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Abstract

During the last decade, several quantum information protocols, such as quantum key distribution, teleportation or quantum computation, have
attracted a lot of interest. Despite the recent success and research efforts in quantum information processing, however, we are just at the beginning
of understanding the role of entanglement and the behavior of quantum systems in noisy environments, i.e. for nonideal implementations.

Therefore, in order to facilitate the investigation of entanglement and decoherence in n-qubit quantum registers, here we present a revised
version of the FEYNMAN program for working with quantum operations and their associated (Jamiołkowski) dual states. Based on the imple-
mentation of several popular decoherence models, we provide tools especially for the quantitative analysis of quantum operations. Apart from the
implementation of different noise models, the current program extension may help investigate the fragility of many quantum states, one of the
main obstacles in realizing quantum information protocols today.

Program summary

Title of program: Feynman
Catalogue identifier: ADWE_v3_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADWE_v3_0
Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland
Licensing provisions: None
Operating systems: Any system that supports MAPLE; tested under Microsoft Windows XP, SuSe Linux 10
Program language used: MAPLE 10
Typical time and memory requirements: Most commands that act upon quantum registers with five or less qubits take � 10 seconds of processor
time (on a Pentium 4 processor with � 2 GHz or equivalent) and 5–20 MB of memory. Especially when working with symbolic expressions,
however, the memory and time requirements critically depend on the number of qubits in the quantum registers, owing to the exponential dimension
growth of the associated Hilbert space. For example, complex (symbolic) noise models (with several Kraus operators) for multi-qubit systems
often result in very large symbolic expressions that dramatically slow down the evaluation of measures or other quantities. In these cases, MAPLE’s
assume facility sometimes helps to reduce the complexity of symbolic expressions, but often only numerical evaluation is possible. Since the
complexity of the FEYNMAN commands is very different, no general scaling law for the CPU time and memory usage can be given.
No. of bytes in distributed program including test data, etc.: 799 265
No. of lines in distributed program including test data, etc.: 18 589
Distribution format: tar.gz
Reasons for new version: While the previous program versions were designed mainly to create and manipulate the state of quantum registers, the
present extension aims to support quantum operations as the essential ingredient for studying the effects of noisy environments.
Does this version supersede the previous version: Yes
Nature of the physical problem: Today, entanglement is identified as the essential resource in virtually all aspects of quantum information theory.
In most practical implementations of quantum information protocols, however, decoherence typically limits the lifetime of entanglement. It is
therefore necessary and highly desirable to understand the evolution of entanglement in noisy environments.

✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).
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Method of solution: Using the computer algebra system MAPLE, we have developed a set of procedures that support the definition and manip-
ulation of n-qubit quantum registers as well as (unitary) logic gates and (nonunitary) quantum operations that act on the quantum registers. The
provided hierarchy of commands can be used interactively in order to simulate and analyze the evolution of n-qubit quantum systems in ideal and
nonideal quantum circuits.
© 2007 Elsevier B.V. All rights reserved.

PACS: 03.67.Lx; 03.65.Ud; 03.75.Gg

Keywords: Quantum register; Quantum operation; Channel; Decoherence

1. Introduction

During the last decade, the field of quantum computation and information has become a rapidly growing research area with
applications ranging from quantum teleportation [1] and quantum cryptography [2] to superdense coding [3] and efficient quantum
computations [4,5]. These applications are famous examples of quantum information protocols, i.e. procedures in which one acts on
quantum states in order to achieve tasks that are not possible in classical information processing. In all these protocols, entanglement
has been identified as the central resource that is necessary in order to ‘exploit’ the remarkable features of quantum information
processing [6,7].

Although several of the concepts, which were suggested only theoretically at the beginning of these developments, have mean-
while been implemented with great success in the laboratory [8–10], the fragility of quantum entanglement is still a limiting factor
for many practical realizations. Indeed, the decoherence in quantum states, i.e. their unwanted interaction with the environment, is
a major challenge in all applications. To overcome the difficulties due to the decoherence in the phases and/or amplitudes of com-
plex quantum states, a number of active and passive methods have been suggested to protect and recover the contained quantum
information [11–13].

In dealing with the interaction of (open) quantum systems with their environment, especially the concept of quantum operations
(or completely positive maps) has become a valuable tool to describe the errors and decoherence effects. In contrast to the frequently
applied Markovian approach of master equations [14,15], the use of quantum operations is rather general and does not necessarily
imply assumptions about the strength of the system-environment coupling. Moreover, quantum operations are suitable to describe
discrete error models which are the starting point for quantum error correction methods.

