
c

both
ons also
-unitary
e overall

ry
program

egisters
egisters,
the

e
g their

ienceDirect
Computer Physics Communications 173 (2005) 91–113

www.elsevier.com/locate/cp

Simulation ofn-qubit quantum systems.
I. Quantum registers and quantum gates✩

T. Radtke, S. Fritzsche∗

Institut für Physik, Universität Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany

Received 17 February 2005; received in revised form 29 June 2005; accepted 12 July 2005

Available online 29 August 2005

Abstract

During recent years, quantum computations and the study ofn-qubit quantum systems have attracted a lot of interest,
in theory and experiment. Apart from the promise of performing quantum computations, however, these investigati
revealed a great deal of difficulties which still need to be solved in practice. In quantum computing, unitary and non
quantum operations act on a given set of qubits to form (entangled) states, in which the information is encoded by th
system often referred to as quantum registers.

To facilitate the simulation of suchn-qubit quantum systems, we present the FEYNMAN program to provide all necessa
tools in order to define and to deal with quantum registers and quantum operations. Although the present version of the
is restricted tounitary transformations, it equally supports—whenever possible—the representation of the quantum r
both, in terms of their state vectors and density matrices. In addition to the composition of two or more quantum r
moreover, the program also supports theirdecompositioninto various parts by applying the partial trace operation and
concept of the reduced density matrix. Using an interactive design within the framework of MAPLE, therefore, we expect th
FEYNMAN program to be helpful not only for teaching the basic elements of quantum computing but also for studyin
physical realization in the future.

Program summary

Title of program:FEYNMAN

Catalogue number:ADWE
Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWE
Program obtainable from:CPC Program Library, Queen’s University of Belfast, N. Ireland
Licensing provisions:None

✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on Sc
(http://www.sciencedirect.com/science/journal/00104655).

* Corresponding author.
E-mail addresses:t.radtke@physik.uni-kassel.de(T. Radtke),s.fritzsche@physik.uni-kassel.de(S. Fritzsche).
0010-4655/$ – see front matter 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2005.07.006

http://www.elsevier.com/locate/cpc
http://cpc.cs.qub.ac.uk/summaries/ADWE
http://www.sciencedirect.com/science/journal/00104655
mailto:t.radtke@physik.uni-kassel.de
mailto:s.fritzsche@physik.uni-kassel.de
http://dx.doi.org/10.1016/j.cpc.2005.07.006

92 T. Radtke, S. Fritzsche / Computer Physics Communications 173 (2005) 91–113

bits,
algebraic
mmands

w form
rover,

, that
gic gates
undation
ssical)
ystems

deal
ractively

he future.
on of
,
enomena,
concerns

mplex
-processor

quantum
mbridge

r
r density
osition of
rtial trace

ry

ntum
uantum
of
s to be

ties are
Computers for which the program is designed:All computers with a license of the computer algebra system MAPLE [Maple is
a registered trademark of Waterlo Maple Inc.]
Operating systems or monitors under which the program has been tested:Linux, MS Windows XP
Programming language used:MAPLE 9.5 (but should be compatible with 9.0 and 8.0, too)
Memory and time required to execute with typical data:Storage and time requirements critically depend on the number of qu
n, in the quantum registers due to the exponential increase of the associated Hilbert space. In particular, complex
operations may require large amounts of memory even for small qubit numbers. However, most of the standard co
(see Section 4 for simple examples) react promptly for up to five qubits on a normal single-processor machine (� 1 GHz with
512 MB memory) and use less than 10 MB memory.
No. of lines in distributed program, including test data, etc.:8864
No. of bytes in distributed program, including test data, etc.:493 182
Distribution format: tar.gz
Nature of the physical problem:During the last decade, quantum computing has been found to provide a revolutionary ne
of computation. The algorithms by Shor [P.W. Shor, SIAM J. Sci. Statist. Comput. 26 (1997) 1484] and Grover [L.K. G
Phys. Rev. Lett. 79 (1997) 325.[2]], for example, gave a first impression how one could solve problems in the future
are intractable otherwise with all classical computers. Broadly speaking, quantum computing applies quantum lo
(unitary transformations) on a given set of qubits, often referred to a quantum registers. Although, the theoretical fo
of quantum computing is now well understood, there are still many practical difficulties to be overcome for which (cla
simulations onn-qubit systems may help understand how quantum algorithms work in detail and what kind of physical s
and environments are most suitable for their realization.
Method of solution:Using the computer algebra system MAPLE, a set of procedures has been developed to define and to
with n-qubit quantum registers and quantum logic gates. It provides a hierarchy of commands which can be applied inte
and which is flexible enough to incorporate non-unitary quantum operations and quantum error corrections models in t
Restrictions on the complexity of the problem:The present version of the program facilitates the set-up and manipulati
quantum registers by a large number of (predefined) quantum logic gates. In contrast to suchidealizedunitary transformations
however, less attention has been paid so far to non-unitary quantum operations or to the modeling of decoherence ph
although various suitable data structures are already designed and implemented in the code. A further restriction
the number of qubits,n, due to the exponentially growing time and memory requirements. Up to now, most of the co
commands are restricted to quantum registers with about 6 to 8 qubits, if use has to be made of a standard single
machine.
Unusual features of the program:The FEYNMAN program has been designed for interactive simulations onn-qubit quantum
registers with no other restriction than given by the size and time resources of the computer. Apart from the standard
gates, as discussed in the literature [M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information, Ca
University Press, Cambridge, 2000], it provides all the necessary tools to generalize these gates forn-qubits (in any given orde
of the individual qubits). Both common representations of the quantum registers in terms of their state vectors and/o
matrices are equally supported by the program whenever possible. In addition, the program also facilitates the comp
two or more quantum registers into a combined one as well as their decomposition into subsystems by using the pa
and the use of the reduced density matrix for the individual parts.
 2005 Elsevier B.V. All rights reserved.

PACS:03.67.-a; 03.67.Lx

Keywords:Kronecker product; Quantum computation; Quantum logic gate; Quantum register; Qubit; (Reduced) density matrix; Unita
transformation

1. Introduction

Since Shor’s algorithm[1] for factorizing large numbers, the theory of quantum computation and qua
information has attracted a lot of recent interest. This algorithm, in particular, has demonstrated that q
computers may perform certain useful tasks (much) moreefficient than their classical counterparts. Despite
the great promises of performing quantum computations, however, there are still many practical difficultie
resolved before quantum computers might become available in the future. Hereby, many of the difficul

T. Radtke, S. Fritzsche / Computer Physics Communications 173 (2005) 91–113 93

of

is likely
n be
e has to

ped in
l

n concept
ost pro-

t the
he cou-

ntrast to
d
s)

de a set
perators.

uantum
re

riptions.
nal user

, a short

emented
avior of
they are

pported
ns and

n

(
antum
related closely to the (wanted and unwanted) interactions inn-qubit quantum systems as well as to the coupling
such systems with their environment.

Therefore, although the basic concepts of quantum computing are now well understood, their realization
not possible unless the (dynamical) behavior ofn-qubit quantum systems, so-called quantum registers, ca
simulated and analyzed in detail. For any successful implementation of quantum algorithms, of course, on
provide and control the mechanisms for carrying out a sequence of computational steps, where each stepk consists

of a unitary transformationU = e− i
h̄
Hktk (as defined by some system HamiltonianHk and acting for a timetk).

To simulate such anidealizedsequence of computational steps, a number of programs have been develo
recent years that all provide the underlying (linear-algebra) operations in a form as appropriate for generan-qubit
quantum registers, although sometimes only for those registers with a fixed number of qubits.

A list of such (quantum computer simulation) programs can be found, for instance, in Refs.[3,4]. Often, how-
ever, these programs were designed for just a particular task, such as the demonstration of the superpositio
or the evaluation of (specific) quantum circuits and, hence, cannot be used for other applications. So far, m
grams have been restricted to theunitary transformation of quantum registers being in a pure state, withou
possibility to take into account ‘mixtures’ of quantum states (as to be described by density matrices) or t
pling of the quantum registers with their environment (quantum operations).

To facilitate the simulation of such generaln-qubit quantum systems, here we present the FEYNMAN program
that provides all necessary tools in order to deal with quantum registers and quantum operations. In co
most of the traditional programs from above[3,4], we followed an approach similar to[5], and designed an
implemented the FEYNMAN code within the framework of MAPLE in order to take advantage of the (variou
symbolic and numerical features of modern computer algebra. In a first version of our program, we provi
of procedures to define quantum registers of variable size and to manipulate them by (time-independent) o
Since a large number of such quantum operators have been predefined in the code, we expect the FEYNMAN

program to be useful for quite different applications, both in education and research work.
In the next section, we first start with a brief account on the basic notations and concepts in the theory of q

computations in order to facilitate the later use of the program. In Section3, we then describe the program structu
and how it is distributed. This includes a list of all user-accessible commands, together with short desc
Details about the parameters of each procedure, their optional arguments, etc. is provided by an additio
manual and is appended to the code. Section4 illustrates the use of the FEYNMAN program by means of a few
simple examples which may help display several central features and advantages of the code. Finally
outlook onto the current and possible future extensions of the program is given in Section5.

