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Abstract

Matrix elements of physical operators are required when the accurate theoretical determination of atomic energ
orbitals and radiative transition data need to be obtained for open-shell atoms and ions. The spin-angular part for the
elements is typically based on standard quantities such as matrix elements of the unit tensor, the (reduced) coef
fractional parentage as well as a number of other reduced matrix elements concerning various products of electro
and annihilation operators. Therefore, in order to facilitate the access to the matrix elements of one- and two-partic
operators, we present here an extension to the RACAH program for the full set of standard quantities and the pure spin-an
coefficients inLS- andjj -couplings. A flexible notation is introduced for defining and manipulating the electron creatio
the electron annihilation operators. This will allow us to solve successfully various angular momentum problems in
physics.
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Operating systems under which the program has been tested:Linux 8.1+
Program language used:MAPLE, Release 8 and 9
Memory required to execute with typical data:30 MB
Number of lines in distributed program, including test data, etc.:36 875
Number of bytes in distributed program, including test data, etc.:1 104 604
Distribution format: tar.gz
Nature of the physical problem:The accurate computation of atomic properties and level structures requires a good
standing and implementation of the atomic shell model and, hence, a fast and reliable access to its standard quanti
from various coefficients of fractional parentage and the reduced matrix elements of the unit tensors, these quantitie
the so-called spin-angular coefficients, i.e. the spin-angular parts of the many-electron matrix elements of physical o
taken in respect of a basis of symmetry-adapted subshell and configuration state functions.
Method of solution:The concepts of quasispin and second quantized (creation and annihilation) operators in a spherica
ial form are used to evaluate and calculate the spin-angular coefficients of one- and two-particle physical operators [G.
Lithuanian J. Phys. 39 (1999) 79,http://arXiv.org/physics/0405078; G. Gaigalas, Z. Rudzikas, C. Froese Fischer, J. Phys. B
Mol. Phys. 30 (1997) 3747]. Moreover, the same concepts are applied to support the computation of the coefficients of
grandparentage, i.e. the simultaneousde-couplingof two electrons from a single-shell configuration. All these coefficients
now implemented consistently within the framework of the RACAH program [S. Fritzsche, Comput. Phys. Comm. 103 (19
51; G. Gaigalas, S. Fritzsche, B. Fricke, Comput. Phys. Comm. 135 (2001) 219].
Restrictions on the complexity of the problem:In the present version of the RACAH program, all spin-angular coefficients a
restricted to the case of a single open shell. For the symmetry-adapted subshell states of such single-shell configur
spin-angular coefficients can be calculated for (tensorial coupled) one-particle operators of arbitrary rank as well as fscalar
two-particle operators. As previously [S. Fritzsche, Comput. Phys. Comm. 103 (1997) 51; G. Gaigalas, S. Fritzsche, B
Comput. Phys. Comm. 135 (2001) 219], the RACAH program supports all atomic shells withl � 3 in LS-coupling (i.e.s-, p-,
d- andf -shells) and all subshells withj � 9/2 in jj -coupling, respectively.
Unusual features of the program:From the very beginning, the RACAH program has been designed as an interactive env
ment for the (symbolic) manipulation and computation of expressions from the theories of angular momentum and th
shell model. With the present extension of the program, we provide the user with a simple access to the coefficients of
grandparentage (CFGP) as well as to the spin-angular coefficients of one- and two-particle physical operators. To
the specification of the tensorial form of the operators, a short but powerful notation has been introduced for the cre
annihilation operators as well as for the products of such operators as required for the development of many-body pe
theory in a symmetry-adapted basis. All the coefficients and the matrix elements from above are equally supported forLS-
andjj -coupled operators and functions. The main procedures of the present extension are described below in Appe
addition, a list of all available commands of the RACAH program can be found in the fileRacah-commands.ps which is
distributed together with the code.
Typical running time:The program replies promptly on most requests. Even large tabulations of standard quantities a
spin-angular coefficients for one- and two-particle scalar operators inLS- andjj -coupling can be carried out in a few (tens o
seconds.
 2004 Elsevier B.V. All rights reserved.

PACS:3.65.F; 2.90.+p

Keywords:Angular momentum theory; Atomic shell model; Atomic structure theory; Coefficients of fractional parentage; Complex ato
spectra; Electron creation and annihilation operators; Coefficients of fractional grandparentage; Irreducible tensors;jj -coupling;
LS-coupling; One- and two-particle operators; Racah algebra within three spaces (orbital, spin and quasispin space); Second qu
in a coupled tensorial form; Spin-angular integration; Subshell state; Symmetry-adapted function; Unit tensor

1. Introduction

During the last few decades, the atomic shell theory has been found to be a very powerful frame for s
the level structure and properties of free atoms and ions. In this theory, the concepts of angular momen
spherical tensor operators are combined in an intricate way to make use of both the spherical symmetr

http://arXiv.org/physics/0405078
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atoms and the indistinguishability of identical particles in quantum mechanics. Since the pioneering work o
[1,2] in the 1940s, many people have helped to develop this powerful theory which is used today in a large
of atomic codes and case studies on the behavior of free atoms and ions.

However, despite the successful implementation of the atomic shell theory in various structure and c
programs, the use of this theory is a far from trivial task, particularly if one wishes to apply it to new re
areas. Apart from the mathematical complexity of the expressions in this theory, serious difficulties are
today by a large number of notations and conventions which are not consistent with each other. Various con
(which are often not even fully apparent in the literature) make it difficult, for instance, to trace the more ela
expressions back to the definition of the appropriate subexpressions, and hence the progress in describi
(and molecular) structures and processes has been hampered during the last decades. A well-known ca
a slow-downin the theoretical development refers, for example, to (atomic) many-body perturbation theor
on a symmetry-adapted many-particle basis, aphysical conceptwhich one has wished to work out for a long tim
but which up to the present could not be realized in any satisfactory way. Therefore, to facilitate the treat
the expressions from the theory of angular momentum and the atomic shell model, we have developed theACAH

program during recent past years[3–7]. At present, this program is able not only to provide the standard quan
from the atomic shell theory but also to support the symbolic manipulations and the numerical computation
expressions from the angular momentum theory. With the present extension to the RACAH program, we enlarge th
application of the atomic shell model and hope to lay down a basis which help combine various concepts in
physics for the spin-angular integration of many-electron matrix elements. Quite different computational s
were developed in the past, including

(i) Fano (LS-coupling)[8] and Grant (jj -coupling)[9] scheme, based on the coefficients of fractional paren
(CFP),

(ii) the scheme of Cowan[10] and Glass and Hibbert[11] that combines CFP and unit tensorsUk , V k in LS-
coupling,

(iii) Ki čkin and Rudzikas spin-angular computational scheme[12] based on a combination of CFP and unit tens
T k in jj -coupling,

(iv) a spin-angular computational scheme based on the coefficients of fractional grandparentage (CFGP)LS- or
jj -couplings[13,14],

(v) Rudzikas and Kaniauskas spin-angular computational scheme[15] based on the reduced coefficients of fra
tional parentage,

(vi) Gaigalas spin-angular computational scheme[15] based on a combination of the reduced coefficients of f
tional parentage and reduced matrix elements of unit tensors in three spaces (quasispin, orbital and s[16].

Surely, one of the central topics of the atomic shell model concerns the efficient evaluation and comp
of the many-electron matrix elements for different one- and two-particle operators, as obtained from the e
electron interaction or the interaction of atoms and ions with external particles and fields. In further appli
such as the coupled-cluster and many-body perturbation theories, even effective three-particle operators—
n-particle operators—may occur and have to be dealt with efficiently. In the atomic shell theory (and by us
techniques of Racah algebra), these matrix elements can often be simplified considerably, if the integration
the spin and angular coordinates is carried out analytically. In the past, therefore, several techniques were d
for the analytic integration, including, for example, second quantization[17] or Fano’s approach[8], and they are
implemented today within a number of powerful programs. For any properly adapted many-particle bas
the matrix elements can always bedecomposedinto the (so-called) spin-angular coefficients and radial integ
which are thebuilding blocksfor most atomic structure computations as well as for the atoms and molecules
crystals (ligand field effects).

In the present extension of the RACAH program, we make use of the concepts of quasispin and second
tization (in a tensorial form) for the classification of operators and symmetry functions, in order to supp
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computation of the spin-angular coefficients for one-particle operators of arbitrary rank as well as forscalar two-
particle operators. Moreover, the same concepts were applied to express and calculate CFGP as well as th
matrix elements of certain products of creation and annihilation operators. Although, the program is pr
restricted to one- and two-particle operators, efforts have been made to ‘prepare’ our notations (and the im
tation) also foreffective operatorsof three and more particles as well as for non-zero ranks as needed, for ex
in many-body perturbation theory.

In the next section we start with a brief description of previous version of the RACAH package. In Section3
we present the new extension to the package. We also briefly discuss the approach of spin-angular integ
single-shell configurations. The fourth section contains detailed examples for understanding this new con
to RACAH and the possibilities of its application in the theory of atoms. Finally, the comments on our future
with the RACAH package are given in Section5.

2. Short description of previous versions of RACAH package

During the last decade, the RACAH package has been extended within several steps. In its original desig
emphasis was placed mainly on the algebraic manipulations of the so-calledRacah expressions(cf. Ref. [18],
Fig. 1) which may include any number of the Wignern − j symbols and Clebsch–Gordan coefficients, as we
(various) integrals over the spherical harmonics. In order to obtain a simplification of such Racah expres
large number of sum and orthogonality rules were implemented earlier. More recently, in addition, attent
paid to enlarging the number ofsymbols and functionsfrom angular momentum theory and to support their fast
reliable computation. A third line of approach concerned the incorporation of the basic knowledge and qu
from the atomic shell model. In this way, we first implemented the reduced coefficients of fractional parenta
the matrix elements of the unit tensors[5]. The brief description of the previous versions of RACAH package is
presented inTable 1.

3. New extension to the RACAH package

With the present extension to the RACAH package, we follow again the ‘third’ line of approach and prov
the spin-angular coefficients for one- and scalar two-particle spherical tensor operators, i.e. the pure spin
matrix elements of such operators if taken with respect to the shell states from a single open shell and su
bothLS- andjj -coupled shell states and operators, respectively.

A whole series of methods allowing for very accurate investigations of energy spectra and other charac
of atoms and ions exist in the theory of atoms. Probably the most popular are the multiconfiguration Hartre
the multiconfiguration Dirac–Hartree–Fock, the configuration interaction methods, various versions of pertu
theory and semiempirical methods. All of them require the calculation of the matrix elements of the p
operators or the effective operators from perturbation theory. The symmetry properties of the atomic stat
the calculation of matrix elements to be divided into the calculation of spin-angular terms and the accom
radial integrals. So, while implementing any of the methods mentioned above, the treatment of the spin
coefficients is necessary.

Considering all this the RACAH package is sufficiently developed to provide the treatment of the spin-an
coefficients in its own frame. The above-mentioned coefficients may be treated inside a single open shell inLS- and
jj -couplings, both analytically and numerically. This enables the new version of the package to perform
manipulations with the matrix elements of one- and two-particle operators and thus makes it easier to s
problems in the theory of atoms.
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Table 1
A brief explanation of what is included RACAH

Version of program
RACAH

Ref. Catalogue identifier Short description

I. Data structures and
numerical computations

[3] ADFV This contains the first definite proper data structures to deal with Racah alg
These structures are the basis for providing the procedures for various num
computations. The use of recursion formulas and simplifications of the typic
expressions due to special values is also supported. The impact of this inte
tool on atomic many-body perturbation theory is briefly discussed.

II. Sum rule evaluation [4] ADHW The set of MAPLE procedures mainly concerns the numerical computations
Clebsch–Gordan coefficients and Wignern − j symbols, the simplification by
special values as well as the use of recursion relations. The RACAH program also
facilitates the evaluations of the sum rules. More than 40 sum rules known
the literature and the involving products of up to six Wignern − j symbols have
been implemented and are available for interactive use.