To facilitate simulations of the evolution and behavior of n-qubit quantum systems, we have recently introduced the FEYNMAN

program, a simple quantum simulator within the framework of the general-purpose computer algebra system MAPLE. With this
program, our intention is to provide an easily extendible set of symbolic and numerical utilities, which help shorten some of the
typical calculations as they appear frequently in the simulation of quantum registers. In a first version [16], therefore, we provided
the tools for creating and manipulating quantum registers, for applying quantum gates on quantum registers, or for analyzing their
properties with regard to entanglement, entropy, or their distance from other quantum states [17]. In the present work, we extend
these tools to enable the user to deal also with quantum operations. Specifically, the new commands provide a simple access to
some frequently used decoherence models and enable also a quantitative analysis by implementing several measures for quantum
operations. Moreover, by using the so-called ‘Jamiołkowski dual state’ representation of a quantum operation, many tools for the
analysis of quantum states can now be used also for quantum operations. We therefore hope that the present extension will simplify
the analysis of decoherence phenomena in n-qubit quantum systems and will make the FEYNMAN program an attractive toolbox
for applications in the field of quantum computation and information.

In the next section, we briefly provide some theoretical background on the concept and use of quantum operations, together with
the nomenclature as applied in the FEYNMAN program below. Apart from the formal properties of these operations, this includes
a short discussion on their relation to the (dual) states due to the Jamiołkowski isomorphism as well as on several measures for
characterizing the action of these operations. Based on this background, Section 3 later describes how quantum operations are
implemented in the FEYNMAN program and which new commands are available to work with them. Section 4 then provides four
short examples that illustrate the interactive work with the program and where some of the new features are shown in more detail.
In Section 5, finally, a brief summary and outlook on the possible further development of the program is given.

2. Theoretical background

Positive and completely positive maps play a very important role in the context of quantum information theory, concerning espe-
cially the investigation of decoherence and entanglement in quantum systems. For instance, based on a detailed analysis of positive
(but not completely positive) maps, several criteria have been developed in the past in order to be able to decide whether a quantum
state is entangled or separable [18]. Several of such separability criteria for pure and mixed quantum states were implemented
already in our previous version of the FEYNMAN program [17]. In this section, we now focus on the description of decoherence
phenomena using completely positive maps, briefly referred to as quantum operations. Here, emphasis is placed on the basic defin-
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itions and notations as implemented in the current program extension. For a more detailed introduction to the dynamics and noisy
evolution of open quantum systems we refer the reader to Refs. [14,15].

2.1. Evolution of closed quantum systems

For closed quantum systems, the time evolution of a pure state (wavefunction) |ψ〉 is often governed by a Schrödinger equation

(1)ih̄
∂

∂t

∣∣ψ(t)
〉 = H(t)

∣∣ψ(t)
〉

with the (possibly time-dependent) Hamiltonian H(t). More generally, closed systems are known to follow a unitary time-evolution
operator U(t0, t) that connects some initial state |ψ(t0)〉 at time t0 to the states |ψ(t)〉 at any other time t by

(2)
∣∣ψ(t)

〉 = U(t, t0)
∣∣ψ(t0)

〉
with

(3)U(t, t0) = T̂← exp

[
− i

h̄

t∫
t0

dt ′ H(t ′)
]

and U†U = UU† = I . In the time evolution operator (3), T̂← denotes the chronological time-ordering, i.e. an operator that orders
all products of time-dependent operations in a such way that the operators for the earliest times come to the right and those for later
times follow to the left. For the special case of an isolated (physical) system where the Hamiltonian is time independent, Eq. (3)
simplifies to

(4)U(t, t0) = exp

[
− i

h̄
H(t − t0)

]
.

Similarly, the evolution of a mixed quantum state ρ(t) = ∑
i pi |ψi(t)〉〈ψi(t)| is given by

(5)ρ(t) = U(t, t0)ρ(t0)U
†(t, t0).

2.2. Subsystem evolution and quantum operations

In many cases, a physical system S cannot be considered as isolated or closed owing to its interaction with some environment E.
In these cases, the evolution of the system (without its environment) cannot be described by a Hamiltonian operator any more.
Still, the general formulas from the previous section remain valid for the composite system SE if this is taken to be closed again.
Assuming that the principal system S and the environment E are initially uncorrelated and that the environment was in some pure
(basis) state |e0〉 at that time (which is always possible by performing a purification), the general unitary evolution of the whole
system SE can be written as

(6)ρSE(t) = USE(t, t0)
(
ρS(t0) ⊗ |e0〉〈e0|

)
U

†
SE(t, t0).