2. Theoretical background

As the FEYNMAN program has been designed independent of any particularphysical realizationof ann-qubit
quantum system, we may restrict our discussion of the theory to those notations and formulas as impl
in the program. Apart from the notion of the quantum register as the basic ‘storage’ to describe the beh
generaln-qubit (quantum) systems, emphasis is placed on the action of the various quantum gates and how
‘distributed’ overn qubits in order to transform the state of the system properly. Both representations of ann-qubit
quantum system in terms of its state vector or density matrix are briefly explained below and are equally su
(whenever possible) by the program. A more detailed introduction into the theory of quantum computatio
quantum information can be found, for instance, in the lecture notes by Preskill[6] and the textbook by Nielse
and Chuang[7].

2.1. Quantum bits and registers

2.1.1. Qubits and computational basis
In introducing the basic elements of quantum information theory, one often starts with the quantum bitqubit)

as the elementary ‘unit’ of information in dealing with quantum computations and the construction a qu

94 T. Radtke, S. Fritzsche / Computer Physics Communications 173 (2005) 91–113

r ‘true’
system
se eigen-
ctise,
spin-1

space

ther
n

as the
s.
ithin the
orming

s. The

mical)
tation

o protect

if these
For an
d

cts
e

states
n
iven
enon,
computers. In contrast to the classical bit, which can take just one of two distinct values, say ‘0’ and ‘1’ o
and ‘false’ (from the Boolean logic), respectively, the qubit is thought as a formal designation of a quantum
whose state vector is completely described by the superposition of two orthonormal eigenstates. Often, the
states are labeled as|0〉 and |1〉 analogous to the binary basis used in classical digital computations. In pra
however, a qubit can be represented by any quantum mechanical two-state system including, for example,/2
particles with their two possible spin states|↑〉 and|↓〉, trapped ions, or by the charge state of quantum dots.

Independent of the physical realization of a particular qubit, there is an abstract (mathematical) notation

(1)|ψ〉 = a|0〉 + b|1〉 ≡ a

(
1

0

)
+ b

(
0

1

)
=

(
a

b

)
,

in which the state|ψ〉 of the qubit is described as the linear superposition of the two states|0〉 and|1〉 from above.
As usual, these states are supposed to be orthonormal and to form a basis of a two-dimensional HilbertH.
In this basis, the coefficients (amplitudes)a andb ∈ C are often called arepresentationof the qubit, while the
squared absolute values|a|2 and|b|2 are known to provide the probability of finding the system in one or the o
eigenstate in case of a measurement. That is, the coefficientsa andb are supposed to fulfill the normalizatio
|a|2 + |b|2 = 1. In the FEYNMAN program, the auxiliary procedureqbit() is used [cf. Section3.2below] in order to
represent (the state of) a qubit by means of the complex coefficientsa andb within the basis{|0〉, |1〉}, often denoted
as thecomputational basis. Besides the computational basis, of course, any other orthonormal basis, such
Hadamard basis|+〉 ≡ 1√

2
(|0〉 + |1〉) and|−〉 ≡ 1√

2
(|0〉 − |1〉), could be utilized equally well for all computation

However, unless stated otherwise we will always refer to the computational basis as the standard basis w
FEYNMAN program. The representation of a qubit in any other (orthonormal) basis is then obtained by perf
the proper unitary transformation on the coefficientsa andb.

Similar to classical computations, a single (qu-)bit is of little help in carrying out quantum computation
generalization of a single qubit ton distinguishable and interacting qubits then leads us to the notion of aquantum
register for which the computational basis is again the most natural choice in order to follow the (dyna
behavior ofn-qubit quantum systems. A rather large number of qubits is required not only for the implemen
of useful quantum algorithms, but also for many quantum error-correcting codes (QECC) as necessary t
n-qubit systems against the loss of information due to decoherence phenomena.

2.1.2. Quantum registers
The quantum-mechanical state of two or more (distinguishable) qubits can be described most easily

qubits are arranged in some particular order and treated altogether in terms of a single quantum register.n-
qubit quantum register, i.e. the collection ofn individual qubits, then the state|Ψ 〉 of the overall system is describe
by a vector in the 2n-dimensional product spaceH =H1 ⊗H2 ⊗ · · ·⊗Hn of the Hilbert spacesHi (i = 1, . . . , n),
associated with the individual qubits. Again, the 2n basis states inH can be denoted analogously to the 2n binary
states of a classicaln-bit register,|00..00〉, |00..01〉, . . . , |11..11〉, but have to be formed as the (tensor) produ
of the corresponding computational basis states{|0〉i , |1〉i , i = 1, . . . , n} of then qubits. In general, therefore, th
state|Ψ 〉 of the quantum register

(2)|Ψ 〉 =
2n−1∑
k=0

ck|k〉decimal= c0




1
0
0
...

0


 + c1




0
1
0
...

0


 + · · · + c2n−1




0
0
0
...

1




is written as a (normalized) superposition of the 2n basis states. Note the rapid increase of the number of basis
(2n) with the number of qubits,n, in the quantum register. Moreover, a seen from Eq.(2) for an equal superpositio
of all the 2n basis states (i.e. ifck ≡ 1/

√
2n for all k), a quantum computer would be able to process some g

computation for all the 2n values of a corresponding classical register simultaneously. It is this phenom

T. Radtke, S. Fritzsche / Computer Physics Communications 173 (2005) 91–113 95

nal)

’
e states
ted

chanics,

PR)
anics
ients
ared

ion of
bit

tely, even

dge

tes,
chanical

erator

,

deco-

growing
system.
or the

,
ocedure

escribe
ifferent
urement
concept

site (and
is
sometimes known asquantum parallelism, which might provide quantum computers with the (computatio
power to solve problems in the future, which are intractable otherwise for any classical computer.

For n interactingqubits, the superposition of the 2n basis states in Eq.(2) generally results in a ‘correlation
between the qubits, in which their individual (spin) states are no longer well-defined independently from th
of the other qubits. Such a correlation always occurs, if the state|Ψ 〉 of the quantum register cannot be represen
as a tensor product|Ψ 〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉 of any particular states|ψi〉 (i = 1, . . . , n) of the individual
qubits, a situation which often applies even if the qubits are well separated in space. In quantum me
this (non-local) correlation phenomenon is known asentanglementand such a correlated state|Ψ 〉 is said to be
inseparable. As an example for twoentangledqubits refer, for instance, to the Einstein–Podolsky–Rosen (E
states(|00〉 ± |11〉)/√2 which are often used in order to verify and explain the non-locality of quantum mech
[8]. In fact, the possible entanglement in ann-qubit quantum register is considered to be one of the key ingred
of quantum computation as it is anecessarycondition in order to achieve an exponential speed-up, when comp
with classical computations[9]. During the past few years, therefore, the characterization and quantificat
the entanglement (in terms of various usefulmeasures) has been investigated intensively for different multi-qu
systems in the literature[10,11].

So far, we have always assumed in our discussion above that the state of the system is known comple
if it is in an entangled state. Such a system, which is described by means of a state vector|Ψ 〉 from Eq.(2) or a so-
called ‘ket’-vector, is said to be in apure state. More general, however, one often has only incomplete knowle
about the state of the system, as it occurs in a statistical mixture|Φ〉 = ∑

i pi |Ψi〉 of several (pure) states|Ψi〉
with some given probabilitiespi � 0 and

∑
i pi = 1. To describe a quantum register in such a mixture of sta

then the concept of the density operator needs to be applied in order to obtain a proper quantum-me
description[12]. In the computational basis, the density operator of the system is defined asρ = ∑

i pi |Ψi〉〈Ψi |,
where〈Ψi | = |Ψi〉† = (|Ψi〉∗)T denotes an element (a so-called ‘bra’-vector) of the dual space. The density op
of a quantum system has a 2n × 2n matrix representation which is self-adjoint[ρ† = (ρ∗)T = ρ], positive semi-
definite (non-negative eigenvalues), and which fulfills the trace condition Trρ = 1. This density matrix, in addition
describes a pure stateρ = |Ψ 〉〈Ψ |, if and only if Tr(ρ2) = 1.

As outlined further in Section2.2.3, the concept of the density operator is required in order to describe
herence effects inopenquantum systems which are coupled to some environment[16]. Although a description in
terms of the density matrix is more general compared to the concept of pure states, it leads to a rapidly
complexity and to quite sizeable storage requirements if more than only a few qubits are involved in the
In the FEYNMAN program, both descriptions of a quantum system (register) in terms of its state vector
density matrix are equally supported (whenever possible) by the auxiliary procedureqregister(), cf. Section3.2.
In fact, this procedure is the generalization of theqbit() command from above to the case ofn correlated qubits
where the number of qubits is restricted only by local computer resources. As discussed below, this pr
provides the central (data) structure to describe the behavior of any pure or mixedn-qubit quantum register within
the FEYNMAN program.

In describing ann-qubit quantum system, it is necessary not only to combine the various qubits and to d
them in terms of a (single) quantum register but also to split a multi-partite system into subsystems of d
size. Such a splitting is useful, for example, if a quantum system is coupled to an environment or if a meas
needs to be performed on just a few of the qubits. To deal only with such a part of the system, there is the
of thereduceddensity operator and the partial trace operation. For example, we consider a general compo
probably entangled) systemAB in the product Hilbert spaceHAB . The density matrix of the composite system
defined as

(3)ρAB =
NA∑
ik

NB∑
j l

ρij,kl |iA〉|jB〉〈kA|〈lB |,

where{|iA〉} and {|jB〉} denote orthonormal bases for the subspacesHA andHB with dimensionNA andNB ,
respectively.