III. Standard quantities for
evaluating many-particle
matrix elements

[5] ADNM An extension to the RACAH program is presented for calculating standard
quantities of fractional parentage: the reduced coefficients of fractional
parentage as well as the reduced and completely reduced matrix elements
several standard operators withinLS- andjj -coupling schemes.

IV. Spherical harmonics [18] ADOR In the RACAH program the behavior and the properties of the spherical
harmonics are incorporated. It supports various useful expansions for these
functions, for recursion relations as well as for the algebraic evaluation of
integrals.

V. Recoupling coefficients [19] ADOS The RACAH program supports the application and evaluation of the general
recoupling coefficients. Compared with a previous version of the program, a
considerably faster evaluation has now been achieved by exploiting graphic
rules and by making the use of the symmetries of the Racah expressions m
efficiently.

VI. LS-jj transformations [6] ADQP A set of additional commands to RACAH program now facilitates the
transformation of symmetry-adapted functions with a quite different comple
from jj - to LS-couplings and vice versa. For such transformations, all partia
filled sub-shells withl < 4 are supported and, hence, the program extends th
previously available tabulations and implementations considerably. In the s
of atomic spectra, for example, the new version of the RACAH program may
help to identify atomic and ionic levels as obtained from relativistic calculati
in jj -coupling. A flexible notation is introduced for defining and manipulatin
the open-shell configurations at different level of complexity.

VII. Extended and
accelerated computations

[7] ADRW In this revision, the emphasis is put on the efficient computation of standard
quantities by supporting both the default software model as well as fast
(hardware) floating-point computations. Moreover, RACAH is now organized
and distributed as a MAPLE module which can be installed and used like any
other modules, including help pages and the use of internally recognized da
structures.

VIII. Spin-angular
coefficients for
single-shell configurations

In order to facilitate the access to the spin-angular coefficients from the ato
shell theory, a further extension to the RACAH program is provided. It helps to
calculate the coefficients of fractional grandparentage as well as the spin-a
coefficients for one- and scalar two-particle operators, supporting
symmetry-adapted functions and operators in both,LS- andjj -couplings,
respectively. In addition a flexible notation within the RACAH code in order to
simplify the definition and communication of the creation and annihilation
operators in spherical tensorial form is introduced.
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3.1. Theoretical background

3.1.1. Matrix elements of one-particle operators
The interaction of atoms with light and external fields is usually described in terms of one-particle opera

(1)F =
N∑
i

f (ri )

which are symmetric in all the electron coordinatesr1, r2, . . . , rN . To exploit the concepts of the atomic sh
model, these operators must first be re-written in terms of their (spherical) tensor components as, for ins
LS-coupling

(2)F (kl ,ks ) =
N∑
i

f (kl ,ks )(ri ),

in order to be invariant with respect of ‘rotations’ inL- andS-space, respectively. Of course, an analogous for
also applied injj -coupling

(3)F (kj ) =
N∑
i

f (kj )(ri )

if proper coupled (Dirac) spin-orbitals are used. In the present extension to the RACAH program, though, we restric
ourselves to a single open shell. Here we only need to consider the matrix elements

(4)
(
nlNανLS

∥∥F (klks )
∥∥nlN

′
α′ν′L′S′) = 1√[kl, ks]

(
nl

∥∥f (klks )
∥∥nl

)(
lNαQLS

∥∥W(klks )
∥∥lN

′
α′Q′L′S′)

in LS-coupling, or

(5)
(
nκNανJ

∥∥F (kj )
∥∥nκN ′

α′ν′J ′) = 1√[kj ]
(
nκ

∥∥f (kj )
∥∥nκ

)(
jNαQJ

∥∥W(kj )
∥∥jN ′

α′Q′J ′)

in jj -coupling. These expressions are general and can be applied to any one-particle operator in a tenso
In LS-coupling, for example, the spin-orbit interaction operator has the tensorial structurekl = 1, ks = 1, and the
reduced (one-particle) matrix element

(
nl

∥∥f
(11)
s−o

∥∥nl
) = −Zα2

√
3

8
l(l + 1)(2l + 1)

(
nl

∥∥∥∥ 1

r3

∥∥∥∥nl

)

(6)= −Zα2

√
3

8
l(l + 1)(2l + 1)

∞∫
0

Pi(nl; r) 1

r3
Pj ′(nl; r)dr,

whereZ is the nuclear charge of the atom,α ≈ 1/137 the fine-structure constant, and
∫ ∞

0 Pi(nl; r) 1
r3 Pj ′(nl; r)dr—

the radial integral. The functionP(nl; r) is the radial part of the one-electron spin-orbital. It depends only onl

quantum numbers.
The total factors of(nl‖f (klks )‖nl) on the right-hand side of(4) and of(nκ‖f (kj )‖nκ) on the right-hand side o

(5) are thepure spin-angularcoefficients.
In most atomic structure programs, in contrast, the spin-angular coefficients are defined with an additio

tor 1√[L,S] in LS-coupling (or 1√[J ] in jj -coupling) to facilitate large-scale computations because, for the s
operators, these coefficients then become the same for any combination ofL andS (or J ). In the RACAH pro-
gram, the pure spin-angular coefficients can be obtained in eitherLS- or jj -coupling by means of the comman
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Racah_angular_coefficient(“F”,...), including an additional factor of, respectively,1√[L,S] or 1√[J ]
in the final numerical value. As before, these coefficients are supported for all subshell states withl � 3 in LS-
coupling andj � 9/2 in jj -coupling.

3.1.2. Matrix elements of scalar two-particle operators
Theefficienttreatment of the interaction among the particles remains one of the greatest challenges of

many-particle physics. For the systems of the identical particles, the interaction operators typically are sc
symmetric in the particle coordinates

(7)G =
N∑

i<j

g(ri , rj ), g(ri , rj ) = g(rj , ri ).

Well-known examples of such interaction operators include the instantaneous Coulomb repulsion, the (rel
Breit interaction among fast electrons and the various harmonic forces as applied in nuclear physics. H
when compared with the expressions from the last subsection the matrix elements of the two-particle o
usually exhibit a much higher complexity. This appears to be particularly true for all coupled tensorial op
with non-zero(intermediate) ranks as, for instance, found in the ‘expansion’ of the Breit interaction in the
Pauli approximation, and to be even more pronounced for all non-scalar two-particle operators. Below w
therefore restrict our treatment to thescalar operatorsand to matrix elements which are between subshell s
from a single open shell. In general, up to four open shells may be involved within a single (two-particle)
element since the operator may ‘tie’ two active electrons on each side of the matrix elements.

To consider the operators in a tensorial form, we have to distinguish betweenLS- andjj -coupling. Let us star
here with the case of anLS-coupled tensorial operator which takes the form

(8)G(κ1κ2kl ,σ1σ2ks)kt=0 ≡ G(κ1κ2kl ,σ1σ2ks) =
N∑

i<j

g(κ1κ2kl ,σ1σ2ks)(ri , rj ),

wherekt = 0 for any scalar operator and where theκ ’s andkl denote the individual ranks inL-space, and theσ ’s
andks those inS-space. They are the result of a proper decomposition of the operator into (sub-)compone
refer to the individual particles 1 and 2 in the matrix elements. As usual in the literature the rankkt is omitted in
the notation of the operator for a scalar operator. The full ‘physical interaction’ operator is expressed as
linear combination of such tensor operators withkl = ks = k,

(9)Gkt=0 =
∑

κ ′s,σ ′s,k
G(κ1κ2k,σ1σ2k),

and where the expansion coefficients are ‘included’ into the definition of the scalar tensorial operators. An
expression of the matrix element taken with respect to the subshell states of a single open shell for a p
tensorG(κ1κ2k,σ1σ2k) is shown below inAppendix A.2in terms of (various) tensor products of the electron crea
and annihilation operators from Ref.[20] and the reduced matrix element

(10)
(
nl, nl

∥∥g(κ1κ2k,σ1σ2k)
∥∥nl, nl

)
that only refers to the interaction among the particles and is otherwise independent of the remaining electro
subshell. Again, this expression is general and can be used for any scalar two-particle operator. The ele
(Coulomb) interaction among the electrons, for instance, has the tensorial structureκ1 = κ2 = k, kl = 0, σ1 = σ2 =
0, andk = 0 and the reduced matrix element

(11)
(
nl, nl

∥∥g(kk0,000)
∥∥nl, nl

) = 2
√

2k + 1
(
l
∥∥C(k)

∥∥l
)2

Rk(nl, nl;nl, nl).

The total factor of(nl, nl‖g(κ1κ2k,σ1σ2k)‖nl, nl) on the right-hand side of(A.15) is thepure spin-angularcoefficient.
In summarizing this result, we find that the matrix element of a scalar two-particle operator, evaluated for t
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states from a single open shell, can always be written in the form

(12)
(
nlNανLS

∥∥G(κ1κ2k,σ1σ2k)
∥∥nlN

′
α′ν′L′S′) =

∑
d(κ1κ2k,σ1σ2k)

(
nl, nl

∥∥g(κ1κ2k,σ1σ2k)
∥∥nl, nl

)
.

This is also valid for the matrix elements(nlNανLS‖G(kt=0)‖nlN
′
α′ν′L′S′) of the operator(9), where the

d(κ1κ2k,σ1σ2k) denotes the pure spin-angular coefficients. These can be obtained immediately from theACAH

program by means of the commandRacah_angular_coefficient(“G”,...). To evaluate these coeffi
cients, the method by Gaigalas[16,20] has been implemented, combining the concepts of the irreducible t
operators and second quantization in a coupled tensorial form as briefly outlined in Section2 above.

Similarly, although slightly simpler, the expressions are applied for the (tensorial) operators and the
elements injj -coupling where any scalar operator(kt = 0) can be decomposed into the tensor components

(13)G(kt=0) =
∑

k

G(kkkt=0) ≡
∑

k

G(kk0) =
∑

k

N∑
i<j

g(kk0)(ri , rj ).

An explicit expression of the scalar two-particle matrix element for a particular spherical tensorG(kk0) is given
in Appendix A.1below. As in the case ofLS-coupling, the matrix elements depend on the effective interac
strengths (reduced matrix elements)

(14)
(
nκ,nκ

∥∥g(kk0)
∥∥nκ,nκ

)
that are multiplied by the corresponding pure spin-angular coefficients for a given intermediate rankk of the
operator.

As for the one-particle operators, in practice, the matrix elements are often defined with an additiona
1√[L,S] in LS-coupling (or 1√[J ] in jj -coupling). To facilitate the comparison with most of the atomic struc

programs, these additional factors are also included in the final results that can be obtained from th
dureRacah_angular_coefficient(“G”,...). In addition, the same restrictions are applied to the s
angular coefficients of scalar two-particle operators, having well-defined tensorial properties.

3.2. Description of the code

Following MAPLE’s philosophy, the RACAH program is organized in a hierarchical order where each comm
can either be used for interactive work or simply as a language element for building up commands at som
level of the hierarchy. The whole package now includes about 300 procedures from which about 10 are s
for daily work. More detailed information about arguments and functions can be obtained from the user
provided with the code.

The great benefit for the implementation of large software packages in MAPLE arises from the proper use
moduleswhich help to encapsulate, to maintain, and to install the code. Moreover, the use of modules fa
the hiding of internal data and program structures since all commands, which are provided to the user,
exportedexplicitly. We also make use of this feature for the RACAH program which is provided in terms of tw
modules (seeFig. 1). While theRacah module comprises all procedures for the symbolic and numerical treat
of Racah expressions[3,4,18,19], theJucys module mainly contains quantities from the atomic shell model[5],
from theLS− jj transformation matrices[6] as well as from spin-angular coefficients for single-shell confi
rations (program presented in this paper). Both modules can be invoked simply by typingwith(Racah) and
with(Jucys). To make use ofJucys’ functionality requires that theRacah module has been loaded before

Students, engineers, and scientists of today more and more come across problems whose solution req
to derive formulae, to evaluate them numerically, and to perform other complicated transformations. In this c
general computer algebra are of considerable help. They provide a unified super-high level interactive prog
environment to the user. Nowadays the versatile integrated computer algebra systems are a modern tool in
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P | |-------------|
R |-------------------------------| with(Jucys) |
O | |-------------| |-------------|
G |-----| with(Racah) | |
R | |-------------| |
A | | |
M | |-- RACAH I |-- RACAH III

| | |
R | |-- RACAH II |-- RACAH VI
A | | |
C | |-- RACAH IV |-- RACAH VIII
A | |
H | |-- RACAH V

|

Fig. 1. The structure of the RACAH program.