The evolution of the subsystem S is then obtained by tracing over the degrees of freedom of the environment

ρ′
S = E(ρS) = TrE

[
USE

(
ρS ⊗ |e0〉〈e0|

)
U

†
SE

]
=

∑
k

〈ek|USE
(
ρS ⊗ |e0〉〈e0|

)
U

†
SE|ek〉

(7)=
∑

k

EkρSE
†
k ,

where {|ek〉} denotes an orthonormal basis for the environment and where, for the sake of simplicity, we have omitted the explicit
time-dependence of the evolution operators and density matrices. Following the notation of the textbook by Nielsen and Chuang [6],
we shall call below the mapping

(8)ρ �→ E(ρ) =
∑

k

EkρE
†
k ,

∑
k

E
†
kEk � I

a quantum operation with the operation elements Ek = 〈ek|USE|e0〉, which are acting only on the subsystem S. In the literature,
such quantum operations are also known as quantum channels, superoperators [7] or completely positive maps (see below), while
the operation elements Ek are sometimes referred to as Kraus operators [19]. Note, however, that the description of a quantum
operation in terms of its operation elements is not unique as seen from the freedom in choosing an orthonormal basis {|ek〉} for
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the environment. In particular, two representations {E1, . . . ,Em} and {F1, . . . ,Fn} of a quantum operation are considered to be the
same if they are related by an m × m unitary matrix (uij )

(9)Ei =
∑
j

uijFj .

Here, one has to append zero operators, if necessary, in order to achieve m = n. Despite this unitary freedom in the operator-sum
representation, there exists a canonical decomposition with a minimum number of operation elements, cf. Section 2.3.1.

In order to describe a physically meaningful evolution of a (sub)system ρ, we require a quantum operation E of the general
form (8) to be a linear operator that maps valid density operators onto valid density operators again. This requirement implies that
a quantum operation E has to possess the following properties:

(i) E is hermiticity-preserving: ρ = ρ† ⇒ E(ρ) = E(ρ)†,
(ii) E is trace-preserving: Tr(ρ) = 1 ⇒ Tr(E(ρ)) = 1 (which requires

∑
k E

†
kEk = I ),

(iii) E is positivity-preserving: ρ � 0 ⇒ E(ρ) � 0,
(iv) E is completely positive: for any extension HE of the initial state space HS , we require that HS ⊗ HE � ρSE � 0 ⇒ [ES ⊗

IE](ρSE) � 0, independent of the particular dimension of HE .

While the first three conditions (i)–(iii) guarantee that the general properties of a density matrix apply also for the final density
matrix E(ρ), condition (iv) might appear less obvious at the first glance. Still, this condition is physically reasonable since we
require not only the local evolution ρ′

S = ES(ρS) of some subsystem S to be positivity-preserving but also any combined evolution
ρ′

SE = [ES ⊗ IE](ρSE) which acts trivially on HE . Otherwise, such a combined evolution could lead to a joint state ρ′
SE that is

not positive and, hence, not a valid density matrix. A well-known counterexample of a positive but not completely positive map
is the transposition operator T, which is also an example for using of a positive map as separability criterion [18]. Although
we have ρ � 0 ⇒ T (ρ) = ρT � 0, the same is in general not true if the operator T is applied only to the subsystem A (or B)
of some composite system AB . In fact, the resulting matrix ρTA = [TA ⊗ IB ](ρAB) is then not always a valid density matrix,
since it may have negative eigenvalues. This can easily be verified, for example, for the maximally entangled two-qubit state
|Φ+〉 = 1√

2
(|00〉 + |11〉) [6].

A popular example of a valid quantum operation and, hence, for a completely positive trace-preserving map is the so-called
(single-qubit) phase damping or dephasing channel, which is one of the most important decoherence models. It describes a diffusive
scattering interaction of the qubit with its environment [6,7]. A possible representation of this phase damping channel in terms of
operation element is given by

(10)EPD(ρ) = E0ρE
†
0 + E1ρE

†
1

with

(11)E0 =
[

1 0

0
√

1 − p

]
, E1 =

[
0 0

0
√

p

]
,

and where p = 0, . . . ,1 can be interpreted as a scattering probability. For p → 1, the quantum operation causes the off-diagonal
elements of the density matrix ρ (of a single-qubit system) to vanish. Therefore, this channel will asymptotically destroy all phase
information which is crucial to quantum information processing. Note, however, that there exist also other representations of the
phase damping channel owing to the unitary freedom (9) in the operator-sum representation (8). One example of such a unitarily
related representation is given by the phase-flip channel with the operation elements

(12)E′
0 = √

1 − p′I = √
1 − p′

[
1 0

0 1

]
, E′

1 = √
p′σz = √

p′
[

1 0

0 −1

]
.

