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Abstract

During recent years, quantum computations and the studyquibit quantum systems have attracted a lot of interest, both
in theory and experiment. Apart from the promise of performing quantum computations, however, these investigations also
revealed a great deal of difficulties which still need to be solved in practice. In quantum computing, unitary and non-unitary
guantum operations act on a given set of qubits to form (entangled) states, in which the information is encoded by the overall
system often referred to as quantum registers.

To facilitate the simulation of such-qubit quantum systems, we present trerBMAN program to provide all necessary
tools in order to define and to deal with quantum registers and quantum operations. Although the present version of the program
is restricted taunitary transformations, it equally supports—whenever possible—the representation of the quantum registers
both, in terms of their state vectors and density matrices. In addition to the composition of two or more quantum registers,
moreover, the program also supports thdscompositiorinto various parts by applying the partial trace operation and the
concept of the reduced density matrix. Using an interactive design within the frameworkrfgyltherefore, we expect the
FEYNMAN program to be helpful not only for teaching the basic elements of quantum computing but also for studying their
physical realization in the future.
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Computers for which the program is designédl: computers with a license of the computer algebra systeapM: [Maple is

a registered trademark of Waterlo Maple Inc.]

Operating systems or monitors under which the program has been tedtedt; MS Windows XP

Programming language useMApLE 9.5 (but should be compatible with 9.0 and 8.0, too)

Memory and time required to execute with typical d&8torage and time requirements critically depend on the number of qubits,

n, in the quantum registers due to the exponential increase of the associated Hilbert space. In particular, complex algebraic
operations may require large amounts of memory even for small qubit numbers. However, most of the standard commands
(see Section 4 for simple examples) react promptly for up to five qubits on a normal single-processor madh@igZ with

512 MB memory) and use less than 10 MB memory.

No. of lines in distributed program, including test data, et8864

No. of bytes in distributed program, including test data, e#t93 182

Distribution format: tar.gz

Nature of the physical problenuring the last decade, quantum computing has been found to provide a revolutionary new form

of computation. The algorithms by Shor [P.W. Shor, SIAM J. Sci. Statist. Comput. 26 (1997) 1484] and Grover [L.K. Grover,
Phys. Rev. Lett. 79 (1997) 328]], for example, gave a first impression how one could solve problems in the future, that
are intractable otherwise with all classical computers. Broadly speaking, quantum computing applies quantum logic gates
(unitary transformations) on a given set of qubits, often referred to a quantum registers. Although, the theoretical foundation
of quantum computing is now well understood, there are still many practical difficulties to be overcome for which (classical)
simulations om-qubit systems may help understand how quantum algorithms work in detail and what kind of physical systems
and environments are most suitable for their realization.

Method of solutionUsing the computer algebra systenmnRLE, a set of procedures has been developed to define and to deal
with n-qubit quantum registers and quantum logic gates. It provides a hierarchy of commands which can be applied interactively
and which is flexible enough to incorporate non-unitary quantum operations and quantum error corrections models in the future.
Restrictions on the complexity of the problefine present version of the program facilitates the set-up and manipulation of
quantum registers by a large number of (predefined) quantum logic gates. In contrastitiealizbdunitary transformations,
however, less attention has been paid so far to non-unitary quantum operations or to the modeling of decoherence phenomen:
although various suitable data structures are already designed and implemented in the code. A further restriction concerns
the number of qubits;, due to the exponentially growing time and memory requirements. Up to now, most of the complex
commands are restricted to quantum registers with about 6 to 8 qubits, if use has to be made of a standard single-processc
machine.

Unusual features of the prograrithe FEYNMAN program has been designed for interactive simulations-qobit quantum

registers with no other restriction than given by the size and time resources of the computer. Apart from the standard quantum
gates, as discussed in the literature [M.A. Nielsen, |.L. Chuang, Quantum Computation and Quantum Information, Cambridge
University Press, Cambridge, 2000], it provides all the necessary tools to generalize these gatgmhits (in any given order

of the individual qubits). Both common representations of the quantum registers in terms of their state vectors and/or density
matrices are equally supported by the program whenever possible. In addition, the program also facilitates the composition of
two or more quantum registers into a combined one as well as their decomposition into subsystems by using the partial trace
and the use of the reduced density matrix for the individual parts.

0 2005 Elsevier B.V. All rights reserved.

PACS:03.67.-a; 03.67.Lx

Keywords:Kronecker product; Quantum computation; Quantum logic gate; Quantum register; Qubit; (Reduced) density matrix; Unitary
transformation

1. Introduction

Since Shor’s algorithnfl] for factorizing large numbers, the theory of quantum computation and quantum
information has attracted a lot of recent interest. This algorithm, in particular, has demonstrated that quantum
computers may perform certain useful tasks (much) naffieientthan their classical counterparts. Despite of
the great promises of performing quantum computations, however, there are still many practical difficulties to be
resolved before quantum computers might become available in the future. Hereby, many of the difficulties are
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related closely to the (wanted and unwanted) interactionsguobit quantum systems as well as to the coupling of
such systems with their environment.

Therefore, although the basic concepts of quantum computing are now well understood, their realization is likely
not possible unless the (dynamical) behaviomedubit quantum systems, so-called quantum registers, can be
simulated and analyzed in detail. For any successful implementation of quantum algorithms, of course, one has to
provide and control the mechanisms for carrying out a sequence of computational steps, where &aminsisfs

of a unitary transformatiot/ = g Hitk (as defined by some system HamiltoniHp and acting for a timey).
To simulate such aidealizedsequence of computational steps, a number of programs have been developed in
recent years that all provide the underlying (linear-algebra) operations in a form as appropriate forrggoéial
guantum registers, although sometimes only for those registers with a fixed number of qubits.

A list of such (quantum computer simulation) programs can be found, for instance, ifR&fsOften, how-
ever, these programs were designed for just a particular task, such as the demonstration of the superposition concep
or the evaluation of (specific) quantum circuits and, hence, cannot be used for other applications. So far, most pro-
grams have been restricted to tineitary transformation of quantum registers being in a pure state, without the
possibility to take into account ‘mixtures’ of quantum states (as to be described by density matrices) or the cou-
pling of the quantum registers with their environment (quantum operations).

To facilitate the simulation of such generaljubit quantum systems, here we present tegNMAN program
that provides all necessary tools in order to deal with quantum registers and quantum operations. In contrast to
most of the traditional programs from aboj&4], we followed an approach similar {®], and designed and
implemented the EYNMAN code within the framework of MPLE in order to take advantage of the (various)
symbolic and numerical features of modern computer algebra. In a first version of our program, we provide a set
of procedures to define quantum registers of variable size and to manipulate them by (time-independent) operators.
Since a large number of such quantum operators have been predefined in the code, we expecktenF
program to be useful for quite different applications, both in education and research work.

In the next section, we first start with a brief account on the basic notations and concepts in the theory of quantum
computations in order to facilitate the later use of the program. In Segtiwa then describe the program structure
and how it is distributed. This includes a list of all user-accessible commands, together with short descriptions.
Details about the parameters of each procedure, their optional arguments, etc. is provided by an additional user
manual and is appended to the code. Sedfidtustrates the use of theBrNMAN program by means of a few
simple examples which may help display several central features and advantages of the code. Finally, a short
outlook onto the current and possible future extensions of the program is given in Section

2. Theoretical background

As the FEYNMAN program has been designed independent of any partiphiesical realizatiorof ann-qubit
quantum system, we may restrict our discussion of the theory to those notations and formulas as implemented
in the program. Apart from the notion of the quantum register as the basic ‘storage’ to describe the behavior of
generah-qubit (quantum) systems, emphasis is placed on the action of the various quantum gates and how they are
‘distributed’ overn qubits in order to transform the state of the system properly. Both representations-qfiait
guantum system in terms of its state vector or density matrix are briefly explained below and are equally supported
(whenever possible) by the program. A more detailed introduction into the theory of quantum computations and
guantum information can be found, for instance, in the lecture notes by Pié$laihd the textbook by Nielsen
and Chuandg7].