Table 2
Modified procedures from RACAH III [5] and RACAH IV [18]. A more detailed description for this procedure is given inAppendix Band by
the fileRacah-commands.ps which is distributed with the program

Racah_cfp() Calculated a coefficients of fractional parentage inLS- or jj -coupling.

Racah_reduced_T() Calculates a reduced matrix element of the operatorT (k) in jj -coupling.

Racah_reduced_U() Calculates a reduced matrix element of the operatorU(k) in LS-coupling.

Racah_reduced_V() Calculates a reduced matrix element of the operatorV (k) in LS-coupling.

Racah_shell_print() Return a string “lˆN, nu, ˆ2S+1, L” or “κ, ˆN, nu, J” to facilitate the printout ofLS- or jj -coupling,
respectively.

shell_jj(), shell_LS() To represent a (sub-)shell state in eitherjj - or LS-coupling.

research and are systematically applied in the teaching process. One of the best computer algebra syste
purpose is MAPLE. The key elements of it, as well as of other similar systems, are the commands for data in
output, mathematical operations, transformations or reduction of complex expressions, drawing graphs,
help, etc. They all are grouped into separate libraries according to their purpose, particularity, and the circle
that are addressed. TheLINALG library is used for solving the linear algebra problems, the DETOOLSlibrary con-
tains commands for solving differential equations, etc. The package RACAH presented in the paper is also one
the independent libraries. It is no different from the standard MAPLE libraries in its structure and ideology, where
it is meant for the topics of theoretical atomic physics. Like the standard packages, this package has no
structure. All its use is based on the commands that are set in our papers, and all the detailed descriptions
taxes are available in the help. In atomic structure calculations, one has to deal with atomic shells containin
information stored as quantum numbers. Various selection rules must be controlled and although graphical
well developed, keeping track of all information and performing spin-angular integration can take a long tim
only achieved by intensive table look up, checking of phase conventions and manipulations. Various progra
for specific (mostly large scale) atomic structure calculations, but none of them is embedded into an envi
allowing the user to have fast access to single functions or using parts for testing and deriving own expres

The MAPLE system itself and the separate libraries presenting it are developing wildly nowadays. This is
to their popularity and is determined by the need of users to have a more and more efficient interactive p
ming environment that allows one to solve more complex and more varying problems. The RACAH package is no
an exception. We present inTable 2the modifications to commands found in the previous version of RACAH. This
moves the RACAH package closer to the formalism of the atomic physics and to simplify the use of the pack
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Table 3
Additional procedures for the RACAH package to compute the spin-angular coefficients and matrix elements for the subshell states of
open shell. A more detailed description for this procedure is given inAppendix Cand by the fileRacah-commands.ps which is distributed
along with the program. Apart from three main procedures to evaluate the coefficients of fractional grandparentage and spin-angular c
of various types, a few auxiliary procedures are provided in order to facilitate thecommunicationwith and within the RACAH program

a_jj(), a_LS() Auxiliary procedures to represent a tensorial operatora
(qγ )
mq either injj - or LS-coupling,

respectively.

Racah_angular_coefficient() To return the pure spin-angular coefficients for one- and two-particle operators for a
single open shell inLS- or jj -coupling.

Racah_cfgp() To return the coefficients of fractional grandparentage(γ NνdΓd‖γ N−2(νpΓp), γ 2Γ2)

in LS- or jj -coupling.

Racah_shellstate() To generate proper subshell states inLS- or jj -coupling from the spectroscopic notatio

Racah_shell_coefficients() To return the (reduced) matrix element of the tensorial operator[a(qγ )
mq1 × a

(qγ )
mq2 ](k) or

[[a(qγ )
mq1 × a

(qγ )
mq2 ](k1) × [a(qγ )

mq3 × a
(qγ )
mq4 ](k2)](k) in LS- or jj -coupling, respectively.

W_jj(), W_LS() To represent the tensorial operator[a(qγ )
mq1 × a

(qγ )
mq2 ](k) in eitherjj - or LS-coupling.

W_product_jj(), W_product_LS() To represent the tensorial operator[[a(qγ )
mq1 × a

(qγ )
mq2 ](k1) × [a(qγ )

mq3 × a
(qγ )
mq4 ](k2)](k) in

eitherjj - or LS-coupling.

doing so. Moreover, the main goal of this work is to introduce the spin-angular integration method common
in atomic physics into the MAPLE package. As this integration is closely tied up with the peculiarities of the th
of atoms and very often used in various theoretical considerations of atomic physics, it is natural that it sho
as a RACAH package. In this work we further observe the principle that the commands should reflect the for
used as closely as possible, so we classify the commands into the auxiliary procedures and the comman
execution.

Let us discuss the new auxiliary procedures first.
By making use of the concepts of quasispin and second quantization within a coupled tensorial form,

appears helpful to have a simple notation in order to specify the shell states and the second-quantized o
For the specification of the shell states (and even for more elaborate symmetry-adapted configuration st
tions), such a notation was introduced already earlier by using a few auxiliary procedures, such asshell_LS(),
shell_jj(), and several others. These procedures were defined separately for each coupling scheme a
be considered mainly as a simple ‘device’ in order to keep all therelated informationtogether. These auxiliar
procedures basically return back their arguments in anunevaluatedform. With the present revision of the RACAH

package, we extent this idea to specify the creation and annihilation operators as well as various product
operators. As done before for the shell states, here we introduce a number of auxiliary procedures such asa_LS()

andW_LS() to determine either a single creation (annihilation) operatora
(qj)
mq

or a product of such operator
Table 3lists these new auxiliary procedures in both coupling schemes as well as the additional main com
which have been added to the RACAH package and which accept the auxiliary commands in their input.

Having determined the tensorial structure of the operators, the computation of the coefficients of the fr
parentage or of the matrix elements of the various operators is a quite simple task. For the CFP coeffici
unit tensors, such examples have been discussed before in Refs.[5,6]. With the present extension to the RACAH

program, we also provide the CFGP (for the decoupling of two electrons from a single open shell) as we
pure spin-angular coefficients for (tensorial) one-particle operatorsF (k) of arbitrary rankk and for the scalar two
particle operators, evaluated with respect to the shell states of a single open shell. For all these quantit
LS- andjj -coupled operators and the subshell states were equally supported; internally a valid classificatio
subshell states is known for all shells withl � 3 in LS-coupling andj � 9/2 in jj -coupling.

In the RACAH program, the shell states|nlNαLS〉 in LS-coupling and|njNνJ 〉 in jj -coupling are uniquely
defined in terms of (all of) their quantum numbers. For the interactive use of the program (and for sever
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applications) the specification of all these quantum numbers is often cumbersome and quite prone of makin
Therefore, to facilitate the use of the shell states, the procedureRacah_shellstate() was designed in orde
to return a list of all those shell states which are in accordance with the given coupling scheme and some
specification’ of the states. The procedure accepts, for instance, the inputRacah_shellstate("d2") to return
all subshell states of|d2〉 in the form of

[shell_LS(2, 2, 0, 0, 0), shell_LS(2, 2, 2, 1, 1),

shell_LS(2, 2, 2, 2, 0), shell_LS(2, 2, 2, 3, 1),

shell_LS(2, 2, 2, 4, 0)]

orRacah_shellstate("4fˆ5 2ˆP") to generate all the individual subshell states of|4f 5 2P 〉 in the form of

[shell_LS([4, 3], 5, 1, 3, 1, 1/2), shell_LS([4, 3], 5, 2, 5, 1, 1/2),

shell_LS([4, 3], 5, 3, 5, 1, 1/2), shell_LS([4, 3], 5, 4, 5, 1, 1/2)].

A similar input is now accepted also by the commandRacah_angular_coefficient() and by some other
in order to generate the pure spin-angular coefficients for all the subshell states as partially specified.

3.3. Distribution of the code

As before, the whole RACAH package is distributed by the tar fileRacah2004.tar from which the
Racah2004 root directory is (re-)generated by the commandtar -xvf Racah2004.tar. This directory
contains the source code libraries (for MAPLE 8 and 9), aRead.me for the installation of the program as we
as the documentRacah-commands.pdf. The document provides the definition of alldata structuresof the
RACAH program as well as an alphabetic list of all user relevant (and exported) commands. TheRacah2004 root
also contains an example of a.mapleinit file which can easily be modified and incorporated into the us
home. Making use of such a.mapleinit file, then, the two modulesRacah andJucys should be available
like any other module of MAPLE.

The source file of the RACAH package that is presented in this work includes all earlier versions as well. Aft
installation as described above, all the versions of RACAH (I–VIII) will be installed into the computer in one ste

4. Examples

The new procedures are explained in the appendix using the style ofThe Maple Handbookby Redfern[21]. In
the examples shown below we illustrate a few typical applications to give a general understanding on how
face these new procedures. We start by computing the numerical value of a coefficient of fractional grandp
(CFGP). Secondly we do the spin-angular integration for the Coulomb operator in case of the 2p2 1S state. In a
third example we define a new procedure to calculate the contact contribution of the hyperfine structure
how the new procedures can be used in own programs. As a fourth example we calculate one of the ba
tities behind the spin-angular integration and compare the MAPLE output with the physical calculation. All thes
examples are given as a MAPLE script distributed with the package. It is assumed that the two packages RACAH

and JUCYS have been loaded:

> with(Racah): with(Jucys):

4.1. Test Case 1

Let us start with the computation of a coefficient of fractional grandparentage (CFGP) for a partially fillef7/2
shell, say(

f 6
7/2(ν = 2)2

∥∥f 4
7/2

(
(ν = 2)2

)
, f 2

7/2(ν = 0)0
)
,
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where theN = 6 electron (daughter) state and theN = 4 (parent) state have both quantum numbersj = 7/2,ν = 2,
andJ = 2, while the (de-coupled) two-electron subshell state hasj = 7/2, ν = 0, andJ = 0, respectively. We ma
either assign these three subshell states explicitly to some variables as, for instance, with

> wa := shell_jj("f+ˆ6 J=2 nu=2");
wa := shell_jj(-4, 6, 2, 2)

> wb := shell_jj("f+ˆ4 J=2 nu=2");
wb := shell_jj(-4, 4, 2, 2)

> wc := shell_jj("f+ˆ2 J=0 nu=0");
wc := shell_jj(-4, 2, 0, 0)

> Racah_cfgp(wa,wb,wc);
.1825741860

or definethem directly inside the call toRacah_cfgp() by typing

> Racah_cfgp(shell_jj("f+ˆ6 J=2 nu=2"), shell_jj("f+ˆ4 J=2 nu=2"),
shell_jj("f+ˆ2 J=0 nu=0"));

.1825741860

The MAPLE output is the numerical value of the GCFP,
(
f 6

7/2(ν = 2)2
∥∥f 4

7/2,
(
(ν = 2)2

)
, f 2

7/2(ν = 0)0
) = 0.1825741860.

4.2. Test Case 2

We now evaluate the electrostatic interaction up to the radial factor. In first order approximation for tp-
electrons coupled to1S, this interaction can be expressed as a sum of scalar two-particle operators wit
kl = ks = 0:

(15)
〈
2p2 1S

∣∣r−1
12

∣∣2p2 1S
〉 = ∑

k=0,2

G(kk0)
(
2p2 1S,2p2 1S

)
g(kk0,000)(pp,pp)Rk(2p2p,2p2p).

The pure spin-angular coefficient of the interacting 2p-electronsG(kk0)(2p2 1S,2p2 1S) can be calculated usin
theRacah_angular_coefficient() command. The first rank is defined in the angular space, the seco
the spin and the third in the combined space. The submatrix element has the tensorial form Ref.[22], Eq.(9)

g(kk0,000)(pp,pp) = 2[k]1/2(p∥∥C(k)
∥∥p

)2 = 2[k]1/2
[
(−1)l

[
(2l + 1)(2l′ + 1)

]1/2
(

l k l′
0 0 0

)]2

l=l′=1

(16)= 18[k]1/2
(

1 k 1
0 0 0

)2

.