One can show that, for p′ = (1 − √
1 − p )/2, the two representations are unitarily equivalent. Among other pre-defined quantum

operations, the phase-damping channel and the phase-flip channel can be accessed via the Feynman_quantum_operation() command
(see also Table 3).

Finally, in order to avoid confusion about the term decoherence, let us note that it referred originally only to the purely quantum
mechanical dephasing model from above. Today, however, it is used also for other types of interaction with the environment in the
literature.

2.3. Duality between quantum operations and states

Having defined a quantum operation and its fundamental properties in the previous section we recall now an interesting and
powerful connection between quantum operations and quantum states. In particular, for every quantum operation E that acts on
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(a)

(b)

Fig. 1. (a) Given is a quantum operation EAB...Z that acts on the subsystems A, B, . . . ,Z (which may each consist of one or several qubits). (b) The corresponding
dual state ρE is obtained by letting EAB...Z act only on the copied subsystems A′ , B ′, . . . ,Z′ , where each subsystem A′ (B ′, . . .) is in the maximally entangled pure
state P+ = |Φ+〉〈Φ+| with its copy A′ (B ′, . . .).

Table 1
Some important relations between the properties of quantum operations and the properties of their corresponding dual states [21,22]

Quantum operation E Quantum state ρE
Completely positive positive
Trace-preserving positive and Tr′H(ρE ) = 1

dH
1

Hermiticity-preserving hermitian

Factorizable (or pure), i.e. E can be written as E(ρ) = E1ρE
†
1 pure

Unital (or bistochastic) TrH(ρE ) = 1
dH

1 and Tr′H(ρE ) = 1
dH

1

Entanglement breaking separable

a d-dimensional state space H, there exists an associated 2d-dimensional state ρE in the set of the density matrices D(H ⊗ H′).
The so-called dual state ρE reflects the properties of the original quantum operation. This duality is known as the Jamiołkowski
isomorphism [20–22] between hermiticity-preserving linear maps and hermitian matrices.

In the single-party setting, i.e. when we do not distinguish between different subsystems in the d-dimensional state space on
which E acts, we define the dual state ρE ∈ D(H ⊗ H′) so that the quantum operation E acts locally on one subsystem of the
maximally entangled pure state |Φ+〉 in the extended space H⊗H′ as follows

(13)ρE = (IH ⊗ EH′)|Φ+〉〈Φ+| with |Φ+〉 = 1√
dH

dH∑
i=1

|i〉H|i〉′H.

In the multipartite case, we assume that a given quantum operation E acts on an n-partite state space H =HA ⊗HB ⊗ · · ·⊗HZ

with the dimensions dk . Similarly to Eq. (13), the dual state is now defined as

(14)ρE = (IH ⊗ EH′)P +

so that E acts only on the copy in H′ =HA′ ⊗HB ′ ⊗ · · · ⊗HZ′ . The state P + is now given as the tensor product of the maximally
entangled states in each composite subsystem AA′,BB ′, . . . ,ZZ′: P + = P +

AA′ ⊗P +
BB ′ ⊗ · · ·⊗P +

ZZ′ where P +
kk′ = |Φ+

kk′ 〉〈Φ+
kk′ | and

|Φ+
kk′ 〉 = 1√

dk

∑dk

i=1 |ii〉kk′ (cf. [23]). An illustration of the multipartite version of the duality between quantum operations and states
is shown in Fig. 1.

The duality between quantum operations and quantum states is particularly useful as it allows one to characterize a quantum
operation in terms of the well-known properties of its corresponding state. Some of those relations are given in Table 1. In the FEYN-
MAN package, the dual state of a quantum operation can be calculated with the help of the Feynman_qoperation_representation()
command. Moreover, the concept of the dual state is also used by the Feynman_qoperation_type() command to check several prop-
erties of quantum operations and by the Feynman_measures() command in order to evaluate a variety of measures for quantum
operations (see also Table 4).