2.1. Quantum bits and registers

2.1.1. Qubits and computational basis
In introducing the basic elements of quantum information theory, one often starts with the quantgubit)it (
as the elementary ‘unit’ of information in dealing with quantum computations and the construction a quantum
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computers. In contrast to the classical bit, which can take just one of two distinct values, say ‘0’ and ‘1’ or ‘true’
and ‘false’ (from the Boolean logic), respectively, the qubit is thought as a formal designation of a quantum system
whose state vector is completely described by the superposition of two orthonormal eigenstates. Often, these eigen
states are labeled #8) and|1) analogous to the binary basis used in classical digital computations. In practise,
however, a qubit can be represented by any quantum mechanical two-state system including, for exampl, spin-1
particles with their two possible spin statds and| ), trapped ions, or by the charge state of quantum dots.
Independent of the physical realization of a particular qubit, there is an abstract (mathematical) notation

|¢)=a|0)+b|1)za(é)+b(g_)>=<Z>, 1)

in which the statéy) of the qubit is described as the linear superposition of the two g@jtesd|1) from above.

As usual, these states are supposed to be orthonormal and to form a basis of a two-dimensional Hilbrt space
In this basis, the coefficients (amplitudespndb € C are often called aepresentatiorof the qubit, while the
squared absolute valugg? and|b|? are known to provide the probability of finding the system in one or the other
eigenstate in case of a measurement. That is, the coefficieansl » are supposed to fulfill the normalization
la|?+ |b|? = 1. In the FEYNMAN program, the auxiliary proceduggit() is used [cf. SectioB.2below] in order to
represent (the state of) a qubit by means of the complex coefficiemtdsb within the basig|0), |1)}, often denoted

as thecomputational basisBesides the computational basis, of course, any other orthonormal basis, such as the
Hadamard basist-) = %QO) + 1)) and|-) = i2(|0> —|1)), could be utilized equally well for all computations.

However, unless stated otherwise we will always refer to the computational basis as the standard basis within the
FEYNMAN program. The representation of a qubit in any other (orthonormal) basis is then obtained by performing
the proper unitary transformation on the coefficienendb.

Similar to classical computations, a single (qu-)bit is of little help in carrying out quantum computations. The
generalization of a single qubit todistinguishable and interacting qubits then leads us to the notioquéatum
register for which the computational basis is again the most natural choice in order to follow the (dynamical)
behavior ofn-qubit quantum systems. A rather large number of qubits is required not only for the implementation
of useful quantum algorithms, but also for many quantum error-correcting codes (QECC) as necessary to protect
n-qubit systems against the loss of information due to decoherence phenomena.

2.1.2. Quantum registers

The guantum-mechanical state of two or more (distinguishable) qubits can be described most easily if these
qubits are arranged in some particular order and treated altogether in terms of a single quantum register. For an
qubit quantum register, i.e. the collectiornvoihdividual qubits, then the stat@) of the overall system is described
by a vector in the 2-dimensional product spadé="H1 @ H2 ® - - - ® H,, of the Hilbert space®(; (i =1,...,n),
associated with the individual qubits. Again, thelfasis states ifit can be denoted analogously to tHel#nary
states of a classical-bit register,|00..00), |00..01), ...,]11..11), but have to be formed as the (tensor) products
of the corresponding computational basis st@t@s, |1);,i =1, ..., n} of then qubits. In general, therefore, the
state|¥) of the quantum register

1 0 0
n_q 0 1 0
V) = Z ck|k)decimal= co 0 +c1 0 +-oFcmg 0 (2)
k=0 : : :
0 0 1

is written as a (normalized) superposition of thebasis states. Note the rapid increase of the number of basis states
(2") with the number of qubitss, in the quantum register. Moreover, a seen from(Eyfor an equal superposition

of all the 2 basis states (i.e. ify = 1/+/2" for all k), a quantum computer would be able to process some given
computation for all the '2 values of a corresponding classical register simultaneously. It is this phenomenon,



T. Radtke, S. Fritzsche / Computer Physics Communications 173 (2005) 91-113 95

sometimes known aguantum parallelismwhich might provide quantum computers with the (computational)
power to solve problems in the future, which are intractable otherwise for any classical computer.

For n interactingqubits, the superposition of the ®asis states in Eq2) generally results in a ‘correlation’
between the qubits, in which their individual (spin) states are no longer well-defined independently from the states
of the other qubits. Such a correlation always occurs, if the gfatef the quantum register cannot be represented
as a tensor produdt?) = |y1) ® |Y¥2) ® --- ® |,) of any particular stateg);) (i =1, ..., n) of the individual
qubits, a situation which often applies even if the qubits are well separated in space. In quantum mechanics,
this (non-local) correlation phenomenon is knowneasanglemenand such a correlated stat&) is said to be
inseparable As an example for tw@ntangledqubits refer, for instance, to the Einstein—Podolsky—Rosen (EPR)
stateq(|00) + |11))/+/2 which are often used in order to verify and explain the non-locality of quantum mechanics
[8]. In fact, the possible entanglement inraiqubit quantum register is considered to be one of the key ingredients
of quantum computation as it isecessargondition in order to achieve an exponential speed-up, when compared
with classical computation®]. During the past few years, therefore, the characterization and quantification of
the entanglement (in terms of various usehdasureshas been investigated intensively for different multi-qubit
systems in the literatufd 0,11}

So far, we have always assumed in our discussion above that the state of the system is known completely, even
if itis in an entangled state. Such a system, which is described by means of a stat¢wgétom Eq.(2) or a so-
called ‘ket’-vector, is said to be inpure state More general, however, one often has only incomplete knowledge
about the state of the system, as it occurs in a statistical mixgeire= >". p;|¥;) of several (pure) statd;)
with some given probabilitiep; > 0 and)_; p; = 1. To describe a quantum register in such a mixture of states,
then the concept of the density operator needs to be applied in order to obtain a proper quantum-mechanical
description[12]. In the computational basis, the density operator of the system is definee-gs; p; |¥;) (¥,
where(¥;| = |¥;)T = (|&;)*)T denotes an element (a so-called ‘bra’-vector) of the dual space. The density operator
of a quantum system has & 2 2" matrix representation which is self-adjoipt’ = (0*)T = p], positive semi-
definite (non-negative eigenvalues), and which fulfills the trace conditipn=T1. This density matrix, in addition,
describes a pure stae= |¥)(¥|, if and only if Tr(p?) = 1.

As outlined further in Sectio.2.3 the concept of the density operator is required in order to describe deco-
herence effects inpenquantum systems which are coupled to some environfidéht Although a description in
terms of the density matrix is more general compared to the concept of pure states, it leads to a rapidly growing
complexity and to quite sizeable storage requirements if more than only a few qubits are involved in the system.
In the FEYNMAN program, both descriptions of a quantum system (register) in terms of its state vector or the
density matrix are equally supported (whenever possible) by the auxiliary proogeygiser(), cf. Section3.2
In fact, this procedure is the generalization of tinét() command from above to the casermotorrelated qubits,
where the number of qubits is restricted only by local computer resources. As discussed below, this procedure
provides the central (data) structure to describe the behavior of any pure ormaipdait quantum register within
the FEYNMAN program.

In describing am-qubit quantum system, it is necessary not only to combine the various qubits and to describe
them in terms of a (single) quantum register but also to split a multi-partite system into subsystems of different
size. Such a splitting is useful, for example, if a quantum system is coupled to an environment or if a measurement
needs to be performed on just a few of the qubits. To deal only with such a part of the system, there is the concept
of thereduceddensity operator and the partial trace operation. For example, we consider a general composite (and
probably entangled) systerB in the product Hilbert spacH 4 5. The density matrix of the composite system is
defined as

Ny Np
PP =" pijulia)ljn) tkal(lsl, €)
ik jl
where{|i4)} and{|jg)} denote orthonormal bases for the subspdg¢gsand  with dimensionN,4 and N,
respectively.
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Fig. 1. Bloch sphere visualization of a (pure) one-qubit state.