The first three ranks are given in the angular space, for the first and second electron and for their combina
second three are defining the spin space in the same manner. The radial partRk(2p2p,2p2p) can be found, for
example, in[23]. To evaluate this formula, one first calculates the pure spin-angular coefficient:

> Racah_angular_coefficient("G",[0,0,0],shell_ LS("2pˆ2 1ˆS"),

shell_LS("2pˆ2 1ˆS"),algebraic);

[[1/6, "([0,0,0,0],[2,1],[2,1],[2,1],[2,1])"],

[
√

3/18, "X([1,1,0,0],[2,1],[2,1],[2,1],[2,1])"],

[
√

5/30, "X([2,2,0,0],[2,1],[2,1],[2,1],[2,1])"],
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[ 3/18, "X([0,0,1,1],[2,1],[2,1],[2,1],[2,1])"],

[1/18, "X([1,1,1,1],[2,1],[2,1],[2,1],[2,1])"],

[
√

15/90, "X([2,2,1,1],[2,1],[2,1],[2,1],[2,1])"]].

From the output list we have to select the pure coefficients with appropriate tensorial structure. The t
structure is given after theX in square brackets: “X([kl1, kl2, ks1, ks2], . . .)”. For k = 0, the rankskl1, kl2, ks1 and
ks2 must be (0,0,0,0)—the first entry in the list. The entries following the ranks define for the two bra and
ket electrons then andl values. The pure spin-angular coefficient is the number in front, in our example 1/6. The
submatrix elementg(000,000) evaluates to

> 18*Racah_w3j(1,0,1,0,0,0,algebraic)ˆ2;

6.

For k = 2, the ranks are (2,2,0,0)—we have to take the third entry with pure spin-angular coefficient
√

5/30.
Together with the submatrix elementg(220,000) we end up with

> sqrt(5)/30 * 18 * sqrt(5) * Racah_ w3j(1,2,1,0,0,0,algebraic)ˆ2;

2/5.

Combining the two results, the Coulomb energy is given in terms of spin-angular factor times radia
ECoulomb= R0(2p2p,2p2p) + 2

5R2(2p2p,2p2p), the same as calculated, for example, in Ref.[24], Eq. (6.39).

4.3. Test Case 3

We show now how the procedures can be used to define customized programs. We will define a new p
calculating the contact term of the hyperfine structure. In the semiempirical approach according to San
Beck[25], the contribution to the fine structure splitting arising from the density probability of the electrons
nuclear core is defined by

(17)Econtact= F (0,1)(nlN ,nlN)f (0,1)(l, l)R(0,1)(nl, nl).

The submatrix element is particularly simple,f (0,1)(l, l) = √
3/2[l]. The pure coefficientF (0,1)(nlN ,nlN) again

can be calculated byRacah_angular_coefficient(). We define a new procedure to calculate the con
energy up to the radial partR(0,1)(nl, nl):

> E_contact := proc (Shell)

local Result, Qnr;

if Shell<>[] then

Qnr := Racah_tabulate(Shell);

Result := Racah_angular_coefficient ("F",[0,1],Shell,Shell,algebraic);

Result := Result[1] * sqrt (3/2*Qnr[l]*2+1);

Result := combine(Result * R([0,1],[ Qnr[n],Qnr[l] ], [ Qnr[n],Qnr[l] ]));

else

error ("No valid shell given.")

end if;

end proc:

We now can evaluate the contact contribution for various shells, for example:

> E_contact(shell_LS("1sˆ1 2S");

1/2
√

2 R([0,1],[1,0],[1,0]).
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4.4. Test Case 4

In the past, we often referred to the (reduced) coefficients of the fractional parentage and to the reduce
elements of theunit tensors as thestandard quantitiesof the atomic shell model. Typically, all these quantit
can be written as matrix elements of the (variously combined) electron creation and annihilation operat
tensorial form, calculated with properly antisymmetrized subshell states. As seen above, there are sever
(and slightly more complicated) matrix elements of such operators which may appear in the evaluation o
electron matrix elements within the atomic shell model. But although the appearance of these matrix ele
rather straightforward to understand, their computation may become quite tedious in practice. In a last
we therefore demonstrate how such matrix elements can be computed (and tabulated) for different type
operators. For this purpose, let us consider the second-quantized (one-particle) operator[a(q 2s)

1/2 × a
(q 2s)

−1/2 ](21), for
which we shall calculate the matrix elements

(
d4ανLS

∥∥[
a

(q 2s)

1/2 × a
(q 2s)

−1/2

](21)∥∥d4α′ν′L′S′)

for all the (LS-coupled) subshell states of thed4 configuration. In practice, this is achieved simply by typing

> Racah_shell_coefficients(W_LS(a_LS(2,1/2),a_LS(2,-1/2),2,1),

shell_LS("dˆ4"),shell_LS("dˆ4"));

The MAPLE output looks like this:

[[-2.618614683,W_LS(a_LS(2,1/2),a_ LS(2,-1/2),2,1),shell_LS(2,4,4,0,0),shell_LS(2,4,4,2,1)"],

[ 3.549647869,W_LS(a_LS(2,1/2),a_LS(2,-1/2),2,1), shell_LS(2,4,2,1,1),shell_LS(2,4,2,1,1)"],

[ 2.121320343,W_LS(a_LS(2,1/2),a_LS(2,-1/2),2,1),shell_ LS(2,4,2,1,1),shell_LS(2,4,2,2,0)"],

[-3.794733194,W_LS(a_LS(2,1/2),a_LS(2,-1/2),2,1),shell_ LS(2,4,2,1,1),shell_LS(2,4,2,3,1)"],

[...],...].

Translated into physical formulae this output reads:

(
d4ν = 4 1S

∥∥[
a

(q 2s)

1/2 × a
(q 2s)

−1/2

](21)∥∥d4ν = 4 3D
) = −2.618614683,

(
d4 ν = 2 3P

∥∥[
a

(q 2s)

1/2 × a
(q 2s)

−1/2

](21)∥∥d4ν = 2 3P
) = 3.549647869,

(
d4 ν = 2 3P

∥∥[
a

(q 2s)

1/2 × a
(q 2s)

−1/2

](21)∥∥d4ν = 2 1D
) = 2.121320343,

(
d4 ν = 2 3P

∥∥[
a

(q 2s)

1/2 × a
(q 2s)

−1/2

](21)∥∥d4ν = 2 3F
) = −3.794733194,

. . . .

Apart from the (known) specification of one or several subshell states by means ofshell_LS(), the procedures
a_LS() andW_LS() are used here to specify a single creation (annihilation) operator or a product of such
ators with well defined tensorial properties. In the output of the command in angle brackets[[.***********,
"W_LS(a_LS(2,1/2), a_LS(2,-1/2),2,1), shell_LS(2,4,4,0,0), shell_LS(2,4,4,2,
1)"]] the information on a single matrix element is presented. In the output the symbols"W_LS(a_LS(2,1/2),
a_LS(2,-1/2),2,1), shell_LS(2,4,4,0,0), shell_LS(2,4,4,2,1)" indicate that the matrix
element of an operator"W_LS(a_LS(2,1/2), a_LS(2,-1/2),2,1)" ≡ [a(q 2s)

1/2 × a
(q 2s)

−1/2 ](21) is calcu-

lated, between the subshell states"shell_LS(2,4,4,0,0)" ≡ |d4ν = 4 1S〉 and"shell_LS(2,4,4,2,
1)" ≡ |d4ν = 4 3D〉.
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5. Summary and outlook

During the last few years, the incorporation of variousstandard quantitiesfrom the atomic shell model int
the RACAH program has certainly helped to open the door towards the new applications of atomic struct
collision theory. Apart from the (reduced) CFP coefficients and the matrix elements of theunit tensors (which were
compiled before in various tabulations), we also support theLS− jj transformation matrices[6] and a variety
of spin-angular coefficients, related to a single open shell. In practice, these coefficients are needed no
extent the available structure codes, such as GRASP92 [26] or RATIP [27], towards more complex shell structur
but also todevelopmany-body perturbation techniques within a symmetry-adapted basis. Although the ben
such an approach were pointed out already many years ago, a reliable implementation had been hampe
that time by the complexity of the expressions and the inconvenience with which the necessary ingredien
be accessed. With the recent developments on the RACAH program, therefore, we may accelerate the use of s
many-body perturbation techniques for real open-shell atoms.

However, several requirements still need to be worked out before the advanced many-body techniq
be applied successfully to the open-shell atoms and ions with, say, more than two electrons or holes o
otherwise closed shells. Besides leading to more complex configurations in the input of the spin-angular pro
such shell structures quickly give rise toeffectivetwo-, three-, or even four-particle operators (with either zero
nonzero rank), if one wants to proceed beyond the first- or the second-order perturbation theory. For such
operators, the explicit expressions for the matrix elements still need to be derived. First steps into these d
are currently in progress.
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Appendix A. Matrix elements of tensorial one- and two-particle operators within the framework of
second-quantization

In this appendix, we compile the explicit expressions of the coefficients of fractional grandparentage (
and of those matrix elements as now provided by the RACAH program. All these coefficients and matrix eleme
were finally traced back to the completely reduced matrix elements of the operatorsW(kqkj ) andW(kqklks ) in jj -
andLS-coupling, respectively, which were the subject of our earlier work[5]. A more detailed compilation of th
matrix elements for the general one- and two-particle operators of the atomic shell model was given previo
Gaigalas[16,20].

A.1. Expressions injj -coupling

Coefficients of fractional grandparentage (CFGP):
(
jNαQJ

∥∥jN−2(α′Q′J ′), j2J2
)

(A.1)= (−1)Q−MQ√
N

(
N − 1

)[J ]

(
Q 1 Q′

−MQ 1 M ′
Q

)(
jαQJ

∣∣∣∣∣∣W(1J2)
∣∣∣∣∣∣jα′Q′J ′).

Matrix elements of the operatorW(kj ) = −[a(j) × ã(j)](kj ), reduced inj -space:
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( ∥[ ](k )∥ ′ )

f an

r

jNαQJ∥ a(j) × ã(j) j ∥jN α′Q′J ′

(A.2)=




− N√
2j+1

√[J ]δ(QJ,Q′J ′)δ(MQ,M ′
Q) if kj = 0,

(−1)Q−MQ 1√
2

(
Q 1 Q′

−MQ 0 M ′
Q

)
(jαQJ |||W(1kj )|||jα′Q′J ′) if kj is even,

1√
2[Q]δ(MQ,M ′

Q)(jαQJ |||W(0kj )|||jα′Q′J ′) if kj is odd.

In these and the following matrix elements, the (spherical conjugate) operatorã(j) is defined due tõa(j)
mj

=
(−1)j−mj a

†(j)
−mj

where, as usual,a(j)
mj

and a
†(j)
mj

refer to the standard creation and annihilation operators o
electron in the (uncoupled) quantum state|jmj 〉.

Matrix elements of the operator[ã(j) × a(j)](kj ), reduced inj -space:
(
jNαQJ

∥∥[
ã(j) × a(j)

](kj )∥∥jN ′
α′Q′J ′)

(A.3)=




2j+1−N√
2j+1

√[J ]δ(QJ,Q′J ′)δ(MQ,M ′
Q) if kj = 0,

(−1)Q−MQ 1√
2

(
Q 1 Q′

−MQ 0 M ′
Q

)
(jαQJ |||W(1kj )|||jα′Q′J ′) if kj is even,

− 1√
2[Q]δ(MQ,M ′

Q)(jαQJ |||W(0kj )|||jα′Q′J ′) if kj is odd.