96 T. Radtke, S. Fritzsche / Computer Physics Communications 173 (2005) 91–113

n

ne

e. In this

s
, the so-
is

te if their

e
e Bloch

t of an
,

Fig. 1. Bloch sphere visualization of a (pure) one-qubit state.

The reduced density operator for the subsystemA is then defined as

(4)ρA = TrB
(
ρAB

)
,

where TrB() is called the partial trace (operation) over the subsystemB. Using the completeness relatio∑NB
m |mB〉〈mB | = I , the partial trace is given by

(5)TrB
(
ρAB

) =
NA∑
ik

(
NB∑
m

ρim,km

)
|iA〉〈kA|.

Since the trace over the space of the subsystemB is independent of the particular choice of the basis states{|jB〉},
the partial trace is unique and appropriate to describe all the observables of the remaining systemA. In the FEYN-
MAN program, the partial trace operation can be applied to anyn-qubit quantum register in order to trace out o
or several qubits by using the procedureFeynman_trace().

2.1.3. The Bloch sphere representation for single qubits
To visualize the state of a single qubit, there exists a common representation known as the Bloch spher

representation, a (pure) one-qubit state is written as

(6)|ψ〉 = cos

(
θ

2

)
|0〉 + eiϕ sin

(
θ

2

)
|1〉,

ignoring the overall phase which is physically irrelevant. Using the decomposition(6) of the state vector, the angle
θ andϕ are then taken as the ‘polar’ angles to describe the orientation of a real vector on the unit sphere
called Bloch vector of the qubit. For some arbitrary single qubit pure state|ψ〉 the Bloch sphere representation
illustrated inFig. 1.

Beside of pure states, the Bloch sphere representation can be used also for single qubits in a mixed sta
density operatorρ is re-written in terms of the Pauli spin matricesσi asρ(
v) = I+
v·
σ

2 with
σ = (σx, σy, σz), and
if the real vector
v with 0 � |
v| � 1 is now displayed in polar coordinates. For|
v| = 1, in particular, we always
have Tr(ρ2) = 1 and thus a pure state(6) with the corresponding polar anglesθ andϕ. Using the Bloch-spher
representation, the action of any one-qubit (unitary) gate operation can be interpreted as a rotation of th
vector. In the FEYNMAN program, a Bloch sphere representation of a single qubit (given possibly as par
n-qubit quantum register) is obtained with the help of theFeynman_plot_Bloch_vector() procedure. Unfortunately
there is no straightforward generalization of this convenient representation known for multi-qubit systems.

T. Radtke, S. Fritzsche / Computer Physics Communications 173 (2005) 91–113 97

te these
equence
enerally,

the state
external
ealize the
ue to its

ot
lution of
states of

dynam-
r small
ters
of quan-
perator

at

is
king into
res that

an think

cting
lar
d into a

r
ss
orithms
ne-qubit
gates are

ate

ter, we
t us briefly
n

2.2. Quantum gates and operations

Apart from keeping information and data in quantum registers, it should be possible also to manipula
data in a controlled way. Analogous to classical computers, this can be achieved formally by applying a s
of logical operations onto the state of the quantum systems, the so-called (quantum) gates or, more g
the quantum operations. The standard gates are constructed in order to obtain a certain ‘rotation’ of
vectors (density operators). In practise, the action of a quantum gate is often carried out by means of
fields, lasers, or by several other techniques depending on the particular experimental scheme used to r
quantum register. Note that, beside of the external perturbation, here the natural evolution of the system d
Hamiltonian needs to be taken into account. In the present version of the FEYNMAN program, however, we are n
concerned with the physical realization of quantum registers and, hence, may ignore any explicit time evo
the system. Instead, emphasis is placed on the action of the various (pre-defined) logical gates onto the
generaln-qubit quantum registers.

2.2.1. Unitary operations and quantum gates
Bennett[13] showed that any classical computation can be implemented also in a (logically and thermo

ically) reversible form. In fact, such a reversible implementation is possible even by using various rathe
sets of logical operators, known asuniversalsets. Although, for the sake of simplicity, classical digital compu
are actually not restricted to reversible operations, Bennett’s concept has become important for the field
tum computations and quantum information since, for any closed quantum system, the time evolution o

Ut2,t1 = e− i
h̄
H (t2−t1) is unitary and, hence, represents a entirelyreversibleoperation that maps a quantum state

time t1 to the state at some other timet2. For some pure state|ψ〉, therefore, we always have

(7)
∣∣ψ(t2)

〉 = Ut2,t1

∣∣ψ(t1)
〉

and, similarly,

(8)ρ(t2) = Ut2,t1

(∑
i

pi

∣∣ψi(t1)〉〈ψi(t1)
∣∣)U

†
t2,t1

= Ut2,t1ρ(t1)U
†
t2,t1

if the state of the system is given by a statistical mixture{pi, |ψi〉}. In a quantum computer, consequently, it
necessary to implement all the computational steps by means of reversible and unitary operations, ta
account also the modified Hamiltonian of the underlying (physical) system. Formally, Bennett’s result ensu
a quantum computer is—at least in principle—capable of performing also every classical algorithm one c
of, although typically without any gain in speed compared to classical computers.

In general, any algorithm on ann-qubit quantum register could be performed within a single step by a
(in a highly non-trivial way) with a unitary operation on all then qubits of the register simultaneously. Simi
to classical computations, however, it is more convenient in practise if such operations are decompose
sequence of one- and two-qubit operations (gates), taken from a small set ofuniversal gateswhich is appropriate fo
a particular physical realization of the system. In the context of the FEYNMAN program, here we need not discu
which universal set is most suitable for a given experimental setup. In a formal treatment of quantum alg
and transformations, instead, one often uses the two-qubit controlled-not (CNOT) gate together with any o
gate (constructed from the Pauli sigma matrices) as the basic elements into which then all the quantum
decomposed[14]. More generally, it has been shown also thatany (non-separable) two-qubit gate isuniversalfor
quantum computations if combined with some one-qubit gate[15]. The need of a non-separable two-qubit g
again highlights the key role of entanglement for performing useful quantum computations.

In order to apply a (unitary) gate operation to just one or a few individual qubits of a given quantum regis
need to create operators which act only on the subspaces associated to these qubits. First, therefore, le
recall here the definition of the tensor product for matrix operators. SupposeA andB are two linear operators i

98 T. Radtke, S. Fritzsche / Computer Physics Communications 173 (2005) 91–113

pace

uct

In
ready in
tes.

hey can

of
the subspacesH1 andH2, respectively. ThenA ⊗ B is used to denote a linear operator acting on the product s
H1 ⊗H2 and is defined by

(9)(A ⊗ B)
(|ψ1〉 ⊗ |ψ2〉

) = A|ψ1〉 ⊗ B|ψ2〉.
Using a matrix representation for the operatorsA andB, the tensor (or Kronecker) product of anm × n matrix A

and ap × q matrixB is then given by themp × nq matrix

(10)A ⊗ B =

 a11B · · · a1nB

...
. . .

...

am1B · · · amnB


 ,

whereaij are the matrix elements ofA. For instance, a single-qubitnot or X-gate

(11)X ≡ σx =
(

0 1
1 0

)
,

that acts onto the second qubit within a three-qubit quantum register can be expressed as the tensor prod

(12)U = I ⊗ X ⊗ I,

if the two other qubits are left unchanged and ifI denotes the 2× 2 identity operator acting on a single qubit.
the FEYNMAN program, the matrix representations of many widely used quantum gates are pre-defined al
the main procedureFeynman_quantum_operator(); seeTable 1, for instance, for the pre-defined one-qubit ga
More detailed information about all the pre-defined quantum gates in the FEYNMAN program, including their
matrix representation as well as circuit symbols, can be found in the manualFeynman-commands.pdf which
is provided together with the code.

2.2.2. ‘Distributed’ quantum gates
In the previous section, we introduced the use of single and multi-qubit quantum gates, and how t

be combined with the single-qubit identityI in order to ‘act’ on the space associated with somen-qubit quantum

Table 1
Single-qubit quantum operators (gates) as accessible in the program by the commandFeynman_quantum_operator()1

Argument option Output: returns the matrix representation

("I") identity operator
("not") or ("sigma_x") or ("X") X ≡ σx

("sigma_y") or ("Y") Y ≡ σy

("sigma_z") or ("Z") Z ≡ σz

("sigma[+]") σ+ = σx + iσy (not unitary!)
("sigma[-]") σ− = σx − iσy (not unitary!)
("phase",φ) relative phase shift byφ
("A",φ) alternative definition of the phase gate
("Hadamard") or ("H") H

("Euler",[α,β,γ,δ]) U = eiαRz(β)Ry(γ)Rz(δ)

("Rx", θ) Rx(θ) rotation
("Ry", θ) Ry(θ) rotation
("Rz", θ) Rz(θ) rotation
("S") phase gate withφ = π/2
("T") π/8 gateT
("notˆ1/2")

√
NOT

1 A complete list of all available single and multi-qubit quantum gates together with their definition are provided by the manualFeynman-
commands.pdf which is distributed with the code.