2.3.1. Related representations of quantum operations
In addition to the operator-sum representation (or Kraus representation) and the description via the corresponding dual state,

there are also other (related) representations of a quantum operation which are used in the literature and in the FEYNMAN program.
The first alternative representation is the ‘superoperator’ matrix L which emphasizes the fact that a quantum operation E is a

linear map (i.e. an operator) acting on density matrices (operators). Therefore, a quantum operation ρ ′ = E(ρ) = ∑
i EiρE

† can be
i
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equivalently characterized in the ‘vectorized’ notation of the linear superoperator

(15)vec(ρ′) = Lvec(ρ) where L =
∑

i

E∗
i ⊗ Ei,

where vec(A) stands for the (column) vector that is obtained by appending all columns of the m × n matrix A to its first column so
that we have a single column of dimension mn (see Ch. 4 in [24]). As follows from the definition (15), the resulting superoperator
matrix L has the dimension d2 × d2 if the operation elements are of dimension d × d .

Closely related to the superoperator matrix L is the Choi matrix (or ‘dynamical matrix’) D being defined as the ‘realigned’
superoperator matrix L: D = R(L). The ‘realignment’ operation R(L) is a well-defined rearrangement of the matrix entries of L

(see [25] and the FEYNMAN program manual). Due to the connection between the spectral decomposition of the Choi matrix and
the operator-sum representation of a quantum operation, the Choi matrix also provides a canonical operator-sum decomposition
where the minimum number of operation elements is determined by the rank of the Choi matrix. We have

(16)D =
r∑

i=1

di |χi〉〈χi | ⇒ E(ρ) =
r∑

i=1

EiρE
†
i where Ei = √

diχ̃i ,

where χ̃i is the matrix that results from the inverse vec(·) operation and r = Rank(D). These canonical operation elements are
unique (up to reordering).

In addition to the connection to the operator-sum representation, the Choi matrix is also related to the Jamiołkowski dual state
ρE = D/d where d = dim(H) is the dimension of the space on which the quantum operation E acts, i.e. d = 2n for an n-qubit
channel. Note, however, that there are slightly different definitions of L and D based on the different versions of the vec(·) operation
[22,26].

2.4. Measures for quantum operations

In many situations it is useful to have, for example, a distance measure to compare some quantum operation describing an actual
physical process to an idealized process (e.g., a quantum gate) [27]. By using the duality (14) between quantum operations and
states, several distance measures for states can be translated to quantum operations in a straightforward way. Symbolically, we can
write

(17)D̃(E,F) = D(ρE , ρF ),

where D denotes one of the well-known (distance) measures for states, such as the trace distance, fidelity, Bures distance and others
which have different advantages and problems depending on the application [27].

In addition to the distance measures, there exist, of course, several quantities that frequently serve as a measure how of well a
quantum operation preserves physical properties or resources like the purity of an input state or its entanglement [28,33]. Such kind
of measures are often applied to characterize the effects of decoherence and noise acting on a quantum register. We do not discuss
these measures here but refer to an overview of the implemented measures for quantum operations which is given in Table 4.

3. Implementation and further extensions to the FEYNMAN program

3.1. Overview

Our main motivation for developing the FEYNMAN program is to provide a toolbox for the simulation of n-qubit quantum sys-
tems (quantum registers) within the framework of MAPLE, i.e. for a general-purpose computer algebra system with widespread
use in science and engineering. For this purpose, the FEYNMAN program has been organized as a module (package) for MAPLE,
containing a hierarchy of currently about 60 procedures at quite different levels of complexity. Apart from various subprocedures,
which remain hidden to the user, the main commands can be used for interactive work and as language elements in order to build-up
new commands at some higher level of the hierarchy. Although a number of similar, algebraic, programs exist also for MATHE-
MATICA [29], in most of the other cases, emphasis in developing ‘qubit simulators’ has been placed on purely numerical studies, cf.
Ref. [30]. In contrast, the FEYNMAN program is designed for performing either symbolic and/or numerical computations. More-
over, making use of the large number of MAPLE’s built-in functions, only a minimum of programming effort is usually required in
order to extend the program and adapt it to user-specific needs.