The reduced density operator for the subsystem then defined as

pA :TrB(pAB), (4)
where T () is called the partial trace (operation) over the subsysfenmsing the completeness relation
ZZB lmp){mp| = I, the partial trace is given by

Nso [/ Np
Trp(p"?) = Z(Z ,Oim,km)liA)(kA|- ©)

ik m
Since the trace over the space of the subsyf®temindependent of the particular choice of the basis stajgs$},
the partial trace is unique and appropriate to describe all the observables of the remainingAsyistéme F=vN-

MAN program, the partial trace operation can be applied toragybit quantum register in order to trace out one
or several qubits by using the proced@synman_trace().

2.1.3. The Bloch sphere representation for single qubits
To visualize the state of a single qubit, there exists a common representation known as the Bloch sphere. In this
representation, a (pure) one-qubit state is written as

0 . (0
[r) =cos<§)|0) +€e? sm(§>|1), (6)

ignoring the overall phase which is physically irrelevant. Using the decompoéifjarfithe state vector, the angles
0 andg are then taken as the ‘polar’ angles to describe the orientation of a real vector on the unit sphere, the so-
called Bloch vector of the qubit. For some arbitrary single qubit pure sfgtéhe Bloch sphere representation is
illustrated inFig. 1

Beside of pure states, the Bloch sphere representation can be used also for single qubits in a mixed state if thei
density operatop is re-written in terms of the Pauli spin matricesas o (v) = ”% with ¢ = (o4, 0y, 07), and
if the real vectory with 0 < |v| < 1 is now displayed in polar coordinates. ot = 1, in particular, we always
have TKp?) = 1 and thus a pure staé) with the corresponding polar anglésand¢. Using the Bloch-sphere
representation, the action of any one-qubit (unitary) gate operation can be interpreted as a rotation of the Bloch
vector. In the EYNMAN program, a Bloch sphere representation of a single qubit (given possibly as part of an
n-qubit quantum register) is obtained with the help of Begnman_plot_Bloch_vector() procedure. Unfortunately,
there is no straightforward generalization of this convenient representation known for multi-qubit systems.
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2.2. Quantum gates and operations

Apart from keeping information and data in quantum registers, it should be possible also to manipulate these
data in a controlled way. Analogous to classical computers, this can be achieved formally by applying a sequence
of logical operations onto the state of the quantum systems, the so-called (quantum) gates or, more generally,
the quantum operations. The standard gates are constructed in order to obtain a certain ‘rotation’ of the state
vectors (density operators). In practise, the action of a quantum gate is often carried out by means of external
fields, lasers, or by several other techniques depending on the particular experimental scheme used to realize the
quantum register. Note that, beside of the external perturbation, here the natural evolution of the system due to its
Hamiltonian needs to be taken into account. In the present version oEtheMAN program, however, we are not
concerned with the physical realization of quantum registers and, hence, may ignore any explicit time evolution of
the system. Instead, emphasis is placed on the action of the various (pre-defined) logical gates onto the states of
generak-qubit quantum registers.

2.2.1. Unitary operations and quantum gates

Benneti{13] showed that any classical computation can be implemented also in a (logically and thermodynam-
ically) reversible form. In fact, such a reversible implementation is possible even by using various rather small
sets of logical operators, known asiversalsets. Although, for the sake of simplicity, classical digital computers
are actually not restricted to reversible operations, Bennett's concept has become important for the field of quan-
tum computations and quantum information since, for any closed quantum system, the time evolution operator

Uy = g i1 g unitary and, hence, represents a entirelyersibleoperation that maps a quantum state at
time 11 to the state at some other time For some pure state ), therefore, we always have

[V (t2)) = Uy |9 (12)) 7

and, similarly,
lo(t2) = Utz,tl (Z Di ‘Ilfl (tl)> (% (tl) ’) Ut;tl = Utz,tlp(tl)Ut;rl (8)

if the state of the system is given by a statistical mixt(we |¥;)}. In a quantum computer, consequently, it is
necessary to implement all the computational steps by means of reversible and unitary operations, taking into
account also the modified Hamiltonian of the underlying (physical) system. Formally, Bennett's result ensures that
a quantum computer is—at least in principle—capable of performing also every classical algorithm one can think
of, although typically without any gain in speed compared to classical computers.

In general, any algorithm on am-qubit quantum register could be performed within a single step by acting
(in a highly non-trivial way) with a unitary operation on all thequbits of the register simultaneously. Similar
to classical computations, however, it is more convenient in practise if such operations are decomposed into a
sequence of one- and two-qubit operations (gates), taken from a smalusétersal gatesvhich is appropriate for
a particular physical realization of the system. In the context of theNimAN program, here we need not discuss
which universal set is most suitable for a given experimental setup. In a formal treatment of quantum algorithms
and transformations, instead, one often uses the two-qubit controlled-not (CNOT) gate together with any one-qubit
gate (constructed from the Pauli sigma matrices) as the basic elements into which then all the quantum gates are
decompose(il4]. More generally, it has been shown also thay (hon-separable) two-qubit gateusiversalfor
guantum computations if combined with some one-qubit ffH#5¢ The need of a non-separable two-qubit gate
again highlights the key role of entanglement for performing useful quantum computations.

In order to apply a (unitary) gate operation to just one or a few individual qubits of a given quantum register, we
need to create operators which act only on the subspaces associated to these qubits. First, therefore, let us briefly
recall here the definition of the tensor product for matrix operators. Supp@sel B are two linear operators in
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the subspaceX; andHp, respectively. Them ® B is used to denote a linear operator acting on the product space
H1 ® H2 and is defined by

(A® B)(1¥1) ® [¥2)) = AlY1) ® Blyr2). )
Using a matrix representation for the operatarand B, the tensor (or Kronecker) product of anx n matrix A
and ap x g matrix B is then given by thenp x ng matrix

annB -+ ayB
A@B=\| : .. |, (10)
amB -+ aunB
whereg;; are the matrix elements ef. For instance, a single-qubribtor X-gate

Xsox=<cl) é) (11)

that acts onto the second qubit within a three-qubit quantum register can be expressed as the tensor product

U=1®X®I, (12)

if the two other qubits are left unchanged and ifienotes the X 2 identity operator acting on a single qubit. In

the FEYNMAN program, the matrix representations of many widely used quantum gates are pre-defined already in
the main procedureynman_quantum_operator(); seeTable 1 for instance, for the pre-defined one-qubit gates.
More detailed information about all the pre-defined quantum gates in glv&iMfAN program, including their

matrix representation as well as circuit symbols, can be found in the mBayalman- conmmands. pdf which

is provided together with the code.

2.2.2. 'Distributed’ quantum gates
In the previous section, we introduced the use of single and multi-qubit quantum gates, and how they can
be combined with the single-qubit identifyin order to ‘act’ on the space associated with sorrgubit quantum

Table 1

Single-qubit quantum operators (gates) as accessible in the program by the coReyranah_quantum_operator()®

Argument option Output: returns the matrix representation of
(G identity operator

("not") or("sigma_x") or("X") X =oy

("sigma_y") or("Y") Y=oy

("sigma_z") or("Z") Z=oy

("sigma[+]") o4 =0y +ioy (not unitary!)
("sigma[-1") o =0y —ioy (not unitary!)