T. Radtke, S. Fritzsche / Computer Physics Communications 173 (2005) 91–113 99

are
al basis.

ence of

apply
uct
the state

ubits is
ter into a
al
r

oper

like
uite in
r with its
nd phase
d hence
overall
ally

malism
s. Since,

on
Table 2
Distributed two-qubit quantum operators as accessible by the commandFeynman_quantum_operator()

Argument option Output: returns the matrix representation of

(n,"cn",[m1, m2]) or (n,"cnot",[m1, m2]) controlled-notoperation on the qubitsm1 andm2 of ann-qubit
quantum system

(n,"controlled-phase",[m1, m2]) or (n,"cs",[m1, m2]) controlled-phaseor csoperation on the qubitsm1 andm2 of an
n-qubit quantum system

(n,"controlled-z",[m1, m2]) or (n,"cz",[m1, m2]) controlled-zor czoperation on the qubitsm1 andm2

(n,"swap",[m1, m2]) swapoperation on the qubitsm1 andm2

register. To this aim, the use of the tensor product [cf. Eqs.(9) and (12)] is obvious as long as the affected qubits
neighbors with respect to the numbering of qubits in the quantum register or, respectively, the computation
In contrast, if we consider somek-qubit quantum gate to act ontok � n not adjacent qubits in ann-qubit register,
the 2k matrix elements of thek-qubit quantum gate have to be ‘distributed’ properly over the whole 2n × 2n matrix
which acts on the completen-qubit quantum register. To this end, here we introduce the notion of adistributedgate
if a (k-qubit) gate is applied tok � n selected qubits, given in a sequencem1,m2, . . . ,mk and withmi � n for all
selected indicesi of the qubits.

For example, the controlled-not (CNOT) gate is known to invert the state of the target qubit in depend
the state of control qubit. Its matrix representation is given by

(13)CNOT=



1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 ,

if the first qubit refers to the control qubit and the second to the target qubit. For instance, if we wish to
this CNOT gate to the first and third qubit in a three-qubit quantum register, the use of the tensor prod(9)
above is not directly possible unless the qubits are first be renumbered in the quantum register (and that
vector or density matrix of the system is transformed accordingly). Although such a permutation of the q
certainly quite standard and is achieved simply by transforming both, the operator and the quantum regis
computational basis which refers to the new sequence of qubits, in the FEYNMAN program we provide a speci
syntax for the procedureFeynman_quantum_operator() that allows the user to ‘distribute’ anyk-qubit operator ove
ann-qubit quantum gate just by specifying the sequence of thek < n qubits to be concerned.Table 2displays the
predefined two-qubit gates in the FEYNMAN program and how they can be distributed in order to obtain a pr
n-qubit unitary matrix.

2.2.3. Quantum operations
The quantum gates from above refer to anidealizedquantum computer whose (quantum) registers evolve

any closedquantum system entirely unitary according to the known Hamiltonian of the system. This is q
contrast, of course, to any real implementation where various unwanted interactions of the quantum registe
environment, such as a spontaneous emission of photons from the system or some other form of energy a
dissipation, may occur. Frankly speaking, such a coupling to the environment leads to a non-unitary an
irreversible evolution of the quantum computer (the principal system) as it is now only a subsystem of the
system ‘quantum computer+ environment’[16]. Or, in other words, the entanglement with the environment fin
results in a reduced density matrix of the principal system which is in amixedstate [cf. Section4.3] and which is
associated with a loss of information (known also as decoherence).

In order to allow a non-unitary evolution of quantum systems (registers), there exists the general for
of quantum operations to which one sometimes refers also as superoperators or completely positive map
this formalism is not yet fully supported by the FEYNMAN program, here we will give only a brief account

100 T. Radtke, S. Fritzsche / Computer Physics Communications 173 (2005) 91–113

the
n

t

In the

es
is

by the
odels

m
ir state
)
include
t all of
n of the

e unitary
d

pro-
ever
sition of

that the
nough
stance,
umer-

future,
ction, and

bout
dden to

element
this concept and refer for all further details to the literature[7]. In the program, however, a first step towards
incorporation of quantum operations has been done by providing an appropriate data structure in Sectio3.2. If
we consider, for instance, a principal systemS and the environmentE, a ‘noisy’ interaction betweenS andE is
described by a (quantum dynamical) mapE that takes a system stateρ to another density matrixρ ′ = E(ρ). In
order to ensure thatρ′ is a valid density operator, it can be shown thatE acting onHS must becompletely positive,
i.e.E(A) must be positive for any positive (density) operatorA and, moreover, if we extendHS by a second Hilber
spaceHE of arbitrary dimension the combined operationE ⊗ I (I being the identity operation onHE) acting on
product spaceHS ⊗ HE still maps any positive operator of the composite system to a positive operator.
(so-called) operator-sum representation, such a map is described by[7,17]

(14)ρ′ = E(ρ) =
∑

i

EiρE
†
i ,

whereEi denotes an operation element (or Kraus operator) with
∑

i E
†
i Ei � I and where the equal sign appli

for all trace-preserving quantum operations. From the definition(14)of the quantum operations it is clear, that th
includes as a special case also theunitary evolution of the quantum system from Section2.2.1, if the quantum
operation is given by a single unitary operation element. With the further support of quantum operations
FEYNMAN program, therefore, it will be possible to implement and to follow-up also various decoherence m
for n-qubit quantum registers as discussed recently in the literature[18].

3. Program organization

3.1. Overview

The FEYNMAN program has been designed to support the simulation ofn-qubit quantum systems (quantu
registers). Apart from the definition and initialization of quantum registers, this requires to transform the
either by unitary or non-unitary operations until the result of the computations can beread off (i.e. measured
from the register. For any realization of quantum registers, this makes it necessary within the simulation to
the coupling of the system to its environment, both for wanted and unwanted interactions. However, no
these practical ‘requirements’ can be realized in a first implementation of a program. In the present versio
FEYNMAN program, our aim is to establish the basic data structures and to provide a simple access to th
transformation ofn-qubit quantum registers with no further restriction onn other than given by the memory an
time-limitations of the computer.

As mentioned before, the FEYNMAN program is in several respects different from other codes. Although our
gram is presently restricted to performunitary transformations of quantum registers, it equally supports—when
possible—the representation of their states either in terms of state vectors or density matrices. In compo
two or more quantum registers, addition to, the program also supports theirdecompositioninto various parts by
applying the partial trace operation and the concept of the reduced density matrix. A further advantage is
FEYNMAN program provides an interactive tool for which the knowledge of a few (main) procedures is e
to carry out most of the computations. When compared to a purely numerical implementation using, for in
C++ or JAVA , the FEYNMAN program enables the user to perform the computation either in a symbolic or n
ical form, without that much extra code has to be developed and tested. Finally, since MAPLE by itself offers a
large set of built-in mathematical functions, this may help extend the program into various directions in the
including topics such as non-unitary quantum operations, quantum measures, decoherence, error corre
several others.

Following MAPLE’s philosophy, the FEYNMAN program has been organized as a hierarchy of currently a
25 procedures at different level of complexity. Apart from several low-level subprocedures, which remain hi
the user, the main body of the procedures can be used either for interactive work or simply as a language

T. Radtke, S. Fritzsche / Computer Physics Communications 173 (2005) 91–113 101

ures are
am as
res are
prove

tion, can

g related

s

ed by

rd

re

or

r

in order to build-up commands at some higher level of the hierarchy. As discussed below, these proced
divided into two groups, theauxiliary procedures as the building blocks (and data structures) of the progr
well as themain commands, which help operate on this structures. A list of all user-accessible procedu
displayed inTables 3 and 4; as seen from these tables, use is made of rather long names in order to im
the readability and the maintenance of the program. Moreover, in order to distinguish the FEYNMAN procedures
from MAPLE’s internal ones, all names of the main commands start with the prefixFeynman_. A more detailed
description of some selected commands, including the argument options and some additional informa
be found inAppendices A and Bwhich follow the style of the help pages of MAPLE andThe Maple Handbook

Table 3
Auxiliary procedures of the FEYNMAN program to represent the basic data structures. These procedures are utilized mainly for keepin
information together and to facilitate the data handling with and within the program

Procedure Explanation

cbs() To represent a computational basis state|k〉decof ann-qubit quantum register in the decimal basis|0〉, |1〉, . . . , |k〉, . . . , |2n − 1〉
qbit() To represent an one-qubit state|ψ〉 = a|0〉 + b|1〉 in terms of the two (complex) coefficientsa andb in the computational basi

|0〉 ≡ (1
0
)

and|1〉 ≡ (0
1
)
, respectively

qregister() To represent ann-qubit quantum register either in terms of its 2n-dimensional state vector or the 2n × 2n density matrix

qoperator() To represent ann-qubit quantum logic gate or quantum operator (unitary transformation)

qoperation() To represent ann-qubit quantum operationE(ρ) = ∑
i EiρE

†
i

by means of its operation elements (Kraus operators)Ei

Table 4
Main procedures of the FEYNMAN program as available by the user for interactive work. For three selected commands (marked by an∗ below),
a more detailed explanation is displayed inAppendix B2

Procedure Explanation

Feynman_apply() Applies a givenqoperator() or qoperation() to the state vector or density matrix of ann-qubit quantum register

Feynman_norm() Calculates the norm (or trace) of the state vector or density matrix of a quantum register

Feynman_normalize() Normalizes the state vector or density matrix of a quantum register

Feynman_operator_function()∗ Evaluates an operator function for a given matrix orqoperator() and returns its explicit matrix representation

Feynman_operator_type()∗ Determines whether a given matrix orqoperator() has some particular property (hermitian, normal, etc.)