Matrix elements of the operator[a(qj)
mq

× a
(qj)
mq

](kj ), reduced inj -space:

(
jNαQJ

∥∥[
a

(qj)
mq

× a
(qj)
mq

](kj )∥∥jN ′
α′Q′J ′)

(A.4)= (−1)Q−MQ

(
Q 1 Q′

−MQ mq + mq M ′
Q

)(
jαQJ

∣∣∣∣∣∣W(1kj )
∣∣∣∣∣∣jα′Q′J ′),

wherea
(qj)

1/2 ≡ a(j) anda
(qj)

−1/2 ≡ ã(j).

Matrix elements of the operator[[a(qj)
mq1

× a
(qj)
mq2

](kj1) × [a(qj)
mq3

× a
(qj)
mq4

](kj2)](kj ), reduced inj -space:

(
jNαQJ

∥∥[[
a

(qj)
mq1

× a
(qj)
mq2

](kj1) × [
a

(qj)
mq3

× a
(qj)
mq4

](kj2)](kj )∥∥jN ′
α′Q′J ′)

= (−1)J+J ′+kj [kj ]1/2
∑

α′′Q′′J ′′

{
kj1 kj2 kj

J ′ J J ′′
}(

jNαQJ
∥∥[

a
(qj)
mq1

× a
(qj)
mq2

](kj1)∥∥jN ′′
α′′Q′′J ′′)

(A.5)× (
jN ′′

α′′Q′′J ′′∥∥[
a

(qj)
mq3

× a
(qj)
mq4

](kj2)∥∥jN ′
α′Q′J ′).

Matrix elements of scalar one-particle operatorsF (0) for the case of a single open shell:

(A.6)
(
nκNανJ

∥∥F (0)
∥∥nκNα′ν′J ′) = (

nκ
∥∥f (0)

∥∥nκ
)(

jNαQJ
∥∥W(0)

∥∥jNα′Q′J ′).
Generally, a one-particle operator has the tensorial structureF (k), which has rankk in thej -space. For any scala
one-particle operator the total rankk = 0. So this operator has tensorial structureF (0).

Matrix elements of scalar two-particle operatorsG(kk0) for the case of a single open shell:
(
nκNανJ

∥∥G(kk0)
∥∥nκNα′ν′J ′)

= 1

2

(
nκ,nκ

∥∥g(kk0)
∥∥nκ,nκ

){ 1

[k]
(
jNανJ

∥∥[[
a(j) × ã(j)

](k) × [
a(j) × ã(j)

](k)](0)∥∥jNα′ν′J ′)

(A.7)− (1)2j+k

√[k, j ]
(
jNανJ

∥∥[
a(j) × ã(j)

](0)∥∥jNα′ν′J ′)}.
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in the
Generally, the two-particle operator has the tensorial structureG(k1k2kt ), which has rankk1 for electron 1, rankk2
for electron 2, and a resulting rankkt in the j . For any scalar two-particle operator the total rankkt = 0. So this
operator has tensorial structureG(k1k20).

A.2. Expressions in LS-coupling

Coefficients of fractional grandparentage:
(
lNαQLS

∥∥lN−2(α′Q′L′S′), l2L2S2
)

(A.8)= (−1)Q−MQ

√
N(N − 1)[L,S]

(
Q 1 Q′

−MQ 1 M ′
Q

)(
lαQLS

∣∣∣∣∣∣W(1L2S2)
∣∣∣∣∣∣lα′Q′L′S′).

Matrix elements of the operatorW(klks ) = −[a(ls) × ã(ls)](klks ), reduced inl- ands-spaces:
(
lNαQLS

∥∥[
a(ls) × ã(ls)

](klks )
∥∥lN

′
α′Q′L′S′)

(A.9)=




− N√
4l+2

√[L,S]δ(QLS,Q′L′S′)δ(MQ,M ′
Q) if kl + ks = 0,

(−1)Q−MQ 1√
2

(
Q 1 Q′

−MQ 0 M ′
Q

)
(lαQLS|||W(1klks )|||lα′Q′L′S′) if kl + ks is even,

1√
2[Q]δ(MQ,M ′

Q)(lαQLS|||W(0klks )|||lα′Q′L′S′) if kl + ks is odd.

In these and the following matrix elements, the spherical conjugate operatorã(ls) is defined by

(A.10)ã(ls)
mlms

= (−1)l+s−ml−ms a
†(ls)
−ml−ms

,

where, as usual,a(ls)
mlms

anda
†(ls)
mlms

refer to the standard creation and annihilation operators of an electron
(uncoupled) quantum state|lml, sms〉.

Matrix elements of the operator[ã(ls) × a(ls)](klks ), reduced inl- ands-spaces:
(
lNαQLS

∥∥[
ã(ls) × a(ls)

](klks )
∥∥lN

′
α′Q′L′S′)

(A.11)=




4l+2−N√
4l+2

√[L,S]δ(QLS,Q′L′S′)δ(MQ,M ′
Q) if kl + ks = 0,

(−1)Q−MQ 1√
2

(
Q 1 Q′

−MQ 0 M ′
Q

)
(lαQLS|||W(1klks )|||lα′Q′L′S′) if kl + ks is even,

− 1√
2[Q]δ(MQ,M ′

Q)(lαQLS|||W(0klks )|||lα′Q′L′S′) if kl + ks is odd.

Matrix elements of the operator[a(qls)
mq

× a
(qls)
mq

](klks ), reduced inl- ands-spaces:

(
lNαQLS

∥∥[
a

(qls)
mq

× a
(qls)
mq

](klks )
∥∥lN

′
α′Q′L′S′)

(A.12)= (−1)Q−MQ

(
Q 1 Q′

−MQ mq + mq M ′
Q

)(
lαQLS

∣∣∣∣∣∣W(1klks )
∣∣∣∣∣∣lα′Q′L′S′),

wherea
(qls)

1/2 ≡ a(ls) anda
(qls)

−1/2 ≡ ã(ls).

Matrix elements of the operator[[a(qls)
mq1

×a
(qls)
mq2

](kl1ks1) ×[a(qls)
mq3

×a
(qls)
mq4

](kl2ks2)](klks ), reduced inl- ands-spaces:

(
lNαQLS

∥∥[[
a

(qls)
mq1

× a
(qls)
mq2

](kl1ks1) × [
a

(qls)
mq3

× a
(qls)
mq4

](kl2ks2)](klks )
∥∥lN

′
α′Q′L′S′)

= (−1)L+S+L′+S′+kl+ks [kl, ks]1/2
∑

α′′Q′′L′′S′′

{
kl1 kl2 kl

L′ L L′′
}{

ks1 ks2 ks

S′ S S′′
}
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× lNαQLS∥ amq1
× amq2

l1 s1 ∥lN α′′Q′′L′′S′′

(A.13)× (
lN

′′
α′′Q′′L′′S′′∥∥[

a
(qls)
mq3

× a
(qls)
mq4

](kl2ks2)∥∥lN
′
α′Q′L′S′).

Matrix elements of scalar one-particle operatorsF (klks ) for the case of a single open shell:

(A.14)
(
nlNανLS

∥∥F (klks )
∥∥nlNα′ν′L′S′) = 1√[kl, ks]

(
nl

∥∥f (klks )
∥∥nl

)(
lNαQLS

∥∥W(klks )
∥∥lNα′Q′L′S′).

Generally, the one-particle operator has the tensorial structureF (klks )kt , which has rankkl in the l space, the rank
ks in thes-space, and total rankkt . For any scalar one-particle operator the total rankkt = 0. So this operator ha
tensorial structureF (klks )0 ≡ F (klks ).

Matrix elements of scalar two-particle operatorG(κ1κ2k,σ1σ2k) for the case of a single open shell:
(
nlNανLS

∥∥G(κ1κ2k,σ1σ2k)
∥∥nlNα′ν′L′S′)

= 1

2

(
nl, nl

∥∥g(κ1κ2k,σ1σ2k)
∥∥nl, nl

){[κ1, κ2, σ1, σ2]−1/2

× (
lNανLS

∥∥[[
a(ls) × ã(ls)

](κ1σ1) × [
a(ls) × ã(ls)

](κ2σ2)
](kk)∥∥lNα′ν′L′S′)

(A.15)−
{

κ1 κ2 k

l l l

}{
σ1 σ2 k

s s s

}(
lNανLS

∥∥[
a(ls) × ã(ls)

](kk)∥∥lNα′ν′L′S′)}.

Generally, the two-particle operator has the tensorial structureG(κ1κ2kl ,σ1σ2ks)kt , which has rankκ1 for electron 1,
rankκ2 for electron 2, and a resulting rankkl in the l-space, the corresponding ranksσ1σ2ks in the s-space, and
total rankkt . For any scalar two-particle operator the total rankkt = 0. So this operator has tensorial structu
G(κ1κ2kl ,σ1σ2kl)0 ≡ G(κ1κ2k,σ1σ2k).

Appendix B. Modified procedures from RACAH III and RACAH VI

The introduction of the procedurescsf_LS(), shell_LS() may considerably simplify the input commun
cation with the program. Therefore, it seems very appropriate to ‘work through’ the procedures of RACAH III to
introduce theshell() notation as standard—as far as reasonable. The previous parameter lists should
available as optional arguments.

• Racah_cfp(shell_jj1(),shell_jj2())

Returns the coefficient of fractional parentage (CFP)(jNν1J1‖jN−1(ν2J2)j) for the subshells with angula
momentaj = 1/2, 3/2, 5/2 and 7/2 in jj -coupling using seniority notation.

Output: A (floating-point) number is returned.

Argument options: (shell_jj1(),shell_jj2(),algebraic) to return the CFP(jNν1J1‖jN−1(ν2J2)j) in algebraic
form for any subshell withj = 1/2, 3/2, 5/2 and 7/2.
♣ (shell_jj1(),shell_jj2(),prime) to return the CFP in a prime-number representation.
♣ (shell_jj1("d-ˆ2"),shell_jj2("d-2"),{ . . .}) to return the list of all possible CFP (jNν1J1‖jN−1(ν2J2)j ) for
the subshells with angular momentaj = 1/2, 3/2 and 5/2 in jj -coupling.
♣ (j,N,Q1,J1,Q2,J2,{ . . .}) to return the CFP (jNQ1J1‖jN−1(Q2J2)j ) for the subshells with angular momen
j = 1/2, 3/2, 5/2 and 7/2 using the quasispin notation injj -coupling.
♣(j,N,ν1,J1,ν2,J2,{seniority, . . .}) to return the CFP (jNν1J1‖jN−1(ν2J2)j ) using the seniority notation if th
coupling schemejj_seniorityhas not been specified explicitly.
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♣ (9/2,N,w1,Q1,J1,w2,Q2,J2,{ . . .}) to return the value of the CFP (jNw1Q1J1‖jN−1(w2Q2J2)j ) for the sub-
shell with angular momentaj = 9/2 and for the additionally specifiedw1,2 = 0, 1, or 2[28, Table 2].
♣ (shell_LS1(),shell_LS2(),{ . . .}) to return the CFP (lNν1L1S1‖lN−1(ν2L2S2)l) for the subshells withl = 0,
1, and 2 inLS-coupling using seniority notation.
♣(shell_LS1("dˆ2"),shell_LS2("d2"),{ . . .}) to return the list of all possible CFP (lNν1L1S1‖lN−1(ν2L2S2)l)
for the subshells withl = 0, 1, and 2 inLS-coupling.
♣ (l,N,Q1,L1,S1,Q2,L2,S2,{ . . .}) to return the CFP (lNQ1L1S1‖lN−1(Q2L2S2)l) in LS-coupling for the sub-
shells withl = 0, 1 and 2 using the quasispin notation inLS-coupling.
♣ (3,N,w1,Q1,L1,S1,w2,Q2,L2,S2,{ . . .}) to return the value of the CFP (f Nw1Q1L1S1‖f N−1(w2Q2L2S2)f )
for the subshell with orbital angular momentuml = 3 and for the additionally specifiedw1,2 = 0, . . . ,10 using
the quasispin notation inLS-coupling[28, Table 2].