(" phase", ¢) relative phase shift by

("A", ¢) alternative definition of the phase gate
(" Hadamard") or("H") H

("Euler", [a, B, v,5]) U =€eYR(B)Ry(y)R(5)

("Rx", 0) Ry (0) rotation

("Ry", 6) Ry (6) rotation

("Rz", 0) R (0) rotation

("Ss") phase gate witp = /2

"T) /8 gateT

("not~1/2") VNOT

1 A complete list of all available single and multi-gubit quantum gates together with their definition are provided by the Fegmurein-
commands. pdf which is distributed with the code.
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Table 2

Distributed two-qubit quantum operators as accessible by the comReginehan_quantum_operator()

Argument option Output: returns the matrix representation of
(n,"cn",[m1, m2]) or(n,"cnot",[m1, m2]) controlled-notoperation on the qubita, andmy of anr-qubit

quantum system

(n,"control | ed-phase", [m1, m2]) or(n,"cs",[m1, m2]) controlled-phasercsoperation on the qubita; andm of an
n-qubit quantum system

(n,"control | ed-z", [ m1, m2]) or(n,"cz",[m1, m2]) controlled-zor czoperation on the qubite, andmo
(n, "swap", [m1, m2]) swapoperation on the qubite1 andmy

register. To this aim, the use of the tensor product [cf. Egjsand (12) is obvious as long as the affected qubits are
neighbors with respect to the numbering of qubits in the quantum register or, respectively, the computational basis.
In contrast, if we consider somequbit quantum gate to act onko< n not adjacent qubits in am-qubit register,
the Z matrix elements of the-qubit quantum gate have to be ‘distributed’ properly over the whble 2 matrix
which acts on the completequbit quantum register. To this end, here we introduce the notionlisti@butedgate
if a (k-qubit) gate is applied té < n selected qubits, given in a sequemeg mo, ..., m; and withm; < n for all
selected indices of the qubits.

For example, the controlled-not (CNOT) gate is known to invert the state of the target qubit in dependence of
the state of control qubit. Its matrix representation is given by

1 00

CNOT= (13)

0100

0 0 0 1)’
0 010

if the first qubit refers to the control qubit and the second to the target qubit. For instance, if we wish to apply
this CNOT gate to the first and third qubit in a three-qubit quantum register, the use of the tensor @pduct
above is not directly possible unless the qubits are first be renumbered in the quantum register (and that the state
vector or density matrix of the system is transformed accordingly). Although such a permutation of the qubits is
certainly quite standard and is achieved simply by transforming both, the operator and the quantum register into a
computational basis which refers to the new sequence of qubits, inEheNFAN program we provide a special

syntax for the proceduteeynman_quantum_operator() that allows the user to ‘distribute’ aiyqubit operator over
ann-qubit quantum gate just by specifying the sequence okthe: qubits to be concernedable 2displays the
predefined two-qubit gates in the&aeFNMAN program and how they can be distributed in order to obtain a proper
n-qubit unitary matrix.

2.2.3. Quantum operations

The gquantum gates from above refer toid@alizedquantum computer whose (quantum) registers evolve like
any closedquantum system entirely unitary according to the known Hamiltonian of the system. This is quite in
contrast, of course, to any real implementation where various unwanted interactions of the quantum register with its
environment, such as a spontaneous emission of photons from the system or some other form of energy and phase
dissipation, may occur. Frankly speaking, such a coupling to the environment leads to a non-unitary and hence
irreversible evolution of the quantum computer (the principal system) as it is now only a subsystem of the overall
system ‘quantum computer environment]16]. Or, in other words, the entanglement with the environment finally
results in a reduced density matrix of the principal system which isnmixadstate [cf. Sectiod.3 and which is
associated with a loss of information (known also as decoherence).

In order to allow a non-unitary evolution of quantum systems (registers), there exists the general formalism
of quantum operations to which one sometimes refers also as superoperators or completely positive maps. Since,
this formalism is not yet fully supported by thee¥NMAN program, here we will give only a brief account on
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this concept and refer for all further details to the literatufle In the program, however, a first step towards the
incorporation of quantum operations has been done by providing an appropriate data structure in3Szdfion

we consider, for instance, a principal syst§nand the environmenk, a ‘noisy’ interaction betwee and E is
described by a (quantum dynamical) m@phat takes a system stapeto another density matrix’ = £(p). In

order to ensure that' is a valid density operator, it can be shown thatcting onH s must becompletely positive
i.e.£(A) must be positive for any positive (density) operatomnd, moreover, if we exterils by a second Hilbert
spaceH g of arbitrary dimension the combined operati®® Z (Z being the identity operation 6K g) acting on
product spacé{s ® Hg still maps any positive operator of the composite system to a positive operator. In the
(so-called) operator-sum representation, such a map is descritjéd By

p'=E(p)=) EipE], (14)

where E; denotes an operation element (or Kraus operator) E;rEiTE,- < I and where the equal sign applies

for all trace-preserving quantum operations. From the defin{tidhof the quantum operations it is clear, that this
includes as a special case also thmétary evolution of the quantum system from Sectdr2.], if the quantum
operation is given by a single unitary operation element. With the further support of quantum operations by the
FEYNMAN program, therefore, it will be possible to implement and to follow-up also various decoherence models
for n-qubit quantum registers as discussed recently in the literfit8fe

3. Program organization
3.1. Overview

The FEYNMAN program has been designed to support the simulationaibit quantum systems (quantum
registers). Apart from the definition and initialization of quantum registers, this requires to transform their state
either by unitary or non-unitary operations until the result of the computations caeadeoff (i.e. measured)
from the register. For any realization of quantum registers, this makes it necessary within the simulation to include
the coupling of the system to its environment, both for wanted and unwanted interactions. However, not all of
these practical ‘requirements’ can be realized in a first implementation of a program. In the present version of the
FEYNMAN program, our aim is to establish the basic data structures and to provide a simple access to the unitary
transformation of:-qubit quantum registers with no further restriction:onther than given by the memory and
time-limitations of the computer.

As mentioned before, thesfy NMAN program is in several respects different from other codes. Although our pro-
gram is presently restricted to perfotmitarytransformations of quantum registers, it equally supports—whenever
possible—the representation of their states either in terms of state vectors or density matrices. In composition of
two or more quantum registers, addition to, the program also supportdf@mpositionnto various parts by
applying the partial trace operation and the concept of the reduced density matrix. A further advantage is that the
FEYNMAN program provides an interactive tool for which the knowledge of a few (main) procedures is enough
to carry out most of the computations. When compared to a purely numerical implementation using, for instance,
C++ or hvA, the FEYNMAN program enables the user to perform the computation either in a symbolic or numer-
ical form, without that much extra code has to be developed and tested. Finally, skmeeMy itself offers a
large set of built-in mathematical functions, this may help extend the program into various directions in the future,
including topics such as non-unitary quantum operations, quantum measures, decoherence, error correction, an
several others.

Following MAPLE’s philosophy, the EYNMAN program has been organized as a hierarchy of currently about
25 procedures at different level of complexity. Apart from several low-level subprocedures, which remain hidden to
the user, the main body of the procedures can be used either for interactive work or simply as a language elemen
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in order to build-up commands at some higher level of the hierarchy. As discussed below, these procedures are
divided into two groups, thauxiliary procedures as the building blocks (and data structures) of the program as
well as themain commands, which help operate on this structures. A list of all user-accessible procedures are
displayed inTables 3 and Aas seen from these tables, use is made of rather long names in order to improve
the readability and the maintenance of the program. Moreover, in order to distinguisBth@&kN procedures

from MAPLE's internal ones, all names of the main commands start with the Fefixnan_. A more detailed
description of some selected commands, including the argument options and some additional information, can
be found inAppendices A and Bvhich follow the style of the help pages of ALE and The Maple Handbook

Table 3
Auxiliary procedures of the EYNMAN program to represent the basic data structures. These procedures are utilized mainly for keeping related
information together and to facilitate the data handling with and within the program