Feynman_plot_Bloch_vector() Returns a 3D plot of the Bloch-sphere representation for a singleqbit() or for a selected qubit within a given
qregister()

Feynman_plot_probability() Returns a 2D (or 3D) histogram plot of the (squared) amplitudes for a pure or mixed state as represent
theqregister()

Feynman_print() Prints the state vector or the density matrix of a quantum register in Dirac notation (by using the standa
computational basis)

Feynman_product()∗ Carries out several types of product operations (inner, outer, Kronecker, Hadamard, etc.) for two or mo
given quantum operators and/or quantum registers, respectively

Feynman_qgate() Carries out some pre-defined quantum gate on a sequence ofqbit()s

Feynman_quantum_operator() Evaluates the explicit matrix representation of various pre-defined and distributed one-, two-, three-, or
n-qubit quantum operators

Feynman_set_qregister() Returns aqregister() in some (pre-defined) state such as the computational basis states, the Bell states,
several others

Feynman_trace() Calculates the reduced density operators of aqregister() (i.e. the partial trace) and the expectation values fo
given matrix operators

2 A complete description of all user-accessible (exported) commands is provided by the manualFeynman-commands.pdf which is
distributed together with the code.

102 T. Radtke, S. Fritzsche / Computer Physics Communications 173 (2005) 91–113

out 1–2
agement
ed. To

mming
m.

even
nical ob-

the central
To
in
tures as

. The
e—
matrix

erator
ber of
ted

-
refer to
the
r in

late
uantum
visualize

a

mands,

it
m
us others.
quantum
by Redfern[19] from earlier years. A complete description of the program is given in the manualFeynman-
commands.pdf and is distributed together with the program.

Beside the benefits in using MAPLE, there are a few drawbacks concerning the performance of the FEYNMAN

program. Even if purely numerical computations are to be carried out, our procedures are slower by ab
orders of magnitude when compared with most traditional languages. This limitation and the storage man
of most CAS presently restricts the number of qubits to about 6–8 if complex computations are perform
improve the performance of the program, either a ‘translation’ of the code into some compilable progra
language or the concept of decision diagrams[20] could be used but are currently not supported by the progra

3.2. Auxiliary procedures

Any (automatic) transformation of ann-qubit quantum system due to quantum logic gates, circuits, or
quantum algorithms must provide the user with a fast and simple access to the underlying quantum-mecha
jects such as the quantum register or some (unitary) transformation. In fact, these registers and gates are
‘building blocks’ which allow one to simulate the behavior of general (n-qubit) systems in quantum computing.
facilitate the handling of these and similar (data) structures, a number ofauxiliary procedures have been defined
the FEYNMAN program to deal with qubits, quantum registers, quantum operators, and several other struc
described in Section2; cf. Table 3.

The use of such auxiliary procedures, which return their argumentsunevaluated, has several merits. Apart from
having related information together, it clearly simplifies the communication with and within the program
procedureqregister(), for example, represents a generaln-qubit quantum register in either a pure or mixed stat
including the information about the number of qubits, an identifier, as well as the state vector or density
of the register—, without that the user needs to be concerned about of these details. Similarly, theqoperator()
command is used to specify a particular quantum operator (unitary transformation) by means of akeywordor a
matrix, if given explicitly. The use of keywords, together with the designation of the qubits on which the op
acts, will later simplify the definition of quantum circuits and algorithms. In practice, there is a large num
predefined gates available in the FEYNMAN program which are taken from an internal ‘gate library’ and distribu
over any given numbern of qubits by using the commandFeynman_quantum_operator(), see below.

In addition to quantum registers, quantum operations, etc., there is the procedurecbs() to represent a compu
tational basis state. This auxiliary procedure is typically used in the input of some main commands to
some particular basis states such as|0〉 or |1011〉 (given either in decimal or binary notation). Together with
commandFeynman_set_qregister(), a call to the procedurescbs() helps set-up and initialize a quantum registe
a well-defined state at the beginning of the simulation.

3.3. Main commands

Having defined some proper ‘data structures’ above, themainprocedures are provided to set-up and manipu
these data according to the rules of quantum computing. Apart from the unitary transformation of some q
register, these commands enable one to compose or to reduce quantum registers and operators, or to
(plot) the state of qubits and quantum registers. The commandFeynman_plot_probability(), for example, returns
histogram of the (squared) amplitudes for the pure or mixed state of a quantum register as represented byqregister().
Table 4shows a list of all the commands which are presently accessible by the user. For a few selected com
in addition, a more detailed explanation can be found inAppendix B.

There are several ways to define and to ‘initialize’ the state of ann-qubit quantum register. Beside its explic
construction by means of thequbit() command, there is theFeynman_set_qregister() which helps to create quantu
registers in various (pre-defined) states such as the computational basis states, the Bell states, or vario
Separable states of a quantum register, moreover, can be composed as Kronecker products of two or more

T. Radtke, S. Fritzsche / Computer Physics Communications 173 (2005) 91–113 103

ta-
pplied

ns.
a

the same

expec-
e use of
of the

ed

ot
as
nds

nterest

w as
ases, of
some of
d of
registers by using the commandFeynman_product(). Typically, however, it is better to start from either a compu
tional basis state|k〉dec or a randomized quantum register to which then a proper set of transformations is a
for initialization.

There are two procedures in the FEYNMAN program which provide (and perform) unitary transformatio
While the commandFeynman_qgate() is designed to carry out a (keyword-defined) quantum gate directly onto
given sequence of independentqubits(), the procedureFeynman_quantum_operator() returns the explicit matrix
representation of these gates, distributed due to the designation of the target qubits. More easily, however,
transformation is often obtained by means ofFeynman_apply() with which one may act with aqoperation() or
qoperator() directly onto the state vector or the density matrix of a given quantum register [qregister()].

Finally, to reduce the density operator of a givenqregister(), the commandFeynman_trace() can be invoked
to calculate thepartial trace over one or several qubits. The same procedure also allows to calculate the
tation value of a matrix operator with respect to a given quantum state. Further commands concerning th
non-unitary operations or time-dependent transformations will be ‘added’ later in a forthcoming version
program.

3.4. Distribution of the program

Following MAPLE’s recent developments, the FEYNMAN program is provided as a library which can be load
by thewith(Feynman) command. This library contains all the procedures as listed inTables 3 and 4, along with
several subprocedures which remainhiddento the user. From the CPC library, the FEYNMAN program is distributed
as a (compressed)zip-file feynman.zip from which theFeynman root directory can be obtained. This ro
directory contains the library files, the source code and aRead.me for the installation of the package as well
the program manualFeynman-commands.pdf. This latter document explains all the user relevant comma
along with the output format, their argument options as well as various additional information which is of i
for the application of the procedures. TheFeynman root directory also contains an example of a.mapleinit
file which can be modified and incorporated into the user’s home. Making use of such a.mapleinit file, the
Feynman library should then be available like any other module of MAPLE.

4. Interactive work using the FEYNMAN procedures: Examples

To illustrate the interactive use of the FEYNMAN procedures, a few simple examples are displayed belo
they might occur, for instance, in an introductory course on quantum computation. Apart from these test c
course, the same procedures can be utilized also for dealing with more complex tasks. Since, however,
the procedures result in a rather large MAPLE output, a colon (instead of a semicolon) is used below at the en
several commands in order to restrict the printed output in this section.