Additional information: The list and a number of arguments depend on the definition of the u
lying classification and the coupling scheme which has to be defined before by calling the pro
Racah_set_coupling_scheme() if the shell_LS() or shell_jj() notations are not used. Th
current definition of the coupling scheme is kept in the global variableRacah_save_coupling_scheme.
♣ A set of keywords can be provided in any order as the last argument; the current supportedkeywordsare
algebraicandprimeif the notations shell_jj() or shell_LS() are used and in other cases the supportedkeywords
arealgebraic, prime, andsenioritywherealgebraicandprimemust be used exclusively. The keywordseniority
‘overwrites’ the currently defined classification scheme.
♣ Argumentsshell_jj1() andshell_jj2() must belong to the same physical shell (j1 = j2 = j or
[n1j1] = [n2j2] = [nj ]).
♣ Argumentsshell_LS1() andshell_LS2() must belong to the same physical shell (l1 = l2 = l or
[n1l1] = [n2l2] = [nl]).
♣ The notationsshell_LS() andshell_jj() allow us a very compact input and output. They supp
the set of quantum numbers in seniority notation (integer or half-integer numbers) or the string of spectr
notations. As usual the procedure returns the single value, but if theshell_LS() orshell_jj() notation
uses the incomplete spectroscopic notation (like"d2" in LS-coupling or"d-2" in jj -coupling) or is not unique
(like "fˆ5 2ˆP_5" in LS-coupling or"f + 4 J= 4 nu= 4" in jj -coupling), due to the need to specify theν

and/orw quantum numbers explicitly, a list of all possible CSF is returned.
♣The calculation of the CFP is based on a list of RCFP which is stored internally.
♣For details of the prime-number representation seeRacah_calculate_prime().

See also: Racah_set_coupling_scheme(), shell_jj(), shell_LS().

• Racah_reduced_T([k],shell_jj1(),shell_ jj2())

Returns the reduced matrix element reduced inj -space(jNα1ν1J1‖T (k)‖jNα2ν2J2) of the unit tensorT (k)

with rankk and for the subshells withj = 1/2, 3/2, 5/2 and 7/2 using seniority notation injj -coupling.

Output: A (floating-point) number is returned.

Argument options: ([k],shell_jj1(),shell_jj2(),algebraic) to return the reduced matrix element (jNν1J1‖T (k)‖
jNν2J2) in algebraic form.
♣ ([k],shell_jj1(),shell_jj2(),prime) to return the reduced matrix element in a prime-number representatio
♣ ([k], shell_jj1("d-ˆ2"), shell_jj2("d-ˆ2"),{ . . .}) to return the list of all possible matrix elements reduced
j space (jNα1ν1J1‖T (k)‖jNα2ν2J2) with rankk in it and for the subshells withj = 1/2, 3/2, 5/2 and 7/2.
♣ (k,j,MQ,Q1,J1,Q2,J2,{ . . .}) to return the reduced matrix element (jQ1J1MQ‖T (k)‖jQ2J2MQ) for the sub-
shells with angular momentaj = 1/2, 3/2, 5/2 and 7/2 using the quasispin notation injj -coupling.
♣ (k,j,N,ν1,J1,ν2,J2,{seniority, . . .}) to return the reduced matrix element (jNν1J1‖T (k)‖jNν2J2) using se-
niority notation if the coupling schemejj_seniorityhas not been specified explicitly.
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♣ (k,9/2,MQ,w1,Q1,J1,w2,Q2,J2,{ . . .}) to return the reduced matrix element (jw1Q1J1MQ‖T (k)‖jw2Q2 ×
J2MQ) for the subshells with orbital angular momentumj = 9/2 and for the additionally specified quantu
numbersw1,2 = 0, 1, or 2 using quasispin notation injj -coupling[28, Table 2].

Additional information: The reduced matrix elements of the operatorT (k) are only defined injj -coupling.
♣The list and a number of arguments depend on the definition of the underlying classification and the c
scheme which has to be defined before by call the procedureRacah_set_coupling_scheme() if the
shell_jj() notation is not used. This current definition of the coupling scheme is kept in the global va
Racah_save_coupling_scheme.
♣ A set of keywords can be provided in any order as the last argument; the current supportedkeywordsare
algebraic and prime if the notationshell_jj() is used and in other cases the supportedkeywordsare
algebraic, prime, andsenioritywherealgebraicandprime must be used exclusively. The keywordseniority
‘overwrites’ the currently defined classification scheme.
♣ Argumentsshell_jj1() andshell_jj2() must belong to the same physical shell (j1 = j2 = j or
[n1j1] = [n2j2] = [nj ]).
♣The rankk is an arbitrary integer save for the fact that it must obey the triangular condition 0� k � 2j .
♣Theshell_jj() notation allows us a very compact input and output. It supports the set of quantum
bers in seniority notation (integer or half-integer numbers) or the string of spectroscopic notations. A
the procedure returns the single value, but if theshell_jj() notation uses the incomplete spectroscopic
tation (like"d-2") or is not unique (like"f + 4"), due to the need to specify theν quantum number explicitly
a list of all possible reduced matrix elements (jNα1ν1J1‖T (k)‖jNα2ν2J2) is returned.
♣ The calculation of the reduced matrix elements (jNα1ν1J1‖T (k)‖jNα2ν2J2) is based on a list of RCF
which are stored internally.

See also: Racah_set_coupling_scheme(), Racah_calculate_prime(), shell_jj().

• Racah_reduced_U([k],shell_LS1(),shell_LS2())

Returns the reduced matrix element reduced inl- ands-spaces (lNα1ν1L1S1‖U(k)‖lNα2ν2L2S2) of the unit
tensorU(k) with rank k and for the subshells with orbital angular momental = 0, 1 and 2 using seniorit
notation inLS-coupling.

Output: A (floating-point) number is returned.

Argument options: ([k],shell_LS1(),shell_LS2(),algebraic) to return the reduced matrix element (lNα1ν1L1 ×
S1‖U(k)‖lNα2ν2L2S2) in algebraic form with rankk and for the subshells withl = 0, 1 and 2 using seniorit
notation.
♣ ([k],shell_LS1(),shell_LS2(),prime) to return the reduced matrix element in a prime-number represent
♣ ([k],shell_LS1("dˆ2"),shell_LS2("d2"),{ . . .}) to return the list of all possible matrix elements reduced
l- ands-spaces (lNα1ν1L1S1‖U(k)‖lNα2ν2L2S2) with rankk and for the subshells withl = 0, 1 and 2 using
seniority notation.
♣ (k,l,MQ,Q1,L1,S1,Q2,L2,S2,{ . . .}) to return the reduced matrix element (lNQ1L1S1MQ‖U(k)‖lNQ2L2 ×
S2MQ) of the unit tensorU(k) for the subshells with orbital angular momental = 0, 1 and 2 using quasispi
notation inLS-coupling.
♣ (k,l,N,ν1,L1,S1,ν2,L2,S2,{seniority, . . .}) to return the reduced matrix element (lNν1L1S1‖U(k)‖lNν2L2S2)
using seniority notation if the coupling schemeLS_seniorityhas not been specified explicitly.
♣ (k,3,MQ,w1,Q1,L1,S1,w2,Q2,L2,S2,{ . . .}) to return the reduced matrix element (f Nw1Q1L1S1MQ‖U(k)‖
f Nw2Q2L2S2MQ) for the subshell with orbital angular momentuml = 3 and for the additionally specifie
quantum numbersw1,2 = 0, . . . ,10 using the quasispin notation[28, Table 2].

Additional information: The reduced matrix elements of the operatorU(k) are only defined inLS-coupling.
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♣The list and a number of arguments depend on the definition of the underlying classification and the c
scheme which has to be defined before by call the procedureRacah_set_coupling_scheme() if the
shell_LS() notation is not used. This current definition of the coupling scheme is kept in the global va
Racah_save_coupling_scheme.
♣ A set of keywords can be provided in any order as the last argument; the current supportedkeywordsare
algebraic and prime if the notationshell_jj() is used and in other cases the supportedkeywordsare
algebraic, prime, andsenioritywherealgebraicandprime must be used exclusively. The keywordseniority
‘overwrites’ the currently defined classification scheme.
♣ Argumentsshell_LS1() andshell_LS2() must belong to the same physical shell (l1 = l2 = l or
[n1l1] = [n2l2] = [nl]).
♣The rankk is arbitrary integer save for the fact that it must obey the triangular condition 0� k � 2l.
♣Theshell_LS() notation allows us a very compact input and output. It supports the set of quantum
bers in seniority notation (integer or half-integer numbers) or the string of spectroscopic notations. A
the procedure returns the single value, but if theshell_LS() notation uses the incomplete spectrosco
notation (like"d2") or is not unique (like"fˆ5 2ˆP_5"), due to the need to specify theν and/orw quantum
numbers explicitly, a list of all possible reduced matrix elements (lNα1ν1L1S1‖U(k)‖lNα2ν2L2S2) is returned.
♣The calculation of the reduced matrix elements (lNα1ν1L1S1‖U(k)‖lNα2ν2L2S2) is based on a list of RCF
which are stored internally.

See also: Racah_set_coupling_scheme(), Racah_calculate_prime(), shell_LS().

• Racah_reduced_V([k],shell_LS1(),shell_ LS2())

Returns the reduced matrix element reduced inl- and s-spaces (lNν1L1S1‖V (k1)‖lNν2L2S2) of unit tensor
V (k1) with rankk and for the subshells with orbital angular momental = 0, 1 and 2 using seniority notation
LS-coupling.

Output: A (floating-point) number is returned.

Argument options: ([k],shell_LS1(),shell_LS2(),algebraic) to return the reduced matrix element (lNν1L1 ×
S1‖V (k1)‖lNν2L2S2) in algebraic form with rankk and for the subshells with orbital angular momental = 0,
1 and 2 using seniority notation.
♣ ([k],shell_LS1(),shell_LS2(),prime) to return the reduced matrix element in a prime-number represent
♣ ([k],shell_LS1("dˆ2"),shell_LS2("dˆ2"),{ . . .}) to return the list of all possible matrix elements reduced
l- ands-spaces (lNα1ν1L1S1‖V (k1)‖lNα2ν2L2S2) with ranksk and for the subshells withl = 0, 1 and 2 using
seniority notation.
♣ (k,l,MQ,Q1,L1,S1,Q2,L2,S2,{ . . .}) to return the reduced matrix element (lNQ1L1S1MQ‖V (k1)‖lNQ2L2 ×
S2MQ) of unit tensorV (k1) with rankk and for the subshells with orbital angular momental = 0, 1 and 2 using
quasispin notation inLS-coupling.
♣(k,l,N,ν1,L1,S1,ν2,L2,S2,{seniority, . . .}) to return the reduced matrix element (lNν1L1S1‖V (k1)‖lNν2L2S2)
using seniority notation if the coupling schemeLS_seniorityhas not been specified explicitly.
♣ (k,3,MQ,w1,Q1,L1,S1,w2,Q2,L2,S2,{ . . .}) to return the reduced matrix element (f Nw1Q1L1S1MQ‖V (k1)‖
f Nw2Q2L2S2MQ) for the subshell with orbital angular momentuml = 3 and for the additionally specifie
quantum numbersw1,2 = 0, . . . ,10 using the quasispin notation[28, Table 2].

Additional information: The reduced matrix elements of the operatorU(k) are only defined inLS-coupling.
♣The list and a number of arguments depend on the definition of the underlying classification and the c
scheme which has to be defined before by call the procedureRacah_set_coupling_scheme() if the
shell_LS() notation is not used. This current definition of the coupling scheme is kept in the global va
Racah_save_coupling_scheme.
♣ A set of keywords can be provided in any order as the last argument; the current supportedkeywordsare
algebraic and prime if the notationshell_LS() is used and in other cases the supportedkeywordsare



162 G. Gaigalas et al. / Computer Physics Communications 166 (2005) 141–169

ntum
ns. As

ro-

P

n

CSF.

to a
.
ts

h the
algebraic, prime, andsenioritywherealgebraicandprime must be used exclusively. The keywordseniority
‘overwrites’ the currently defined classification scheme.
♣ Argumentsshell_LS1() andshell_LS2() must belong to the same physical shell (l1 = l2 = l or
[n1l1] = [n2l2] = [nl]).
♣The rankk is arbitrary integer save for the fact that it must obey the triangular condition 0� k � 2l.
♣ The shell_LS() notation allows us a very compact input and output. It supports the set of qua
numbers in seniority notation (integer or half-integer numbers) or the string of spectroscopic notatio
usual the procedure returns the single value, but if theshell_LS() notation uses the incomplete spect
scopic notation (like"d2") or is not unique (like"fˆ5 2ˆP_5"), due to the need to specify theν and/orw
quantum numbers explicitly, a list of all possible reduced matrix elements (lNα1ν1L1S1‖V (k1)‖lNα2ν2L2S2)
is returned.
♣The calculation of the reduced matrix elements (lNα1ν1L1S1‖V (k1)‖lNα2ν2L2S2) is based on a list of RCF
which are stored internally.