Procedure Explanation
cbs() To represent a computational basis sta}gec of ann-qubit quantum register in the decimal ba€ls |1), ..., |k), ..., 2" — 1)
qgbit() To represent an one-qubit state) = a|0) + b|1) in terms of the two (complex) coefficiendisandb in the computational basis

10) = ((l)) and|l) = ((1)) respectively
gregister() To represent an-qubit quantum register either in terms of its-@imensional state vector or th& 2 2" density matrix
goperator() To represent an-qubit quantum logic gate or quantum operator (unitary transformation)

goperation()  To represent an-qubit quantum operatiofi(p) =) ; Ei,oE;r by means of its operation elements (Kraus operatbys)

Table 4
Main procedures of theeErNMAN program as available by the user for interactive work. For three selected commands (markédlejoar),
a more detailed explanation is displayediippendix B

Procedure Explanation

Feynman_apply() Applies a givergoperator() or qoperation() to the state vector or density matrix of argubit quantum register
Feynman_norm() Calculates the norm (or trace) of the state vector or density matrix of a quantum register
Feynman_normalize() Normalizes the state vector or density matrix of a quantum register

Feynman_operator_function()* Evaluates an operator function for a given matrixjoperator() and returns its explicit matrix representation
Feynman_operator_type()* Determines whether a given matrix @wperator() has some particular property (hermitian, normal, etc.)
Feynman_plot_Bloch_vector() Returns a 3D plot of the Bloch-sphere representation for a suhii@ or for a selected qubit within a given

gregister()

Feynman_plot_probability() Returns a 2D (or 3D) histogram plot of the (squared) amplitudes for a pure or mixed state as represented by
thegregister()

Feynman_print() Prints the state vector or the density matrix of a quantum register in Dirac notation (by using the standard

computational basis)

Feynman_product()* Carries out several types of product operations (inner, outer, Kronecker, Hadamard, etc.) for two or more
given quantum operators and/or quantum registers, respectively

Feynman_qgate() Carries out some pre-defined quantum gate on a sequenbe(ysf

Feynman_quantum_operator() Evaluates the explicit matrix representation of various pre-defined and distributed one-, two-, three-, or
n-qubit quantum operators

Feynman_set_gregister() Returns ayregister() in some (pre-defined) state such as the computational basis states, the Bell states, or
several others

Feynman_trace() Calculates the reduced density operators @kagister() (i.e. the partial trace) and the expectation values for
given matrix operators

2 A complete description of all user-accessible (exported) commands is provided by the fRaynatn- cormands. pdf which is
distributed together with the code.
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by Redfern[19] from earlier years. A complete description of the program is given in the m&m=yatnan-
conmands. pdf and is distributed together with the program.

Beside the benefits in using APLE, there are a few drawbacks concerning the performance ofghe AN
program. Even if purely numerical computations are to be carried out, our procedures are slower by about 1-2
orders of magnitude when compared with most traditional languages. This limitation and the storage managemen
of most CAS presently restricts the number of qubits to about 6-8 if complex computations are performed. To
improve the performance of the program, either a ‘translation’ of the code into some compilable programming
language or the concept of decision diagrd®t§ could be used but are currently not supported by the program.

3.2. Auxiliary procedures

Any (automatic) transformation of amqubit quantum system due to quantum logic gates, circuits, or even
guantum algorithms must provide the user with a fast and simple access to the underlying quantum-mechanical ob
jects such as the quantum register or some (unitary) transformation. In fact, these registers and gates are the centr
‘building blocks’ which allow one to simulate the behavior of genesatj(bit) systems in quantum computing. To
facilitate the handling of these and similar (data) structures, a numlaeixdfary procedures have been defined in
the FEYNMAN program to deal with qubits, quantum registers, quantum operators, and several other structures as
described in Sectiog; cf. Table 3

The use of such auxiliary procedures, which return their argumarggaluatedhas several merits. Apart from
having related information together, it clearly simplifies the communication with and within the program. The
procedureyregister(), for example, represents a generajubit quantum register in either a pure or mixed state—
including the information about the number of qubits, an identifier, as well as the state vector or density matrix
of the register—, without that the user needs to be concerned about of these details. Similappethr()
command is used to specify a particular quantum operator (unitary transformation) by meakesyafosdor a
matrix, if given explicitly. The use of keywords, together with the designation of the qubits on which the operator
acts, will later simplify the definition of quantum circuits and algorithms. In practice, there is a large number of
predefined gates available in theYdnMAN program which are taken from an internal ‘gate library’ and distributed
over any given number of qubits by using the commarrtynman_quantum_operator(), see below.

In addition to quantum registers, quantum operations, etc., there is the procesijit® represent a compu-
tational basis state. This auxiliary procedure is typically used in the input of some main commands to refer to
some particular basis states such@sor |[1011) (given either in decimal or binary notation). Together with the
command-eynman_set_gregister(), a call to the procedurebs() helps set-up and initialize a quantum register in
a well-defined state at the beginning of the simulation.

3.3. Main commands

Having defined some proper ‘data structures’ aboventhimprocedures are provided to set-up and manipulate
these data according to the rules of quantum computing. Apart from the unitary transformation of some quantum
register, these commands enable one to compose or to reduce quantum registers and operators, or to visuali:
(plot) the state of qubits and quantum registers. The comrRayrénan_plot_probability(), for example, returns a
histogram of the (squared) amplitudes for the pure or mixed state of a quantum register as represgedetkng.

Table 4shows a list of all the commands which are presently accessible by the user. For a few selected commands
in addition, a more detailed explanation can be foundppendix B

There are several ways to define and to ‘initialize’ the state of-gnbit quantum register. Beside its explicit
construction by means of thgbit() command, there is tieeynman_set_gregister() which helps to create quantum
registers in various (pre-defined) states such as the computational basis states, the Bell states, or various other
Separable states of a quantum register, moreover, can be composed as Kronecker products of two or more quantu
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registers by using the commaReynman_product(). Typically, however, it is better to start from either a computa-
tional basis staték)gec Or a randomized quantum register to which then a proper set of transformations is applied
for initialization.

There are two procedures in th&e ¥ NMAN program which provide (and perform) unitary transformations.
While the commandreynman_qgate() is designed to carry out &é€yworddefined) quantum gate directly onto a
given sequence of independentbits(), the proceduré&eynman_quantum_operator() returns the explicit matrix
representation of these gates, distributed due to the designation of the target qubits. More easily, however, the same
transformation is often obtained by meansFefinman_apply() with which one may act with goperation() or
goperator() directly onto the state vector or the density matrix of a given quantum regigégidter()].

Finally, to reduce the density operator of a giwgagister(), the command-eynman_trace() can be invoked
to calculate theoartial trace over one or several qubits. The same procedure also allows to calculate the expec-
tation value of a matrix operator with respect to a given quantum state. Further commands concerning the use of
non-unitary operations or time-dependent transformations will be ‘added’ later in a forthcoming version of the
program.

3.4. Distribution of the program

Following MAPLE’s recent developments, th&FNMAN program is provided as a library which can be loaded
by thewi t h( Feynman) command. This library contains all the procedures as listddlites 3 and dalong with
several subprocedures which remiiddento the user. From the CPC library, the iNMAN program is distributed
as a (compressed) p-file f eynman. zi p from which theFeynnan root directory can be obtained. This root
directory contains the library files, the source code aféad. e for the installation of the package as well as
the program manudteynman- conmands. pdf . This latter document explains all the user relevant commands
along with the output format, their argument options as well as various additional information which is of interest
for the application of the procedures. TReynman root directory also contains an example of @apl ei ni t
file which can be modified and incorporated into the user's home. Making use of suchpd ei ni t file, the
Feynman library should then be available like any other module of M.

4. Interactivework using the FEYNMAN procedures: Examples

To illustrate the interactive use of thee¥NMAN procedures, a few simple examples are displayed below as
they might occur, for instance, in an introductory course on quantum computation. Apart from these test cases, of
course, the same procedures can be utilized also for dealing with more complex tasks. Since, however, some of
the procedures result in a rather largaME output, a colon (instead of a semicolon) is used below at the end of
several commands in order to restrict the printed output in this section.