4.1. Identity of simple quantum circuits

In a first example, let us access some of the pre-defined (one-qubit) quantum gates of the FEYNMAN program
and verify, that they fulfill the two well-known relationsXYX = −Y andXRy(θ)X = Ry(−θ), respectively [cf.
Ref.[7], exercise 4.7]. To this end, we just enter at MAPLE’s prompt (having loaded the FEYNMAN module before)

> X := Feynman_quantum_operator("X");

[0 1]
X := []

[1 0]

104 T. Radtke, S. Fritzsche / Computer Physics Communications 173 (2005) 91–113

an overall
firm

to

e-
> Y := Feynman_quantum_operator("Y");

[0 -I]
Y := []

[I 0]

and form the productXYX as usual by

> X.Y.X;

[0 I]
[]
[-I 0]

which confirms this identity immediately. For the second relation, similarly, we may type

> Ry := theta -> Feynman_quantum_operator("Ry", theta);

Ry := theta -> Feynman_quantum_operator("Ry", theta)

> X.Ry(theta).X, Ry(-theta);

[theta theta] [theta theta]
[cos(-----) sin(-----)] [cos(-----) sin(-----)]
[2 2] [2 2]
[], []
[theta theta] [theta theta]
[-sin(-----) cos(-----)] [-sin(-----) cos(-----)]
[2 2] [2 2]

to obtain the expected result. For one-qubit quantum gates, in addition, it was proved that their 2× 2 unitary
matrices can be expressed always in terms of rotations around the three Cartesian axes, together with
phase factor eiφ with 0 � φ < 2π [cf. Ref. [7], exercise 4.4]. As another short example, therefore, let us con
explicitly that the Hadamard gate,H = 1√

2

(1 1
1 −1

)
, is equivalent to a rotation around they-axis by the angleπ/2,

followed by a rotation around the (former)x-axis by π , and multiplied by a phase factor which still needs
be determined. Within the FEYNMAN program, this angle is easily derived by first constructing the matrixU =
eiφRx(π)Ry(π/2):

> Ry := alpha -> Feynman_quantum_operator("Ry",alpha):

> Rx := beta -> Feynman_quantum_operator("Rx",beta):

> U := exp(I*phi) * (Rx(Pi).Ry(Pi/2));

[1/2 1/2]
[-1/2 I exp(phi I) 2 -1/2 I exp(phi I) 2]

U := []
[1/2 1/2]
[-1/2 I exp(phi I) 2 1/2 I exp(phi I) 2]

and by solving the (matrix) equationU = H with respect to the phaseφ, i.e. for all the matrix elements simultan
ously

T. Radtke, S. Fritzsche / Computer Physics Communications 173 (2005) 91–113 105

d

require

easily
registers
of two

ese

f

t
s quan-
notation
> H := Feynman_quantum_operator("H"):

> solve({U[1,1]=H[1,1], U[1,2]=H[1,2], U[2,1]=H[2,1], U[2,2]=H[2,2]}, phi);

{phi = 1/2*Pi}

Apparently, the angleφ = π/2 fulfills all the four equations and can be used to makeU equivalent to the Hadamar
gate.

> subs(phi=Pi/2, U);

[1/2 1/2]
[2 2]
[---- ----]
[2 2]
[]
[1/2 1/2]
[2 2]
[---- ----]
[2 2]

Using similar steps, of course, a large number of other identities can be shown (or found) which would
rather lengthy computations otherwise.

4.2. Probability of measuring a computational basis state

So far, we just dealt with one-qubit quantum gates, for which most of the matrix operations could be
carried out by hand. In practise, however, the complexity of such operations increases rapidly as quantum
with several qubits occur in some computation. For the sake of simplicity, let us consider here the case
qubitsA andB which, initially, are both supposed to be in the state|ψA〉 = |ψB〉 = (|0〉 + |1〉)/√2, taken in the
computational basis of their corresponding Hilbert spacesHi . Let us further consider the composite state of th
qubits, i.e. the tensor product|ψ〉 = |ψA〉 ⊗ |ψB〉, and the matrix

U = 1√
2




1 −1 0 0
1 1 0 0
0 0 −1 −1
0 0 1 −1




which acts on both qubits,U |ψ〉 = |φ〉, in order to form a (two-qubit) state. For this state|φ〉, we may ask for the
probability to ‘find’, i.e. to measure, the (computational) basis state|2〉dec= |10〉. Mathematically, this requires o
course to calculate one of the expressions

(15)Tr
(|φ〉〈φ|P10

) = 〈φ|P10|φ〉,
which are known to be equivalent for anypurestate|φ〉 of the system. Within the FEYNMAN program, there exis
several ways to accomplish such computations owing to the (pre-)definition and the combination of variou
tum registers (qregister) and quantum operators (qoperators) in the code. Starting from the single-qubit
above, we may construct the two-qubit states|ψ〉 and|φ〉 by typing

> psi[A] := qregister(id, qbit(id, 1/sqrt(2), 1/sqrt(2))):

> psi[B] := qregister(id, qbit(id, 1/sqrt(2), 1/sqrt(2))):

106 T. Radtke, S. Fritzsche / Computer Physics Communications 173 (2005) 91–113
> psi := Feynman_product("Kronecker", psi[A], psi[B]);

[1/2]
[]
[1/2]

psi := qregister(id, 2, [])
[1/2]
[]
[1/2]

and

> U := qoperator(1/sqrt(2)*Matrix([[1,-1,0,0], [1,1,0,0], [0,0,-1,-1],
[0,0,1,-1]])):

> phi := Feynman_apply(U, psi);

[0]
[]
[1/2]
[2]
[----]
[2]

phi := qregister(id, 2, [])
[1/2]
[2]
[- ----]
[2]
[]
[0]

respectively. The projection operatorP10, moreover, is given by the 2-qubit density operatorP10 = |10〉〈10|, or
simply the outer product of the computational basis state

|10〉 = |1〉 ⊗ |0〉 =
(

0

1

)
⊗

(
1

0

)
=




0
0
1
0




with itself.

> aux_vector := Vector([0,0,1,0]):
> P[10] := Feynman_product("outer", aux_vector, aux_vector);

[0 0 0 0]
[]
[0 0 0 0]

P[10] := []
[0 0 1 0]
[]
[0 0 0 0]

T. Radtke, S. Fritzsche / Computer Physics Communications 173 (2005) 91–113 107

bit

er-
rators are

trix of a
tem

nsity
ration
FromP10, the expectation value〈φ|P10|φ〉 = 〈φ|10〉〈10|φ〉 respectively the probability for measuring the 2-qu
system in the basis state|10〉 is then calculated as the inner product of|φ〉 and the auxiliary stateP10|φ〉

> aux := Feynman_apply(qoperator(P[10]), phi):

> Feynman_product("inner", phi, aux);

1/2

if all the necessary steps are carried out explicitly. In the FEYNMAN program, the same computation can be p
formed much shorter because a large number of frequently required quantum states and (projection) ope
pre-defined already in the code. Since we have|ψA〉 = |ψB〉 = |+〉 and, hence,|ψA〉 ⊗ |ψB〉 = |++〉, we could
create the starting state|ψ〉 within a single line:

> psi := Feynman_set_qregister("++");

[1/2]
[]
[1/2]

psi := qregister("++", 2, [])
[1/2]
[]
[1/2]

. . . and similarly for the projection operatorP10:

> P[10] := Feynman_quantum_operator("projector", cbs("10")):

The transformation|φ〉 = U |ψ〉 is then carried out as above, using theFeynman_apply() command.
Now the probability Tr(|φ〉〈φ|P10) can be calculated by means of

> Feynman_trace(P[10], phi);

1/2.

This second way in doing the computations ‘proves’ also that the relation(15) is fulfilled for the pure state|φ〉
from above.

4.3. Partial trace of a Bell state

In our last example, finally, we demonstrate how the partial trace can be calculated for the density ma
composite system. Suppose we have the bipartite systemAB and need to investigate the behavior of the subsys
A without that the systemB is observed, i.e. if we wish to ‘trace out’ the dependence onB. For aproductstate
ρAB = ρA ⊗ ρB , the density matrix of the systemA is obtained simply by taking the trace overρB

ρA = TrB
(
ρA ⊗ ρB

) = ρA Tr
(
ρB

)
,

which, however, does not apply for anyentangledstate. In the case of an entangled system, the reduced de
operators of the subsystems cannot be read off so easily but requires one to carry out the partial trace ope(5)
explicitly. If, for example, we consider the composite systemAB in the Bell state|Φ+〉 = |00〉+|11〉√
2

108 T. Radtke, S. Fritzsche / Computer Physics Communications 173 (2005) 91–113

ce-
e of an
m

te
stems

ulation
ructures
lementary

M
ations as

om
ations and
. Such a
exity of
xtensions
s,
Several
> Phi := Feynman_set_qregister("Bell","Phi+");

[1/2]
[2]
[----]
[2]
[]
[0]

Phi := qregister("Phi+", 2, [])
[0]
[]
[1/2]
[2]
[----]
[2]

we may calculate the density matrixρA of the first qubit by tracing out the second qubit:

> rho[A] := Feynman_trace(Phi,[2]);

[1/2 0]
rho[A] := qregister(id, 1, [])

[0 1/2]

From the commandFeynman_trace(), this matrixρA is then obtained as the third argument of the auxiliary pro
dureqregister(), in line with the (internal) use of quantum registers to represent either a pure or mixed stat
n-qubit system. Taking the trace over the squared reduced matrix, Tr(ρA)2 = 1

2, we easily see that the subsyste
A is in amixedstate, and that the same applies also for the subsystemB owing to the symmetry of the Bell sta
|Φ+〉. Therefore, although the composite system was originally in a pure quantum state, the two subsyA

andB by themselves are statistical mixtures of states, a result which is well known from the literature[7] but is
worth here to show again explicitly. The same fact applies for anyopenquantum system, if a principal systemA is
entangledwith its environmentB (see Section2.2.3).

5. Summary and outlook

With the FEYNMAN program, an interactive and flexible tool has been developed for the analysis and sim
of n-qubit quantum systems. In a first version of this program, our aim was to design the basic (data) st
for quantum computations, such as quantum registers and quantum gates, and to provide many of the e
operations which are needed in order to work with these data structures. Using the computer algebra systemAPLE

as the computational framework, moreover, we are able to support both, symbolic and numerical comput
well as various hybrid forms, in contrast to many other (commercially or free-accessible)simulatorswhich are
available today for doing quantum computations.