See also: Racah_set_coupling_scheme(), Racah_calculate_prime(), shell_LS().

• Racah_shell_print(shell_jj())

Returns a string"κ , ˆN, nu, J" to facilitate the printout ofjj -coupled subshell states. The value ofκi is printed
in spectroscopic notation such as d_3/2, f_7/2, . . . ; if, moreover, the principal quantum numbern is given, a
string like 3d_5/2ˆ2, . . . is returned.

Output: A string is returned.

Argument options: (shell_jj(),state) to return"|κ , ˆN, nu, J〉".
♣ (shell_jj("d-ˆ2"),{ . . .}) to return the list of all possible strings"κ , ˆN, nu, J".
♣ (shell_LS()) to return"lˆN, nu, ˆ2S+1, L" or "lˆN, w, nu, ˆ2S+1, L". The values of l and L are printed i
spectroscopic notation such as s, p, d,. . . and S, P, D, . . . , respectively.
♣ (shell_LS(),state) to return"|lˆN, nu, ˆ2S+1, L〉" or "|lˆN, w, nu, ˆ2S+1, L〉".
♣ (shell_LS("dˆ2"),{ . . .}) to return the list of all possible strings"lˆN, nu, ˆ2S+1, L" or "lˆN, w, nu, ˆ2S+1,
L".

Additional information: These strings facilitate the line-mode printout of (coupled) subshell states and

See also: shell_LS(), shell_jj() andRacah_csf_print().

• shell_jj(kappa,N,nu,J)

Auxiliary procedure to represent ajj -coupled subshell state|κNνJ 〉 for j = 1/2, . . . ,7/2.

Output: An unevaluated call toshell_jj(kappa,N,nu,J) is returned.

Argument options: (kappa,N,nu,J,check) to check, in addition, that the given quantum numbers give rise
valid jj -coupled subshell state; the program terminates with a properERRORmessage if this is not the case
♣ ("d-ˆ2 J = 2 nu = 2") or ("d + 4 J = 2 nu = 2") to represent ajj -coupled subshell state from i
spectroscopic notation. This may simplify the interactive work.

Additional information: All quantum numbers must evaluate to typeinteger.
♣All occupation numbers must be in the rangeN = 0, . . . , (2j + 1).
♣ For N ≡ 0, an (non-physical) subshell angular momentumj = −1/2 is formally allowed to facilitate the
input for several procedures.
♣The relationj = l ± 1/2 is always checked.
♣ If the spectroscopic notation is incomplete (like"d-2") or is not unique (like"f + 4 J = 4"), due to the
need to specify theν quantum number explicitly, a list of all possible shell states is returned from whic
required one can be selected as single list arguments.
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See also: csf_jj(),Racah_angular_coefficient(),Racah_cfp(),Racah_cfgp(),shell_
LS(), Racah_reduced_T(), Racah_shell_coefficients().

• shell_LS(l,N,nu,L,S)

Auxiliary procedure to represent aLS-coupled subshell state|lNνLS〉 for l = 0, . . . ,2.

Output: An unevaluated call toshell_LS(l,N,nu,L,S) is returned.

Argument options: (l,N,w,nu,L,S) to represent aLS-coupled subshell state|lNwνLS〉 for l = 3 and the addi-
tional quantum numberw = 0, . . . ,10.
♣ (l,N,nu,L,S,check) to check, in addition, that the given quantum numbers give rise to a validLS-coupled
subshell state withl = 0, . . . ,2; the program terminates with a properERRORmessage if this is not the case
♣ ("dˆ2 3ˆP_2") or ("d2 3P2") to represent aLS-coupled subshell state from its spectroscopic notation.
may simplify the interactive work.

Additional information: All quantum numbers must be of typeinteger.
♣All occupation numbers must be in the rangeN = 0, . . . ,2(2l + 1).
♣ If the spectroscopic notation is incomplete (like"d2") or is not unique (like"fˆ5 2ˆP_5"), due to the need
to specify theν and/orw quantum numbers explicitly, a list of all possible shell states is returned from w
the required one can be selected as single list arguments.

See also: csf_LS(),Racah_angular_coefficient(),Racah_cfp(),Racah_cfgp(),shell_
jj(), Racah_reduced_U(), Racah_reduced_V(), Racah_shell_coefficients().

Appendix C. Additional procedures for the RACAH package

To support a set of general spin-angular coefficients, several new procedures and subprocedures h
designed for the RACAH package. These commands are described and provided herein addition to the previously
established code. As before, we display only a short description of the input and output of the procedures
to facilitate the reader’s understanding of the examples in Section4. A more complete description of all current
supported commands of the RACAH package (as seen by the user) is distributed along with the source code
file Racah-commands.pdf.

C.1. Auxiliary procedures for representing the second-quantized operators

To simplify the application of the second quantization, a number ofauxiliary proceduresare introduced below to
represent the required creation and annihilation operators as well as various (tensorial) products of such o
The design of these auxiliary procedures is chosen in a way that further operators of this type could b
later, if such requirements arise. These procedures basically return their parametersunevaluatedand, hence, serv
mainly for keeping the related information together. Since these procedures occur rather frequently in the i
output of the main commands (of the present extension),no prefixRacah_ has been added to their name.

• a_jj(j,mq )

Auxiliary procedure to represent the tensorial operatora
(qj)
mq

in jj -coupling.

Output: An unevaluated call toa_jj(j,mq) is returned.

Additional information: In this definition of the operatora(qj)
mq

, j is the angular momentum,q ≡ 1/2 the rank
in the quasispin space (Q-space) and, hence,mq = ±1/2.
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♣ If, in addition tomq = 1/2, the projectionmj of the angular momentum is given explicitly, the opera

a
(qj)

1/2,mj
is taken to create an electron with angular momentum quantum numbersj andmj , while the adjoint

operator (inQ-space),a(qj)

−1/2,mj
≡ ã

(j)
mj

= (−1)j−mj a
†(j)
−mj

annihilates a corresponding electron from a subs
state with angular momentumj .

See also: a_LS(), W_jj().

• a_LS(l,mq )

Auxiliary procedure to represent the tensorial operatora
(qls)
mq

in LS-coupling.

Output: An unevaluated call toa_LS(l,mq) is returned.

Additional information: In this definition of the operatora(qls)
mq

, l is the orbital angular momentum,q ≡ 1/2
the rank in quasispin space (Q-space) and, hence,mq = ±1/2.
♣ If, in addition tomq = 1/2, the projectionsml , ms of the orbital angular momentum and the spin are gi

explicitly, the operatora(qls)

1/2,mlms
is taken to create an electron with angular momentum quantum num

l, 1/2, ml andms , while the adjoint operator (inQ-space),a(qls)

−1/2,mlms
≡ ã

(ls)
mlms

= (−1)l+s−ml−ms a
†(ls)
−ml−ms

annihilates a corresponding electron from a shell state with orbital angular momentuml.

See also: a_jj(), W_LS().
• W_jj(a_jj1(),a_jj2(),kj )

Auxiliary procedure to represent the tensorial operator[a(qj1)
mq1

× a
(qj2)
mq2

](kj ) in jj -coupling.

Output: An unevaluated call toW_jj(a_jj1(),a_jj2(),kj) is returned.

Additional information: In jj -coupling, the operator[a(qj1)
mq1

× a
(qj2)
mq2

](kj ) can be used to express the tenso
part of any one-particle operator in atomic physics.
♣ kj is the (integer) rank of the operator inJ -space and obeys the triangular condition|j1 − j2| � kj �
j1 + j2.

See also: a_jj(), W_LS(), W_jj_product(), Racah_shell_coefficient().
• W_jj_product(W_jj1(),W_jj2(),kj )

Auxiliary procedure to represent the tensorial operator

[[
a

(qj1)
mq1

× a
(qj ′

1)
mq′

1

](kj1) × [
a

(qj2)
mq2

× a
(qj ′

2)
mq′

2

](kj2)](kj )

in jj -coupling.

Output: An unevaluated call toW_jj_product(W_jj1(),W_jj2(),kj) is returned.

Additional information: In jj -coupling, this operator can be used to express the tensorial part of any
particle operator in atomic physics.
♣ kj1, kj2, andkj represent the (integer) ranks of the operator; they obey the three triangular condit
|j1 − j ′

1| � kj1 � j1 + j ′
1, |j2 − j ′

2| � kj2 � j2 + j ′
2, and|kj1 − kj2| � kj � kj1 + kj2, respectively.

See also: a_jj(), W_jj(), W_LS_product(), Racah_shell_coefficient().

• W_LS(a_LS1(),a_LS2(),kl ,ks)

Auxiliary procedure to represent the tensorial operator[a(ql1s)
mq1

× a
(ql2s)
mq2

](klks ) in LS-coupling.

Output: An unevaluated call toW_LS(a_LS1(),a_LS2(),kl,ks) is returned.
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Additional information: In LS-coupling, the operator[a 1
mq1

× a 2
mq2

](klks ) can be used to express the ten
rial part of any one-particle operator in atomic physics.
♣kl andks are the (integer) ranks of the operator inl-space (ands-space, respectively); they obey the tw
triangular conditions|l1 − l2| � kl � l1 + l2 and 0� ks � 1.

See also: a_LS(), W_jj(), W_LS_product(), Racah_shell_coefficients().

• W_LS_product(W_LS]1(),W_LS2(),kl ,ks)

Auxiliary procedure to represent the tensorial operator
[[

a
(ql1s)
mq1

× a
(ql1

′s)
mq′

1

](kl1ks1) × [
a

(ql2s)
mq2

× a
(ql2

′s)
mq′

2

](kl2ks2)](klks )

in LS-coupling.

Output: An unevaluated call toW_LS_product(W_LS1(),W_LS2(),kl,ks) is returned.

Additional information: In LS-coupling, this operator can be used to express the tensorial part of any
particle operator in atomic physics.
♣kl1, ks1, kl2, ks2, kl , andks represent the (integer) ranks of the operator; they obey the triangular conditi
|l1 − l′1| � kl1 � l1 + l′1, 0 � ks1 � 1, |l2 − l′2| � kl2 � l2 + l′2, 0 � ks2 � 1, |kl1 − kl2| � kl � kl1 + kl2, and
|ks1 − ks2| � ks � ks1 + ks2, respectively.

See also: a_LS(), W_LS(), W_jj_product(), Racah_shell_coefficient().

C.2. Commands for spin-angular integration in the atomic shell model

In this version, threehigh-levelcommands help to evaluate the coefficients of fractional grandparentage (C
as well as the spin-angular integration of matrix elements which are taken between the subshell states o
open shell. Both,jj - andLS-coupled subshell states are supported, while the operators must represent va
and two-particle operators. Then, by using the new auxiliary procedures of AppendixC.1, a compact but stil
very flexible notation is provided for the input and output of the procedures. Obviously, the same notat
be extended rather easily to incorporate (i) operators of higher complexity [such as (effective) three- a
particle operators] as well as (ii) symmetry-adapted functions which might include several open shells.
these extensions will be required in the future, for instance, in order to develop many-body perturbatio
niques in a tensorial form. In the following, a notation likea_jj1, a_jj2 means that the user may type explici
a_jj(j1,mq1), a_jj(j2,mq2) in the parameter list or first assign these (unevaluated) calls ofa_jj() to
any variables, saywa, wb, and later only use these variables at input time:. . . ,wa,wb, . . . . An analogous no
tation is applied also to the other auxiliary proceduresa_LS(), W_jj(), W_jj_product(), W_LS(), and
W_LS_product(), respectively.