4.1. Identity of simple quantum circuits

In a first example, let us access some of the pre-defined (one-qubit) quantum gatesefiivaN program
and verify, that they fulfill the two well-known relationsY X = —Y and X R, (6)X = R, (—0), respectively [cf.
Ref.[7], exercise 4.7]. To this end, we just enter aaM.E’s prompt (having loaded theeFr NMAN module before)

> X := Feynman_quant um operator ("X");

[0 1]
Xo= ]
[1 0]
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> Y := Feynman_quant um operator ("Y");

and form the produck Y X as usual by

> X VY. X

which confirms this identity immediately. For the second relation, similarly, we may type
> Ry := theta -> Feynman_quantum operator("Ry", theta);
Ry := theta -> Feynman_quantum operator("Ry", theta)

> X. Ry(theta). X Ry(-theta);

[ theta theta ] [ t heta theta ]
[cos(----- ) sin(----- )] [cos(----- ) sin(----- )]
[ 2 2 1 I 2 2 ]
[ 1.0 ]
[ theta theta ] [ theta theta ]
[-sin(----- ) cos(----- )] [-sin(----- ) cos(----- )]
[ 2 2 1 I 2 2 ]

to obtain the expected result. For one-qubit quantum gates, in addition, it was proved thatsth2iuitary
matrices can be expressed always in terms of rotations around the three Cartesian axes, together with an overa
phase factor'é with 0 < ¢ < 2r [cf. Ref. [7], exercise 4.4]. As another short example, therefore, let us confirm

explicitly that the Hadamard gaté] = i(i_ll), is equivalent to a rotation around theaxis by the angler/2,

V2
followed by a rotation around the (formet}axis by 7, and multiplied by a phase factor which still needs to

be determined. Within theEYNMAN program, this angle is easily derived by first constructing the matrix
PRy ()R (7/2):

> Ry := al pha -> Feynman_quant um operator ("Ry", al pha):
> Rx := beta -> Feynman_quant um operator("Rx", beta):

> U := exp(l*phi) * (Rx(Pi).Ry(Pi/2));

[ 1/ 2 1/ 2]
[-2/2 | exp(phi 1) 2 -1/2 1 exp(phi 1) 2 ]
U:=] ]
[ 1/ 2 1/2 ]
[-2/2 | exp(phi 1) 2 1/2 1 exp(phi 1) 2 ]

and by solving the (matrix) equatidin = H with respect to the phasgg i.e. for all the matrix elements simultane-
ously
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> H : = Feynman_quantum operator ("H"):
> solve({U1,11=H1,1], U1,2]=H1,2], U21]=H21], U2 2]1=H2,2]}, phi);
{phi = 1/2*Pi}

Apparently, the angleé = /2 fulfills all the four equations and can be used to mékequivalent to the Hadamard
gate.

> subs(phi=Pi/2, U;

[ 1/2 172 ]
[2 2 ]
[---- -]
[ 2 2 ]
[ ]
[ 1/2 1/ 2]
[2 2 ]
[---- -]
[ 2 2 ]

Using similar steps, of course, a large number of other identities can be shown (or found) which would require
rather lengthy computations otherwise.

4.2. Probability of measuring a computational basis state

So far, we just dealt with one-qubit quantum gates, for which most of the matrix operations could be easily
carried out by hand. In practise, however, the complexity of such operations increases rapidly as quantum registers
with several qubits occur in some computation. For the sake of simplicity, let us consider here the case of two
qubits A and B which, initially, are both supposed to be in the statg) = [¥z) = (|0) + |1))/+/2, taken in the
computational basis of their corresponding Hilbert spdt¢gd_et us further consider the composite state of these
qubits, i.e. the tensor produigt) = [V 4) ® |¥g), and the matrix

1 -1 0 O
U= 111 1 0 o
J2|0 0 -1 -1
0O 0 1 -1
which acts on both qubitd/|v) = |¢), in order to form a (two-qubit) state. For this sté&e, we may ask for the
probability to ‘find’, i.e. to measure, the (computational) basis §@te.= |10). Mathematically, this requires of

course to calculate one of the expressions

Tr(1¢)(¢| Pro) = (¢| Prol9), (15)

which are known to be equivalent for apure state|¢) of the system. Within the EvNMAN program, there exist
several ways to accomplish such computations owing to the (pre-)definition and the combination of various quan-
tum registers (gregister) and quantum operators (qoperators) in the code. Starting from the single-qubit notation
above, we may construct the two-qubit stgtgés and|¢) by typing

> psi[A gregister(id, gbit(id, 1/sqrt(2), 1/sqrt(2))):

> psi[B] gregister(id, gbit(id, 1/sqrt(2), 1/sqrt(2))):
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> psi = Feynman_product (" Kronecker", psi[A], psi[B]);

[1/2]
[ ]
[1/2]
psi := gregister(id, 2, [ 1)
[1/2]
[ ]
[1/2]

and

> U := qoperator(1/sqrt(2)*Matrix([[21,-2,0,0], [21,1,0,0], [0O,0,-1,-1],
[0,0,1,-1]1])):

> phi := Feynman_appl y(U, psi);
[ 0 ]
[ ]
[ 2]
[ 2 ]
[ ---- 1]
[ 2 ]
phi := qgregister(id, 2, [ 1)
[ 1/ 2]
[ 2 ]
[- ----]
[ 2 ]
[ ]
[ 0 ]

respectively. The projection operatBig, moreover, is given by the 2-qubit density operaag = |10)(10|, or
simply the outer product of the computational basis state

0
0 1 0
0 -wei0=(;)e (o) -}
0
with itself.
> aux_vector := Vector([0,0,1,0]):
> P[10] := Feynman_product ("outer", aux_vector, aux_vector);

O 0 0 0]
|

[

[

[0 0 o0 0
P[10] := [ ]

[0 0o 1 0

[ ]

[0 0 o0 0



T. Radtke, S. Fritzsche / Computer Physics Communications 173 (2005) 91-113 107

From P, the expectation valuép| P1ol¢) = (¢|10)(10|¢) respectively the probability for measuring the 2-qubit
system in the basis staf£0) is then calculated as the inner product@f and the auxiliary stat@ig|¢)

> aux := Feynman_appl y(qoperator(P[10]), phi):
> Feynman_product ("i nner", phi, aux);

1/2

if all the necessary steps are carried out explicitly. In tlEe'¥#MAN program, the same computation can be per-
formed much shorter because a large number of frequently required quantum states and (projection) operators are
pre-defined already in the code. Since we hgig) = |vg) = |+) and, hencejy4) ® |¥p) = |[++), we could

create the starting stat¢r) within a single line:

> psi = Feynnman_set_qregister("++");

[1/2]

[ ]
[1/2]
psi := gregister("++", 2, [ 1)
[1/2]

[ ]
[1/2]

... and similarly for the projection operat®io:
> P[10] := Feynman_quantum operator ("projector", cbs("10")):

The transformationy) = U|y) is then carried out as above, using geynman_apply() command.
Now the probability T¢|¢)(¢|P1o) can be calculated by means of

> Feynman_trace(P[10], phi);

1/ 2.

This second way in doing the computations ‘proves’ also that the relétionis fulfilled for the pure statép)
from above.