In a first version of the FEYNMAN program [16], the basic data structures for the simulation of n-qubit quantum systems were
established, referring especially to the three data types qbit(), qregister() and qoperator(), respectively. These structures (procedures)
are utilized for keeping related information together and to facilitate the data handling with and within the program. Moreover, a
number of commands were introduced in this version in order to act upon these data structures, e.g., by applying some pre-defined
or user-defined quantum gates or for performing standard applications, such as the tensor product of two or more quantum registers
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Table 2
New (or extended) commands of the FEYNMAN program as accessible by the users. A detailed description of all commands is provided in the manual Feynman-
commands.pdf which is distributed together with the code

Command Short explanation

Feynman_compose() Computes the composition of two (or more) quantum operations, i.e. the successive application of two or more
quantum operations. In contrast, the tensor product of two quantum operations is supported by the command
Feynman_product("Kronecker", . . . ).

Feynman_measures() Evaluates several measures for quantum operations as summarized in Table 4.
Feynman_qoperation_invariants() Returns the fixed points of a quantum operation, i.e. those matrix operators that are invariant under the considered

quantum operation.
Feynman_qoperation_representation() Provides several representations of a quantum operation as outlined in Section 2.3.1.
Feynman_qoperation_rank() Returns the (Choi) rank of a quantum operation.
Feynman_qoperation_type() Tests whether a quantum operation has some given property, such as collective (that is invariant under qubit

permutation), unital and others, or if this is not the case.
Feynman_quantum_operation() Provides access to a number of pre-defined and frequently applied single-qubit and multi-qubit quantum operations

(channels).

or the computation of reduced density operators. In addition, some simple visualization tools were provided in order to ‘display’ the
state of quantum registers by using probability plots or the Bloch vector representation of single qubits. In a second version, later,
we focused mainly on the entanglement properties of quantum states by implementing several separability criteria and ‘measures’
for entanglement. Most of these measures can be accessed by means of the command Feynman_measures(), together with a number
of other, frequently applied quantities concerning the distance between or the entropy of quantum states.

With the present extension of the program, we now concentrate on the definition and application of quantum operations, i.e.
on completely positive and trace-preserving maps (CPT maps) that can be written in the form of Eq. (8). In fact, the concept of
the quantum operations provides a very general tool in order to describe the (typically nonunitary) evolution of quantum register
if they interact with their environment. The use of quantum operations hereby emphasizes the discrete changes of the state of a
quantum system, in contrast to the continuous-time description by means of master equations [6,14]. Note that for every time-
dependent quantum state ρ(t), there exists always a description of its evolution in terms of an operator-sum representation which
may, however, depend on the initial state of the system [31,32].

3.2. Implementation of quantum operations

In the FEYNMAN program, the data structure qoperation() is utilized to deal with quantum operations, as introduced already in
the first version of the program [16]. However, in order to support the work with such operations and operator-sum representations,
seven main commands have been added (or significantly extended) to the FEYNMAN program. A brief summary of these additional
commands can be found in Table 2 while, for all further details, we refer the reader to the manual Feynman-commands.pdf
which is distributed together with the code.

The data structure qoperation() is used to describe some quantum operation for a given ‘size’ of the system, i.e. for a given
number of qubits; this data object either contains a keyword description of a quantum operation or simply a list with the explicit
matrix representations of the corresponding operation elements. The use of keywords (together with a specified number of addi-
tional parameters) allows for a compact notation for quantum operations which can later be evaluated on demand by invoking the
command Feynman_quantum_operation(). This procedure knows not only a number of pre-defined quantum operations, as they
appear frequently in the literature, but supports also their ‘distribution’ in the operation elements, if applied to quantum systems
larger (in the number of qubits) than the corresponding noise model. For example, the command Feynman_quantum_operation()
knows the popular (single-qubit) dephasing and amplitude damping channels as well as a few simple n-qubit generalizations of
these noises [6,7]. An overview about the currently pre-defined quantum operations is given in Table 3.

In fact, the implementation and use of the data structure qoperation() and the command Feynman_quantum_operation() is ana-
logue to the implementation of quantum gates, for which we have qoperator() to provide the data structure and the command
Feynman_quantum_operator() for the explicit evaluation of this structure. In both cases, therefore, the data structures can be con-
sidered as language elements that basically store the unevaluated argument options, while Feynman_quantum_operation() and
Feynman_quantum_operator() are utilized to evaluate the language elements to explicit matrix representations. Apart from defin-
ing and evaluating quantum operations, the FEYNMAN program now supports also compositions and tensor products of quantum
operations by means of the commands Feynman_compose() and Feynman_product(), respectively.