• Racah_angular_coefficient("F",[kj ],shell_ jj1(),shell_jj2())

Returns thepurespin-angular coefficient for any one-particle operatorF (kj ) of rankkj in jj -coupling, where
the two shell states shell_jj1 and shell_jj2 must belong to thesameopen shell with angular momentumj = 1/2,
3/2, 5/2, or 7/2, respectively.

Output: A (floating-point) number is returned.

Argument options: ("F",[kj ],shell_jj1(),shell_jj2(),algebraic) to return the same spin-angular coefficient
algebraicform.
♣ ("F",[kj ],shell_jj1(),shell_jj2(),prime) to return the same spin-angular coefficient in a prime-number re
sentation.
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♣ ("F",[kl ,ks ],shell_LS1(),shell_ LS2(),{ . . .}) to return thepurespin-angular coefficient for any one-partic
operatorF (klks ) with rankskl andks in LS-coupling.
♣ ("G",[0],shell_jj1(),shell_jj2(),{ . . .}) to return a set of allpurespin-angular coefficients including variou
allowed combinations of the ranksk1 andk2 for the two-particle operatorG(k1k2k) with rankk ≡ 0 in jj -cou-
pling. A set of lists is returned is this case, see below.
♣ ("G",[K,k,0],shell_LS1(),shell_LS2(),{ . . .}) to return a set of allpure spin-angular coefficients includin
various allowed combinations of the ranksκ1, κ2, σ1, andσ2 for the two-particle operatorG(κ1κ2K,σ1σ2k) with
ranksK = k and coupled to zero. A set of lists in returned is this case, see below.

Additional information: In the present version, the two subshell states in the parameter list must a
belong to the same open shell, i.e.j1 = j2 = j or [n1j1] = [n2j2] = [nj ] in jj -coupling andl1 = l2 = l or
[n1l1] = [n2l2] = [nl] in LS-coupling, respectively.
♣ In both, jj - andLS-couplings, the seniority notation is used to represent the subshell states by me
shell_jj() andshell_LS().
♣ In this version, the (total) rank of two-particle operators are always restricted toK = 0. In LS-coupling,
therefore, the first two ranks in the parameter list ("G",[k1,k2,k3], . . .) must always be equal k1 = k2, and the
third rank k3 = 0. A list of three arguments isusedalready here to represent later also the general ca
non-scalar operators.
♣ In jj -coupling, the one-electron angular momentum of the open shell can bej = 1/2, 3/2, 5/2, or 7/2.
♣ In LS-coupling, the one-electron orbital angular momentum of the open shell can bel = 0, 1, 2, and 3.
♣Table 4displays the detailed expression of various matrix elements injj - andLS-couplings, respectively.
♣ For the one-particle operator"F", kj is the (integer) rank of the operator inj -space and must obey th
triangular condition|j1 − j2| � kj � j1 + j2. Similarly, kl and ks are the (integer) ranks of the opera
in L-space (andS-space, respectively); they obey the two triangular conditions|l1 − l2| � kl � l1 + l2 and
0� ks � 1.
♣ If a call toshell_jj() or shell_LS() does not uniquely specify a single subshell as, for exampl
shell_LS("d2") or shell_LS("fˆ5 2ˆP_5"), thepure spin-angular coefficients are calculated
all allowed combinations of subshell states. A list of unevaluated calls is returned.
♣ If a whole set of spin-angular coefficients is calculated, they are returned into the format [[.047140
"X([0,1,0,1], [3,2], [3,2], [3,2], [3,2])"], [ . . .], . . .] where [0,1,0,1] denotes the set of raksκ1, κ2, σ1 and
σ2 of two-particle operatorG(κ1κ2K,σ1σ2k) and[3,2], [3,2], [3,2], [3,2] corresponds ton, l (in the format[nl])
quantum numbers for the shells on which this operator is acting.
♣For details of the prime number representation seeRacah_calculate_prime().

See also: Racah_set_coupling_scheme(), shell_jj(), shell_LS().

• Racah_cfgp(shell_jjd (),shell_jjp(),shell_jj2())

Returns the coefficient of fractional grandparentage (jNνdJd‖jN−2(νpJp), j2J2) for the subshells with angu
lar momentaj = 1/2, 3/2, 5/2 and 7/2 jj -coupling using the seniority notation.

Output: A (floating-point) number is returned.

Argument options: (shell_jjd (),shell_jjp(),shell_jj2(),algebraic) to return the CFGP in algebraic form.
♣ (shell_jjd (),shell_jjp(),shell_jj2(),prime) to return the CFGP in a prime-number representation.
♣ (shell_LSd (),shell_LSp(),shell_jj2(),{ . . .}) to return the coefficient of fractional grandparentage (lNαdνd ×
LdSd‖lN−2(αpνpLpSp), l2L2S2) for the subshells with angular momental = 0, 1, 2 and 3 inLS-coupling
using the seniority notation.

Additional information:
♣The current supportedkeywordsarealgebraicandprime.
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j )
,"F([kj ],a,a)"]

l ks ),"F([kl , ks ],a,a)"]

k1k2)
aaa ,"X([k1, k2],a,a,a,a"], . . .]

kl1kl2ks1ks2)
aaa ,"X([kl1, kl2, ks1, ks2],a,a,a,a)"], . . .]
Table 4
List of arguments for procedureRacah_angular_coefficients()

Argument options Comment O

("F",[kj ],shell_jj1,shell_jj2) 〈nκNα1ν1J1‖F(kj )‖nκNα2ν2J2〉 [d
(k
aa

= d
(kj )
aa 〈a‖f (kj )‖a〉,

whereF
kj is a symmetric one-particle operator of rankkj anda = nκ.

("F",[kl ,ks ],shell_LS1,shell_LS2) 〈nlNα1ν1L1S1‖F(klks )‖nlNα2ν2L2S2〉 [d
(k
aa

= d
(klks )
aa 〈a‖f (klks )‖a〉,

whereFklks is a symmetric one-particle operator of rankskl , ks anda = nl.

("G",[0],shell_jj1,shell_jj2) 〈nκNα1ν1J1‖G(0)‖nκNα2ν2J2〉 [[d
(
a

= ∑
k1,k2

d
(k1k2)
aaaa 〈a‖g(k1k2)‖a〉.

whereG(0) = ∑
k1k2

g(k1k2) is a symmetric two-particle
operator of ranks 0 anda = nκ.

("G",[kl ,ks ,0],shell_LS1,shell_ LS2)a 〈nlNα1ν1L1S1‖G(klks )‖nlNα2ν2L2S2〉 [[d
(
a

= ∑
kl1,kl2,ks1,ks2

d
kl1,kl2,ks1,ks2
aaaa 〈a‖g(kl1kl2,ks1ks2)‖a〉,

whereG(klks ) = ∑
kl1,kl2,ks1,ks2

g(kl1,kl2,ks1,ks2) is a symmetric
two-particle operator of rankskl , ks anda = nl.

a The procedure provides the casekl = ks in this version of RACAH.
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♣ The argumentsshell_jjd(), shell_ jjp() andshell_jj2() must belong to the same physic
shell (jd = jp = j2 = j or [ndjd ] = [npjp] = [n2j2] = [nj ]).
♣ The argumentsshell_LSd(), shell_ LSp() andshell_LS2() must belong to the same physic
shell (ld = lp = l2 = l or [ndld ] = [nplp] = [n2l2] = [nl]).
♣ The notationsshell_LS() andshell_jj() allow us a very compact input and output. They supp
the set of quantum numbers in seniority notation (integer or half-integer numbers) or the string of spectr
notations. As usual the procedure returns the single value, but if theshell_LS() orshell_jj() notations
use the incomplete spectroscopic notation (like"d2" in LS-coupling or"d-2" in jj -coupling) or are not uniqu
(like "fˆ5 2ˆP_5" in LS-coupling or"f + 4 J= 4 nu= 4" in jj -coupling), due to the need to specify theν

and/orw quantum numbers explicitly, a list of all possible CFGP is returned.
♣The calculation of the CFGPs is based on a list of RCFP which is stored internally.
♣ All subshell states must be in the seniority notation. There is no need to define it before by call
procedureRacah_set_coupling_scheme().
♣For details of the prime number representation seeRacah_calculate_prime().

See also: Racah_set_coupling_scheme(), shell_jj(), shell_LS().

• Racah_shell_coefficient(W_jj(),shell_jj1(),shell_jj2())

Returns the matrix element of the (one-particle) tensorial operator
(
jN1α1ν1J1

∥∥[
a

(qj)
mq1

× a
(qj)
mq2

](kj )∥∥jN2α2ν2J2
)

of rankkj in jj -coupling, where the two shell states shell_jj1 and shell_jj2 must belong to thesameopen shell
with angular momentumj = 1/2, 3/2, 5/2, or 7/2, respectively.

Output: A (floating-point) number is returned.

Argument options: (W_jj(),shell_jj1(),shell_jj2(),algebraic) to return the same matrix element inalgebraic
form.
♣ (W_jj(),shell_jj1(),shell_jj2(),prime) to return the same spin-angular coefficient in a prime-number re
sentation.
♣ (W_jj_product(),shell_jj1(),shell_jj2(),{ . . .}) to return the matrix element of the (two-particle) tensorial o
erator(

jN1α1ν1J1
∥∥[[

a
(qj)
mq1

× a
(qj)
mq2

](kj1) × [
a

(qj)
mq3

× a
(qj)
mq4

](kj2)](kj12)∥∥jN2α2ν2J2
)

of rankskj1, kj2, andkj12 in jj -coupling.
♣ (W_LS(),shell_LS1(),shell_LS2(),{ . . .}) to return the matrix element(

lN1α1ν1L1S1
∥∥[

a
(qls)
mq1

× a
(qls)
mq2

](klks )
∥∥lN2α2ν2L2S2

)
of rankskl andks in LS-coupling.
♣ (W_LS_product(),shell_LS1(),shell_LS2(),{ . . .}) to return the matrix element of the (two-particle) tensor
operator

(
lN1α1ν1L1S1

∥∥[[
a

(qls)
mq1

× a
(qls)
mq2

](kl1ks1) × [
a

(qls)
mq3

× a
(qls)
mq4

](kl2ks2)](kl12ks12)∥∥lN2α2ν2L2S2
)

of rankskl1, ks1, kl2, ks2, kl12, andks12 in LS-coupling.

Additional information: In the present version, the two subshell states in the parameter list must a
belong to the same open shell, i.e.j1 = j2 = j or [n1j1] = [n2j2] = [nj ] in jj -coupling, andl1 = l2 = l or
[n1l1] = [n2l2] = [nl] in LS-coupling, respectively.
♣ In both jj - and LS-coupling, the seniority notation is used to represent the subshell states by me
shell_jj() andshell_LS().
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♣ In jj -coupling, the one-electron angular momentum of the open shell can bej = 1/2, 3/2, 5/2, or 7/2.
♣ In LS-coupling, the one-electron orbital angular momentum of the open shell can bel = 0, 1, 2, and 3.
♣ SeeW_jj() andW_jj_product() in jj -coupling, and the corresponding commands inLS-coupling,
for the proper definition of one- and two-particle operators in a tensorial form and which triangular con
are applied to all of the involved ranks.
♣ If a call toshell_jj() or shell_LS() does not uniquely specify a single subshell as, for exampl
shell_LS("d2") or shell_LS("fˆ5 2ˆP_5"), thepure spin-angular coefficients are calculated
all allowed combination of subshell states. A list of unevaluated calls is returned.
♣The calculation of the reduced matrix elements is based on a given list of RCFP which is stored inte
♣For details of the prime number representation seeRacah_calculate_prime().

See also: Racah_set_coupling_scheme(), a_jj(), a_LS(), shell_jj(), shell_LS(),
W_jj(), W_jj_product(), W_LS(), W_LS_product().
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