There are several extensions of the FEYNMAN program which are desirable for future applications. Apart fr
quantum registers and operators as defined above, the implementation and the support of quantum oper
quantum circuits (as additional data structure) might help in the analysis and optimization of new algorithms
development will facilitate also the manipulation of quantum registers with an increasing number and compl
the gates as required, for instance, by various (active or passive) error correction schemes. Other possible e
refer to the implementation of differentmeasuresinto the FEYNMAN program in order to control the dynamic
entanglement, or the decoherence of quantum algorithms if ‘realized’ by different physical (qubit) systems.

T. Radtke, S. Fritzsche / Computer Physics Communications 173 (2005) 91–113 109

number of

find its

r rather
or
locks of
various
e
e

-

oming
of such measures have been implemented already and are currently investigated in dependence of the
qubits. With these and a few further extensions, we therefore hope that the FEYNMAN program will be helpful not
only for teaching the basic elements of quantum computation and quantum information theory but might
way also into the daily research work in the future.

Appendix A. Auxiliary commands

As explained in Section3, there are a number of general terms and associated data structures which occu
frequently in the input and output of the main procedures of the FEYNMAN program. These structures refer, f
instance, to the notion of a quantum register or quantum operator and are utilized as the central building b
the program. To facilitate the handling of these data structure (i.e. the communication with and within the
procedures), here we first describe all auxiliary procedures as discussed in Section3.2. Although several tests ar
made on the input of these commands, they usually return their parametersunevaluatedand, hence, mainly serv
as astoragein order to keep the relevant information together in the simulation of theN -qubit systems.

• cbs([n], k)
Auxiliary procedure to represent thecomputational basis state|k〉dec within ann-qubit basis in decimal nota
tion.
Output: An unevaluated call tocbs() is returned.
Argument options: ([n1,n2, . . .],k1,k2, . . .) to represent acompositecomputational basis state|k1, k2, . . .〉dec,
where ni refers to the number of qubits in theith subspace.
∗([n1,n2, . . .],k1,k2, . . . , “simplify”) to evaluate the composite computational basis state|k〉 = |k1, k2, . . .〉
and to return the corresponding (tensor) product statecbs([n],k) with n = ∑

i ni and where theni again refer
to the number of qubits in theith subspace.
∗(“00..01”) to represent a basis state in the convenientbinarynotation; a computational basis statecbs([n],k) in
thedecimalnotation is returned.
Additional information: A basis ofn qubits contains the computational basis states{|0〉, |1〉, . . . , |k〉, . . . ,
|2n − 1〉}. Owing to the definition of acomputational basis, therefore, the restrictionki < 2ni − 1 must apply
for all i.
See also: qbit(), qregister().

• qbit(id, a, b)
Auxiliary procedure to represent a qubit with identifier id in terms of its complex amplitudesa andb with
respect to the two (computational) basis states|0〉 ≡ (1

0

)
and|1〉 ≡ (0

1

)
; i.e. |ψ〉 = a|0〉 + b|1〉.

Output: An unevaluated call toqbit() is returned.
Additional information: The identifier id must be of typename, string, or integer.
∗ If both coefficients,a andb, are given numerically they must fulfill the relation|a|2 + |b|2 = 1.
See also: qregister().

• qoperation([E1, . . . ,En])
Auxiliary procedure to represent a user-definedn-qubit quantum operationE(ρ) = ∑

i EiρE
†
i in terms of the

operation elements (Kraus operators)Ei .
Output: An unevaluated call toqoperation() is returned.
Argument options:
Additional information: In the present version, the procedureqoperation() is not fully supported by the
program. In general, the same parameter lists (argument options) as for the commandFeynman_quantum_
operation() can be used here. The details of this command, however, will be explained only in a forthc
contribution.

110 T. Radtke, S. Fritzsche / Computer Physics Communications 173 (2005) 91–113

ted with
stead,
ram

e main

ator

or

tion is
uantum

its

e

ted)
er

t;
∗ Providing a general data structure for different types of quantum operations, no evaluation is associa
a call to this auxiliary procedure. This applies, in particular, for all pre-defined quantum operations; in
it is mainly utilized in order to simplify the definition of quantum circuits (in a later step of the prog
development) and to improve the readability of the code.
∗ The (explicit) representation of the corresponding operation elements is obtained by means of th
procedureFeynman_quantum_operation().
See also: qoperator()

• qoperator(n, “X”, [k])
Auxiliary procedure to represent (the distributed form of) the pre-defined single-qubit quantum operX

acting on thekth qubit in ann-qubit system.
Output: An unevaluated call toqoperator() is returned.
Argument options: (n,U, [i1, . . . , ik]) to represent the distributed form of an user-defined matrix operatU

acting on thek qubitsi1, . . . , ik of ann-qubit system.
∗ The same parameter lists (argument options) as forFeynman_quantum_operator() can be used here.
Additional information: Providing a data structure for a large set of quantum operators, no evalua
associated with a call to this procedure. The explicit matrix representation of the corresponding q
operator is obtained by means of the main procedureFeynman_quantum_operator().
See also: qoperation(), Feynman_quantum_operator().

• qregister(id, qbit1, qbit2, . . . , qbitn)
Auxiliary procedure to represent ann-qubit quantum register with identifier id in terms of its individual qub
qbit1,qbit2, . . . ,qbitn (which implies that the quantum register represents a product state initially).
Output: A quantum registerqregister(id, n, V) is returned wheren is the number of qubits and V a 2n-dimen-
sional state vector.
Argument options: (id, n, V) to represent ann-qubit quantum register whereV is a valid 2n-dimensional state
vector.
∗(id, n, M) to represent ann-qubit quantum register whereM is a valid 2n × 2n density matrixρ =∑2n−1

i,j=0 cij |i〉〈j |.
Additional information: The identifier id must be of typename, string, or integer, respectively.
∗ A quantum register can contain any number of qubits. For the case ofn qubits in a product state (i.e. if th
qubits are not entangled), a 2n-dimensional state vectorV is generated as the tensor product of then separate
single-qubit input states|ψk〉 = ck

0|0〉 + ck
1|1〉:

|Ψ1,2,...,n〉 = |ψ1〉 ⊗ · · · ⊗ |ψn〉

= c0|00. . .00〉 + c1|00. . .01〉 + · · · + c2n−1|11. . .11〉 =




c0
c1
...

c2n−1


 ,

where
∑

i |ci |2 = 1.
See also: qbit(), qregister().

Appendix B. Selected commands of the FEYNMAN program

To illustrate the use of the FEYNMAN program, this appendix describes in more detail a few (selec
commands fromTable 4. Similar as inAppendix A, thesemain procedures are briefly explained togeth
with their optional arguments and some additional information, following the style of the formerThe Maple
Handbook [19]. For the list of arguments, the notation fromAppendix A is used in the input and outpu

T. Radtke, S. Fritzsche / Computer Physics Communications 173 (2005) 91–113 111

tly
se
e:

e

l

r;
r

t.

qop-

r,

r-

r,

e
n unsuc-

s

etting of

e

ed
for example, a notation like...qregistera,qregisterb,... means that the user may type explici
...,qregister(ida,na,Va),qregister(idb,nb,Vb),... in the parameter list, or first assign the
(unevaluated) calls toqregister() to some variables, saywa andwb, and later only use these variables at input tim
...,wa,wb,.... A complete list of all the exported commands of the FEYNMAN program can be found in th
manual fileFeynman-commands.pdf which is distributed together with the code.

• Feynman_operator_function(A, f)
Evaluates the operator functionf (A) = ∑

i f (λi)|ai〉〈ai | of a normal matrix operatorA by using its spectra
decomposition.
Output: A matrix is returned.
Argument options: (qoperator, f) to apply the operator function f to the matrixA as described by qoperato
a qoperator is returned which contains an explicit matrix representationf (A) of the corresponding operato
function.
∗(A, f, [taylor, r]) or (qoperator, f, [taylor, r]) to carry out anr th-order Taylor expansion off (A) instead of the
spectral decomposition; a matrix or qoperator is returned in this case owing to the type of the argumen
Additional information: The functionf must be of typemathfunc, e.g.,x -> sin(x).
∗The operatorA must represent a normal operator with a proper spectral representation, i.e.A = ∑

i λi |ai〉〈ai |
whereλi are the eigenvalues ofA and|ai〉 the eigenvectors.
See also: qoperator(), Feynman_quantum_operator().