4.3. Partial trace of a Bell state

In our last example, finally, we demonstrate how the partial trace can be calculated for the density matrix of a
composite system. Suppose we have the bipartite systerand need to investigate the behavior of the subsystem
A without that the systenB is observed, i.e. if we wish to ‘trace out’ the dependenceBofror aproductstate
048 = pA ® pB, the density matrix of the systernis obtained simply by taking the trace ovyef

p* =Trp(p" ® p®) = p* Tr(p"),

which, however, does not apply for aeptangledstate. In the case of an entangled system, the reduced density

operators of the subsystems cannot be read off so easily but requires one to carry out the partial trace @)eration
explicitly. If, for example, we consider the composite systém in the Bell statg® ™) = %
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> Phi := Feynman_set_qregister("Bell","Phi+");
[

[

[

[

[

[

Phi := qgregister("Phi+", 2, [
[

[

[

[

[

[

we may calculate the density matyg® of the first qubit by tracing out the second qubit:
> rho[ Al := Feynman_trace(Phi,[2]);

[1/2 0]

rho[A] := gregister(id, 1, [ 1)

[ O 1/ 2]

From the commangeynman_trace(), this matrixp4 is then obtained as the third argument of the auxiliary proce-
duregregister(), in line with the (internal) use of quantum registers to represent either a pure or mixed state of an
n-qubit system. Taking the trace over the squared reduced matjx; fr= % we easily see that the subsystem

A is in amixedstate, and that the same applies also for the subsyBteming to the symmetry of the Bell state
|®T). Therefore, although the composite system was originally in a pure quantum state, the two subdystems
and B by themselves are statistical mixtures of states, a result which is well known from the litdidtore is

worth here to show again explicitly. The same fact applies forapgnquantum system, if a principal systefnis
entangledwith its environmentB (see SectiorR.2.3.

5. Summary and outlook

With the FEYNMAN program, an interactive and flexible tool has been developed for the analysis and simulation
of n-qubit quantum systems. In a first version of this program, our aim was to design the basic (data) structures
for quantum computations, such as quantum registers and quantum gates, and to provide many of the elementar
operations which are needed in order to work with these data structures. Using the computer algebra spsem M
as the computational framework, moreover, we are able to support both, symbolic and humerical computations as
well as various hybrid forms, in contrast to many other (commercially or free-accessitleatorswhich are
available today for doing quantum computations.

There are several extensions of thevlRMAN program which are desirable for future applications. Apart from
guantum registers and operators as defined above, the implementation and the support of quantum operations ar
guantum circuits (as additional data structure) might help in the analysis and optimization of new algorithms. Such a
development will facilitate also the manipulation of quantum registers with an increasing number and complexity of
the gates as required, for instance, by various (active or passive) error correction schemes. Other possible extensior
refer to the implementation of differemeasuresnto the FEYNMAN program in order to control the dynamics,
entanglement, or the decoherence of quantum algorithms if ‘realized’ by different physical (qubit) systems. Several
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of such measures have been implemented already and are currently investigated in dependence of the number o
qubits. With these and a few further extensions, we therefore hope thatiheviAN program will be helpful not

only for teaching the basic elements of quantum computation and quantum information theory but might find its
way also into the daily research work in the future.

Appendix A. Auxiliary commands

As explained in Sectio8, there are a number of general terms and associated data structures which occur rather
frequently in the input and output of the main procedures of theNMAN program. These structures refer, for
instance, to the notion of a quantum register or quantum operator and are utilized as the central building blocks of
the program. To facilitate the handling of these data structure (i.e. the communication with and within the various
procedures), here we first describe all auxiliary procedures as discussed in Seztidthough several tests are
made on the input of these commands, they usually return their parameéaluatecand, hence, mainly serve
as astoragein order to keep the relevant information together in the simulation oMtgubit systems.

e cbs([n], k)
Auxiliary procedure to represent titemputational basis staté)gec within ann-qubit basis in decimal nota-
tion.
Output: An unevaluated call tobs() is returned.
Argument options: ([ng, Ny, ...], k1, K2, .. .) to represent aompositeomputational basis staltl, 2, . . .)dec,
where n refers to the number of qubits in thth subspace.
*([n1, N2, ...1, kg, ko, ..., “simplify”) to evaluate the composite computational basis stafe= |k1, k2, ...)
and to return the corresponding (tensor) product stadgin].k) with n = )", n; and where they; again refer
to the number of qubits in theh subspace.
*(“00..01") to represent a basis state in the converbamdry notation; a computational basis stabs([n],k) in
thedecimalnotation is returned.
Additional information: A basis ofrn qubits contains the computational basis stdtéys |1), ..., |k), ...,
|2" —1)}. Owing to the definition of @omputational basigherefore, the restrictioky < 2" — 1 must apply
forall ;.
See also: gbit(), gregister().

e gbit(id,a,b)
Auxiliary procedure to represent a qubit with identifier id in terms of its complex amplitudasd » with
respect to the two (computational) basis stafes= ((1)) and|1) = ((D i.e.[y) =al0) + b|1).
Output: An unevaluated call tgbit() is returned.
Additional information: The identifier id must be of typeanme, string, ori nteger.
* |f both coefficientsg andb, are given numerically they must fulfill the relatitw(? + |2 = 1.
See also: gregister().

e qoperation([E1, ..., E,])
Auxiliary procedure to represent a user-defimequbit quantum operatiofi(p) = ) ; E,~,0E;r in terms of the
operation elements (Kraus operatoFs)
Output: An unevaluated call tqoperation() is returned.
Argument options:
Additional information: In the present version, the proceduyeperation() is not fully supported by the
program. In general, the same parameter lists (argument options) as for the coepamndn_quantum_
operation() can be used here. The details of this command, however, will be explained only in a forthcoming
contribution.
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* Providing a general data structure for different types of quantum operations, no evaluation is associated with
a call to this auxiliary procedure. This applies, in particular, for all pre-defined quantum operations; instead,
it is mainly utilized in order to simplify the definition of quantum circuits (in a later step of the program
development) and to improve the readability of the code.
* The (explicit) representation of the corresponding operation elements is obtained by means of the main
proceduré=eynman_gquantum_operation().
See also: qoperator()

e qoperator(n,“X”,[k])
Auxiliary procedure to represent (the distributed form of) the pre-defined single-qubit quantum opérator
acting on thekth qubit in anrz-qubit system.
Output: An unevaluated call tqoperator() is returned.
Argument options: (n, U, [i1, ..., ix]) to represent the distributed form of an user-defined matrix opetator
acting on thet qubitsiy, ..., iy of ann-qubit system.
* The same parameter lists (argument options) asdpiman_quantum_operator() can be used here.
Additional information: Providing a data structure for a large set of quantum operators, no evaluation is
associated with a call to this procedure. The explicit matrix representation of the corresponding quantum
operator is obtained by means of the main proceéayaman_quantum_operator().
See also: qoperation(), Feynman_quantum_operator().

e (gregister(id, gbitq, gbity, ..., gbity)
Auxiliary procedure to represent anqubit quantum register with identifier id in terms of its individual qubits
gbity, gbit,, . .., gbit, (which implies that the quantum register represents a product state initially).
Output: A quantum registegregister(id, n, V) is returned where is the number of qubits and V & 2limen-
sional state vector.
Argument options: (id, n, V) to represent an-qubit quantum register wheié is a valid 2 -dimensional state
vector.
*(@id,n, M) to represent am-qubit quantum register wher#/ is a valid 2 x 2" density matrixp =
Y2 heilidl.
Additional information: The identifier id must be of typeanme, string, ori nteger, respectively.
* A gquantum register can contain any number of qubits. For the caseobits in a product state (i.e. if the
qubits are not entangled), &-Blimensional state vectdf is generated as the tensor product of iheeparate
single-qubit input statelsyy) = ck|0) + cX|1):

Y12,..0)=1¥1) ® - Q |¥n)
co
c1

=¢0[00...00) +¢1]00...00) + -+ con_1/11... 1 =| |,
Con_1

where}", |¢;[>=1.
See also: gbit(), gregister().

