J2) for the subshells with angu-
lar momentaj = 1/2, 3/2, 5/2 and 72 jj-coupling using the seniority notation.

Output: A (floating-point) number is returned.

Argument options: (shell_ji;(),shell_jj,(),shell_jp(),algebraig to return the CFGP in algebraic form.

& (shell_ji;(),shell_jj,(),shell_jp(),prime) to return the CFGP in a prime-number representation.

& (shell_LS;(),shell_LS,(),shell_jp().{. . .}) to return the coefficient of fractional grandparentatf&o(; vy x
LaSalllN=2(apv,L,S,), 1?L2Sy) for the subshells with angular momerite= 0, 1, 2 and 3 in_LS-coupling
using the seniority notation.

Additional information:
& The current supportekeywordsarealgebraicandprime.



Table 4

List of arguments for proceduiRacah_angul ar _coef fi ci ent s()

Argument options

Comment

Output

("F" [k 1,shell_jiz,shell_jp)

(" F",[k; ks],shell_LS ,shell_LS)

(" G" [0],shell_jip,shell_jp)

(" G" [k ks,0],shell_LS shell_LS)?

(e agvy g1 || FED nicN azv )
(kj) (k;
=dad (all f*7a),
whereF*i is a symmetric one-particle operator of rankanda = n«.

(nIN agv1 Ly S1| FERD |niN agua Lo o)
Kk
= dy™ a) f 8 ),
whereFkiks is a symmetric one-particle operator of raksks anda = nl.

(nicN @101 111G InicN a2v2.05)

= Yy kg i (allg 152 ).
whereG© =37, ;- ¢k1k2) is a symmetric two-particle
operator of ranks 0 and= n«.

(N agvy L1 S1IGEA) |niN agup Lo S)

_ ki1.ki2.ks1.ks2 kikio.ks1k
= Y kys ki ke ko datiaa > 2 (al| g Kitkiz Ks1ks2) ),

whereGhike) =37 ok, gRivki2ks1ks2) s @ symmetric
two-particle operator of ranks, ks anda = nl.

[dod " F(lkjlaa)']

k kS " "
(™) " F (g, ksla.a) ]

k1k2) w "
A8 " X([ ke, kolaaaa], .. ]

kj1kjokg1k " "
[[dSN2551552) X (g1, Ky, ks, ksolaaana)' T, .. ]

2 The procedure provides the cdge= k; in this version of RCAH.

69T-T#T (S002) 99T suoneduNWWOY SAISAUd Jaindwo) / 'fe 19 sefebres "9

191
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& The argumentshel | _jj 4(),shell _ jj ,() andshel | _jj2() must belong to the same physical
shell (jg = j, = j2=j Of [najal = [n,jp) = [n2j2] = [nj1).

& The argumentshel | _LS,(),shell _ LS,() andshel I _LS;() must belong to the same physical
shell (4 = lp=Dh=lor[nglgl=nplpl=[nal2] = [nl]).

& The notationshel | _LS() andshel | _jj () allow us a very compact input and output. They support
the set of quantum numbers in seniority notation (integer or half-integer numbers) or the string of spectroscopic
notations. As usual the procedure returns the single value, butstibel _LS() orshel | _jj () notations

use the incomplete spectroscopic notation (lik2' in LS-coupling or* d-2" in jj-coupling) or are not unique

(like "5 2°P_5 in LScoupling or"f + 4 J= 4 nu= 4" in jj-coupling), due to the need to specify the
and/orw quantum numbers explicitly, a list of all possible CFGP is returned.

& The calculation of the CFGPs is based on a list of RCFP which is stored internally.

& All subshell states must be in the seniority notation. There is no need to define it before by calling the
procedurdRacah_set _coupl i ng_schene().

& For details of the prime number representationReeah_cal cul ate_prime().

Seealso: Racah_set _coupling_scheme(),shell _jj(),shell _LS().

Racah_shell_coefficient(W_jj(),shell_jj1(),shell_jj2()

Returns the matrix element of the (one-particle) tensorial operator
(jMavida| [ar(,?j;) X aﬁi{fg](kj : | i™202v2.02)

of rankk; in jj-coupling, where the two shell states shell and shell_jj must belong to theameopen shell
with angular momentumi = 1/2, 3/2, 5/2, or 7/2, respectively.

Output: A (floating-point) number is returned.

Argument options: (W_jj(),shell_jj1(),shell_jp(),algebraig to return the same matrix elementatgebraic
form.

& (W_jj(,shell_jiz(),shell_jp(),prime) to return the same spin-angular coefficient in a prime-number repre-
sentation.

& (W_jj_product(),shell_jj(),shell_jp(),{...}) to return the matrix element of the (two-particle) tensorial op-
erator

(lea1v1J1||[[a,g?qjl) % ar(’;ijz)](kjl) % [ar(';z;;) % a;i]q];)](kfz)](kjlz) ||jN2a2v2J2)

of ranksk;,, k,, andk;, in jj-coupling.
& (W_LS(),shell_L3(),shell_LS().{...}) to return the matrix element

(lN1a1v1LlSl [ [a,(,?j? x a(qls)](klkx)

Mgy

lNzotzszzSg)

of ranksk; andk, in LS-coupling.
& (W_LS product(),shell_Lg),shell_LS(),{...}) to return the matrix element of the (two-particle) tensorial
operator
! 15)7 Gkt ks 1 15)7 (kiyksy )7 (ki ks
(lNlollvlLlSlH[[a,(,?qls) X ar(ngs)]( t1sy) X [a,(nqq;) X a,(,,qu)]( 2 2)]( h2ks1) HlNzolszLzsz)

of ranksky, , k,, ki,, ks, ki,,, andky,, in LS-coupling.

Additional information: In the present version, the two subshell states in the parameter list must always
belong to the same open shell, ijg.= jo = j or [n1j1] = [n2j2] = [nj] in jj-coupling, andy =1Ip =1 or

[n1l1] = [n2l2] = [nl] in LS-coupling, respectively.

& In both jj- and LS-coupling, the seniority notation is used to represent the subshell states by means of
shell jj () andshell _LS().
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& In jj-coupling, the one-electron angular momentum of the open shell cardik’2, 3/2, 5/2, or 7/2.

& In LS-coupling, the one-electron orbital angular momentum of the open shell daa Bel, 2, and 3.

& SeeWjj () andWjj _product () in jj-coupling, and the corresponding commands& $coupling,

for the proper definition of one- and two-particle operators in a tensorial form and which triangular conditions
are applied to all of the involved ranks.

&ifacalltoshel | _jj() orshell LS() does not uniquely specify a single subshell as, for example, in
shel | _LS("d2") orshell LS("f"5 2" P_5"), thepurespin-angular coefficients are calculated for

all allowed combination of subshell states. A list of unevaluated calls is returned.

& The calculation of the reduced matrix elements is based on a given list of RCFP which is stored internally.
& For details of the prime number representationReeah_cal cul ate_pri nme().

See also: Racah_set _coupling_schenme(), a_jj(), a_LS(), shell_jj(), shell_LS(),
Wjj(),Wjj_product(),WLS(),WLS product().
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