• Feynman_operator_type(A, hermitian)
Returnstrue if the matrix operatorA is hermitian, orfalse if this is not the case.
Output: A Boolean value of eithertrue or false is returned, orFAIL otherwise.
Argument options: (qoperator,hermitian) to determine the same for the matrix operator as described by
erator.
∗(A, normal) or (qoperator,normal) to returntrue if the matrix operatorA (or qoperator) is a normal operato
or false if this is not the case.
∗(A, positive) or (qoperator,positive) to returntrue if the matrix operatorA (or qoperator) is a positive ope
ator, orfalse if this is not the case.
∗(A, positive_definite) or (qoperator,positive_definite) to returntrue if the matrix operatorA (or qoperator)
is a positive definite operator, orfalse if this is not the case.
∗(A, unitary) or (qoperator,unitary) to returntrue if the matrix operatorA (or qoperator) is a unitary operato
or false if this is not the case.
Additional information: The procedure returnsFAIL if, for the operatorA, the given property cannot b
determined uniquely, e.g., if two symbolic expressions cannot be recognized to be equivalent due to a
cessful internal simplification.
∗For matrix operators with ‘numerical’ elements, it may happen that a Boolean valuetrue is returned for some
particular property even if MAPLE’s internal procedure returnsfalse. In this procedure, small deviation
are accepted for a given property by rounding the numerical values to an internal accuracy ofDigits - 2
digits. Note that this threshold (on the accuracy of the numerical results) depends on the current s
MAPLE’s Digits variable.
∗A positive operatorA is defined to be an operator whose expectation value〈v|A|v〉 is a real and non-negativ
number for all|v〉.
∗It can be shown that any positive operator is also hermitian and has adiagonal representation

∑
i λi |i〉〈i|,

with non-negative eigenvaluesλi .
∗ An operatorA is calledpositive definiteif 〈v|A|v〉 > 0 for all |v〉 �= 0.
∗An operatorA is said to benormalif A†A = AA†. An operator is normal if and only if it can be diagonaliz
with respect to some orthonormal basis (spectral decomposition theorem).

112 T. Radtke, S. Fritzsche / Computer Physics Communications 173 (2005) 91–113

o

ates.

is

d by
.
by state

ype (i.e.
-
at output
ns).

by
.

vector or

ed
∗An operatorA is said to behermitian(or self-adjoint) ifA† = A; obviously, any hermitian operator is als
normal.
∗A operatorA is said to beunitary if A†A = AA† = I ; hence, any unitary operator is also normal.
See also:Feynman_quantum_operator().

• Feynman_product(“inner”, qregisterl, qregisterr)
Calculates the inner product〈qregisterl |qregisterr 〉, known also as the scalar product of the two quantum st
Output: An expression or complex number is returned.
Argument options:

(i) Inner products (or scalar products)
(“scalar”, qregisterl , qregisterr) to calculate the same product; the two strings"inner" and"scalar"
always refer to the same definition of the product.
∗(“scalar”,v,w) to calculate the scalar product for the two (column) vectorsv andw.

(ii) Kronecker products (or tensor products)
(“Kronecker”,v1, v2) to calculate the Kronecker productv1 ⊗v2 of the vectorsv1 andv2 with dimensions
m andn, respectively; an(m × n)-dimensional vector is returned.
∗(“Kronecker”, A, B) to calculate the Kronecker productA⊗B of the operatorsA andB if given in terms
of two (m × n) and(p × q) matrices; an(mp × nr) matrix is returned.
∗(“Kronecker”, qoperatorA, qoperatorB) to calculate the Kronecker productA ⊗ B of the two matrix op-
eratorsA andB as described by qoperatora and qoperatorb, respectively; a qoperator is returned in th
case which contains the explicit matrix representation of the operator product.
∗(“Kronecker”, qregisterl , qregisterr) to calculate the Kronecker product of the two states as describe
the (m-qubit) qregisterl and the (n-qubit) qregisterr , respectively; an(m + n)-qubit qregister is returned
At output, the qregister contains a state vector representation if both quantum registers were given
vectors at input time, and a density matrix representation otherwise, cf.qregister().
∗(“Kronecker”, op-state1,op-state2, . . .) to calculate the Kronecker product op-state1 ⊗ op-state2 ⊗ · · · of
two or more matrix operators, density matrices or qregisters; all op-state’s must be of the same t
Matrix, qoperator orqregister). A Matrix, qoperator orqregister is returned depend
ing on the type of the arguments; in the case of qregisters, the state vector representation is used
time only if all the qregisters at input contained state vectors (and no density matrix representatio
∗(“Kronecker_power”, A, r) to calculate ther th powerA⊗r of the ((p × q) matrix operatorA; apr × qr -
dimensional matrix is returned.
∗(“Kronecker_power”, qoperator, r) to calculate ther th power of the matrix operator as described
qoperator; a qoperator is returned which contains the explicit matrix representation of the product
∗(“Kronecker_power”, qregister, r) to calculate ther th power of the state as described by thep-qubit
qregister. Depending on the representation of the quantum state in qregister, a qregister in state
density matrix representation is returned.
∗(“Kronecker_power”, “Hadamard”, n) to calculate the Hadamard transform ofn qubits,H⊗n, using the
algebraic formula

H⊗n = 1√
2n

∑
x,y

(−1)x·y |x〉〈y|.

(iii) Outer products
(“outer”, qregisterv,qregisterw) to calculate the outer product|v〉〈w| of the two state vectors as describ
by the (n-qubit) quantum registers qregisterv and qregisterw, respectively; a qregister containing a(2n ×
2n)-dimensional matrix is returned (not necessarily a valid state!).
∗(“outer”,v,w) to calculate the outer product of twon-dimensional (column) vectors. Ann × n matrix is
returned.

T. Radtke, S. Fritzsche / Computer Physics Communications 173 (2005) 91–113 113

i-

ct

1998.

5) 3457.
(2002)

posium,
(iv) Hadamard product
(“Hadamard”, A, B) to calculate the Hadamard productA ◦ B of the two matrices with the (same) d
mension(m × n). The Hadamard product is defined as the entrywise product:(A ◦ B)i,j = Ai,jBi,j and,
hence, is a submatrix of the Kronecker productA ⊗ B. An m × n matrix is returned.

(v) Trace products or Hilbert–Schmidt products
(“trace”, A, B) or (“Liouville”, A, B) to calculate the trace (or Hilbert–Schmidt or Liouville) inner produ
(A,B) = Tr(A†B). An expression or a complex number is returned.

(vi) Commutators and anticommutators
(“commutator”, A, B) to calculate the commutator[A,B] = AB − BA for two quadratic(n × n) matrix
operators A and B; ann × n matrix is returned.
∗(“anticommutator”, A, B) to calculate the anticommutator{A,B} = AB +BA for two quadratic(n× n)

matrix operators A and B; ann × n matrix is returned.
Additional information: In finite-dimensional (complex) vector spaces, theinner product spaceand the
Hilbert spaceare the same; these notations are therefore often used as synonyms.
See also: Feynman_quantum_operator(), qoperator, qregister.

References

[1] P.W. Shor, SIAM J. Sci. Statist. Comput. 26 (1997) 1484.
[2] L.K. Grover, Phys. Rev. Lett. 79 (1997) 325.
[3] J. Wallace, CASYS, Internat. J. Comput. Anticipatory Syst. 10 (2000) 230–245.
[4] H. De Raedt, K. Michielsen, quant-ph/0406210, 2004.
[5] QuCalcby P. Dumais,http://library.wolfram.com/infocenter/MathSource/657/;

qmatrixby T. Felbinger,http://library.wolfram.com/infocenter/MathSource/1893/.
[6] J. Preskill, Lecture Notes on Quantum Information and Quantum Computation, Physics 219, California Institute of Technology,
[7] M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, 2000.
[8] G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, A. Zeilinger, Phys. Rev. Lett. 81 (1998) 5039.
[9] R. Jozsa, N. Linden, Proc. Roy. Soc. London Ser. A 459 (2003) 2011.

[10] V. Vedral, M.B. Plenio, Phys. Rev. A 57 (1998) 1619.
[11] D. Bruß, J. Math. Phys. 43 (2002) 4237.
[12] K. Blum, Density Matrix Theory and Applications, second ed., Plenum Press, New York, 1996.
[13] C.H. Bennett, IBM J. Res. Develop. 17 (1973) 525.
[14] A. Barenco, C. Bennett, R. Cleve, D. DiVincenzo, N. Margolus, P. Shor, T. Sleater, J. Smolin, H. Weinfurter, Phys. Rev. A 52 (199
[15] M.J. Bremner, C.M. Dawson, J.L. Dodd, A. Gilchrist, A.W. Harrow, D. Mortimer, M.A. Nielsen, T.J. Osborne, Phys. Rev. Lett. 89

247902.
[16] H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems, Oxford University Press, 2002.
[17] K. Kraus, States, Effects and Operations: Fundamental Notions of Quantum Theory, Springer, 1983.
[18] J. Kempe, D. Bacon, D.A. Lidar, K.B. Whaley, Phys. Rev. A 63 (2001) 042307.
[19] D. Redfern, The Maple Handbook, Springer, New York, 1996.
[20] G.F. Viamontes, I.L. Markov, J.P. Hayes, in: Proc. of Quantum Computation and Information, SPIE Defense and Security Sym

2004.

http://library.wolfram.com/infocenter/MathSource/657/
http://library.wolfram.com/infocenter/MathSource/1893/

	Simulation of n-qubit quantum systems. I. Quantum registers and quantum gates
	Introduction
	Theoretical background
	Quantum bits and registers
	Qubits and computational basis
	Quantum registers
	The Bloch sphere representation for single qubits

	Quantum gates and operations
	Unitary operations and quantum gates
	`Distributed' quantum gates
	Quantum operations

	Program organization
	Overview
	Auxiliary procedures
	Main commands
	Distribution of the program

	Interactive work using the Feynman procedures: Examples
	Identity of simple quantum circuits
	Probability of measuring a computational basis state
	Partial trace of a Bell state

	Summary and outlook
	Auxiliary commands
	Selected commands of the Feynman program
	References