In addition to the commands above, which enable the user to create, combine and apply a qoperation(), we also provide tools
for the—qualitative and quantitative—analysis of quantum operations. To this end, the command Feynman_qoperation_type() has
been added and the procedure Feynman_measures() has been extended substantially. The command Feynman_qoperation_type()
can be used to test a qoperation() for being of a given type (property), for instance, of being trace-preserving, unital (E(1) = 1),
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Table 3
List of pre-defined quantum operations that are implemented by the command Feynman_quantum_operation(). A more detailed description of all argument options
of this command is provided in the manual Feynman-commands.pdf

Argument option to return the list of operation elements of

Single-qubit quantum operations
("Pauli", p0, p1, p2, p3) E(ρ) = p0ρ + ∑3

i=1 piσiρσi ,
where pi � 0,

∑
i pi = 1 and σi are the Pauli matrices.

("depolarize",p) E0 =
√

1 − 3
4 pI,E1 =

√
p
4 X,E2 =

√
p
4 Y,E3 =

√
p
4 Z

("phase damping",p) E0 = [ 1 0
0

√
1−p

]
,E1 = √

pσ−σ+ = [0 0
0

√
p

]
("phase flip",p) E0 = √

1 − pI,E1 = √
pZ

("bit flip",p) E0 = √
1 − pI,E1 = √

pX

("bit+phase flip",p) E0 = √
1 − pI,E1 = √

pY

("amplitude damping",p) E0 = [ 1 0
0

√
1−p

]
,E1 = √

pσ+ = [ 0
√

p

0 0

]
("generalized amplitude damping",p,γ)
or ("GAD",p,γ)

E0 = √
1 − γ

[ 1 0
0

√
1−p

]
,E1 = √

1 − γ
[ 0

√
p

0 0

]
,

E2 = √
γ
[√

1−p 0
0 1

]
,E3 = √

γ
[ 0 0√

p 0

]
n-qubit quantum operations
("individual amplitude damping",p,n) Amplitude damping that acts only upon one out of n qubits at a time. For this quantum

operation, the Kraus operators Ei have the tensor product structure

Ei = √
p/nσ

(i)
+ = √

p/nI ⊗ · · · ⊗ σ+ ⊗ · · · ⊗ I and E0 =
√

I − ∑n
i=1 E

†
i
Ei .

("individual phase flip",p,n) Individual phase flip that acts only upon one out of n qubits at a time. The Kraus
operators Ei have a the tensor product structure

Ei = √
p/nσ

(i)
z = √

p/nI ⊗ · · · ⊗ σz ⊗ · · · ⊗ I and E0 =
√

I − ∑n
i=1 E

†
i
Ei .

("fully correlated amplitude damping",p,n) Correlated amplitude damping that acts upon all n qubits simultaneously. The two Kraus

operators are given by E0 =
√

I − E
†
1E1 and E1 = √

pσ⊗n+ .
("fully correlated phase flip",p,n) Correlated phase flip operation that acts upon all n qubits simultaneously. The two Kraus

operators are given by E0 = √
1 − pI⊗n and E1 = √

pσ⊗n
z .

or collective, that means invariant under the permutation of the qubit indices. In contrast, the command Feynman_measures()
facilitates the computation of several measures, such as the entanglement fidelity or the distance of two quantum operations, which
is defined via the duality between quantum operations and states, see Section 2.3 for details. In Section 4.2, moreover, we shall
demonstrate how the command Feynman_is_separable() can be utilized to investigate the separability properties of a quantum
operation, i.e. we demonstrate the connection between a quantum operation’s ability to break the entanglement of arbitrary initial
states and the entanglement of the quantum operation’s dual state.

3.3. Further changes to the program

In addition to the program extensions, which are necessary in order to deal with quantum operations, some minor changes and
improvements have been made in the FEYNMAN program. However, not much need to be said here about these modifications of
the code. To facilitate numerical studies, we introduced the global variable Feynman_precision which defines a numerical
noise threshold, e.g., when checking the equality of two objects or deciding if a separability criterion is fulfilled. For example, if
the user wants to check whether a quantum operation (which is defined by symbolic or numeric operation elements Ei ) is trace-
preserving or not then the program calculates M = ∑

i E
†
i Ei . Then, provided that M can be finally evaluated to a numeric matrix,

the program checks if M equals the identity matrix. In the case of a symbolic matrix M that still contains variables, typically no
decision can be made and the program proceeds without further message. In the numeric case, each matrix element Mij may deviate
from the expected value in the order of the Feynman_precision value before the program considers the quantum operation not
to be trace-preserving. This tolerance is to avoid error messages that would occur otherwise due to rounding errors. A list of the
user-accessible FEYNMAN commands that are affected by the Feynman_precision variable is given in the manual.