Appendix B. Selected commands of the FEYNMAN program

To illustrate the use of the B¥NMAN program, this appendix describes in more detail a few (selected)
commands fromTable 4 Similar as inAppendix A thesemain procedures are briefly explained together
with their optional arguments and some additional information, following the style of the foFimerMaple
Handbook[19]. For the list of arguments, the notation froAppendix A is used in the input and output;
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for example, a notation like . . qregi ster,, qregi ster,, ... means that the user may type explicitly

., qregister(idg ng V), qregister(idg, ng Vp), ... inthe parameter list, or first assign these
(unevaluated) calls tgregister() to some variables, saya andwb, and later only use these variables at input time:
..., Wa, Wb, ....Acomplete list of all the exported commands of thevikMAN program can be found in the
manual fileFeynman- conmands. pdf which is distributed together with the code.

e Feynman_operator_function(A, f)
Evaluates the operator functigf(A) = Y, f(x;)|a;)({a;| of a normal matrix operatat by using its spectral
decomposition.
Output: A matrix is returned.
Argument options. (goperator, f) to apply the operator function f to the mattixas described by goperator;
a qoperator is returned which contains an explicit matrix representgtidn of the corresponding operator
function.
*(A, f, [taylor, r]) or (qoperator, f, [taylor, r]) to carry out arth-order Taylor expansion of (A) instead of the
spectral decomposition; a matrix or goperator is returned in this case owing to the type of the argument.
Additional information: The functionf must be of typerat hf unc, e.g..x -> sin(x).
*The operato must represent a normal operator with a proper spectral representatian=i.g;; A;la;) (|
where; are the eigenvalues of and|q;) the eigenvectors.
See also: goperator(), Feynman_quantum_operator().

e Feynman_operator_type(A, hermitian)
Returng r ue if the matrix operator is hermitian, off al se if this is not the case.
Output: A Boolean value of eithetrr ue or f al se is returned, oFAI L otherwise.
Argument options: (qoperatorhermitiar) to determine the same for the matrix operator as described by gop-
erator.
*(A, normal) or (qoperatomormal) to returnt r ue if the matrix operator (or goperator) is a normal operator,
orf al se if this is not the case.
*(A, positive or (qoperatorpositive to returnt r ue if the matrix operato (or qoperator) is a positive oper-
ator, orf al se if this is not the case.
*(A, positive_definiteor (qoperatompositive_definitgto returnt r ue if the matrix operatord (or qoperator)
is a positive definite operator, bal se if this is not the case.
*(A, unitary) or (qoperatomnitary) to returnt r ue if the matrix operator (or goperator) is a unitary operator,
orf al se if this is not the case.
Additional information: The procedure returnSAl L if, for the operatorA, the given property cannot be
determined uniquely, e.g., if two symbolic expressions cannot be recognized to be equivalent due to an unsuc-
cessful internal simplification.
*For matrix operators with ‘numerical’ elements, it may happen that a Booleantvakie returned for some
particular property even if MPLE's internal procedure returrfsal se. In this procedure, small deviations
are accepted for a given property by rounding the numerical values to an internal accubagy ¢ - 2
digits. Note that this threshold (on the accuracy of the numerical results) depends on the current setting of
MAPLE's Di gi t s variable.
*A positive operatod is defined to be an operator whose expectation valu€|v) is a real and non-negative
number for alljv).
*It can be shown that any positive operator is also hermitian and déyanal representation) ", A; i) (i,
with non-negative eigenvalues.
* An operatorA is calledpositive definiteéf (v|Ajv) > O for all |v) #£ 0.
*An operatorA is said to benormalif ATA = AAT. An operator is normal if and only if it can be diagonalized
with respect to some orthonormal basis (spectral decomposition theorem).
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*An operatorA is said to behermitian (or self-adjoint) if AT = A; obviously, any hermitian operator is also
normal.
*A operatorA is said to beunitaryif ATA = AAT = I; hence, any unitary operator is also normal.
See also: Feynman_quantum_operator().
Feynman_product(“inner”, qregister|, gregister;)
Calculates the inner produ@registey|gregister), known also as the scalar product of the two quantum states.
Output: An expression or complex number is returned.
Argument options:
(i) Inner products (or scalar products)

(ii)

(iii)

(“scalar”, gregistar gregister) to calculate the same product; the two stringsiner " and" scal ar "

always refer to the same definition of the product.

*(“scalar”,v, w) to calculate the scalar product for the two (column) vectoasdw.

Kronecker products (or tensor products)

(“Kronecker”,v1, v2) to calculate the Kronecker produgt® v, of the vectors; andv, with dimensions

m andn, respectively; arfm x n)-dimensional vector is returned.

*(“Kronecker”, A, B) to calculate the Kronecker produttp B of the operatorgt and B if given in terms

of two (m x n) and(p x ¢) matrices; armp x nr) matrix is returned.

*(“Kronecker”, qoperatqy, qoperatog) to calculate the Kronecker produdt® B of the two matrix op-
eratorsA and B as described by qoperatoand goperatgy, respectively; a qoperator is returned in this

case which contains the explicit matrix representation of the operator product.

*(“Kronecker”, gregistar gregister) to calculate the Kronecker product of the two states as described by
the (n-qubit) gregistgrand the g-qubit) gregister, respectively; arim + n)-qubit gregister is returned.

At output, the gregister contains a state vector representation if both quantum registers were given by state
vectors at input time, and a density matrix representation otherwisgegfster().

*(“Kronecker”, op-statg, op-stats, . . .) to calculate the Kronecker product op-stageop-statg ® - - - of

two or more matrix operators, density matrices or gregisters; all op-state’s must be of the same type (i.e.
Mat ri x,qoper at or orgregi ster). AMatri x,qoper at or orqr egi st er isreturned depend-

ing on the type of the arguments; in the case of gregisters, the state vector representation is used at outpu
time only if all the gregisters at input contained state vectors (and no density matrix representations).
*(“Kronecker_power”, A, r) to calculate theh powerA®” of the (p x g) matrix operatord; a p” x ¢”-
dimensional matrix is returned.

*(“Kronecker_power”, goperator, r) to calculate thth power of the matrix operator as described by
goperator; a goperator is returned which contains the explicit matrix representation of the product.
*(“Kronecker_power”, gregister, r) to calculate thth power of the state as described by theubit
gregister. Depending on the representation of the quantum state in gregister, a gregister in state vector ol
density matrix representation is returned.

*(“Kronecker_power”, “Hadamard”, n) to calculate the Hadamard transformapfbits, H®", using the
algebraic formula

1
D =D )yl
V2=

Outer products

(“outer”, gregistey, gregistey,) to calculate the outer produjet) (w| of the two state vectors as described
by the (-qubit) quantum registers gregisfeand gregistey, respectively; a gregister containing2 x
2")-dimensional matrix is returned (not necessarily a valid state!).

*(“outer”, v, w) to calculate the outer product of tiwedimensional (column) vectors. Anx n matrix is
returned.

H®" =
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(iv) Hadamard product
(“Hadamard”, A, B) to calculate the Hadamard proddct B of the two matrices with the (same) di-
mension(m x n). The Hadamard product is defined as the entrywise prod4ct:B); ; = A; ;B; j and,
hence, is a submatrix of the Kronecker prodac® B. An m x n matrix is returned.

(v) Traceproductsor Hilbert—Schmidt products
(“trace”, A, B) or (“Liouville”, A, B) to calculate the trace (or Hilbert—Schmidt or Liouville) inner product
(A, B) = Tr(ATB). An expression or a complex number is returned.

(vi) Commutatorsand anticommutators
(“commutator”, A, B) to calculate the commutatiot, B] = AB — B A for two quadratian x n) matrix
operators A and B; an x n matrix is returned.
*(“anticommutator”, A, B) to calculate the anticommutafdr, B} = AB + B A for two quadratian x n)
matrix operators A and B; am x n matrix is returned.

Additional information: In finite-dimensional (complex) vector spaces, theer product spacend the

Hilbert spaceare the same; these notations are therefore often used as synonyms.

See also: Feynman_quantum_operator(), qoperator, qgregister.
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