For the interactive work with the FEYNMAN procedures, we recommend the user to increase MAPLE’s Digits variable to, say,
Digits := 20, at the beginning of the session. By default, the Feynman_precision variable is set to 10−15. Of course, both
values can be changed manually by the user at any time during program execution.

3.4. Program distribution

As with the previous versions, the FEYNMAN program is distributed via the CPC program library as an compressed archive
file that contains the FEYNMAN library file, the source code as well as the manual Feynman-commands.pdf. In addition, this
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Table 4
List of measures that are implemented (additionally) by the command Feynman_measures() in order to deal with quantum operations. A more detailed description
of all argument options of this command is provided in the manual Feynman-commands.pdf

Argument option Explanation

(“J distance”, qoperationE ,
qoperationF )

Jamiołkowski distance DJ (E,F) which is equivalent to the trace distance DTr(ρE , ρF ) between the
corresponding dual states [27].

(“J fidelity”, qoperationE ,
qoperationF )

Jamiołkowski fidelity FJ (E,F) = F(ρE , ρF ), i.e. the fidelity of the corresponding dual states [27].

(“C-distance”, qoperationE ,
qoperationF )

C-distance C(E,F) = √
1 − F(ρE , ρF ) [27].

(“decoherence norm”, qoperationE ) Decoherence norm as given by the Hilbert–Schmidt norm of the associated ‘superoperator’ L:
N(E) = ‖L‖HS =

√
TrL†L [22].

(“process purity”, qoperationE ) Process purity Tr(ρ2
E ) for ‘measuring’ of how well a quantum operation maintains the purity of an input state [27].

(“entropy exchange”, qregisterρ ,
qoperationE )

Entropy exchange S(ρ,E) = S(W), where W is related to the operation elements Ei by Wij = Tr(EiρE
†
j
). The

entropy exchange is a measure for the information exchanged between a system in the state ρ and its environment
during the evolution E [35].

(“coherent information”, qregisterρ ,
qoperationE )

Coherent information I (ρ,E) = S(E(ρ)) − S(ρ,E), where S(ρ,E) is the entropy exchange. The coherent
information measures the degree to which quantum coherence is maintained by E [28,33].

(“entanglement fidelity”, qregisterρ ,
qoperationE )

Entanglement fidelity Fe(ρ,E) = ∑
i |Tr(ρEi)|2, where Ei are the operation elements of E [28,33].

(“channel fidelity”, qoperationE ) The channel fidelity denotes a special case of the entanglement fidelity using a maximally entangled pure state |Φ〉:
Fc(E) = 〈Φ|(I ⊗ E)(Φ)|Φ〉 [34].

(“average fidelity”, qoperationE ,
qoperatorU )

Average (gate) fidelity F(E,U) = FJ (E,U)d+1
d+1 , where FJ stands for the Jamiołkowski fidelity and d is the

dimension of the space on which E and U act [27,36].
(“phase-space contraction”,
qoperationE )

Phase-space contraction as a consequence of the dissipation process E(ρ); this is essentially a measure of the
channel’s nonunitality given by η = N Tr[(E(ρI ) − ρI )2], where N = dimH and ρI = I/N is the maximally
mixed state [38].

archive includes several example worksheets (see the next section) and a Read.me file to briefly explain the installation of the
program package. After proper installation, the program can be loaded like any other module of MAPLE by using the command
with(Feynman).

4. Interactive work using the FEYNMAN procedures: Examples

To illustrate the interactive use of the FEYNMAN procedures, four short examples will be displayed below. They provide a
first impression of how the FEYNMAN commands can be used for computations that are straightforward but tedious to perform
otherwise. Of course, the same procedures can be utilized also for dealing with more complex tasks as indicated by our third
example below.

In the following, we assume that the FEYNMAN program has been ‘loaded’ at the beginning of the session and that MAPLE

prompt is available for interactive work. Moreover, since several procedures result in rather a large MAPLE output, a colon (instead
of a semicolon) is used to terminate several of the input lines in order to suppress the corresponding printout to screen.

4.1. Local amplitude damping

In a first example, we demonstrate the effect of a channel that acts only locally on one subsystem of a two-qubit state. To this
end, let us consider a two-qubit system in the |11〉 state (e.g., two excited ions in a trap). Assuming that spontaneous emission of
a photon is the dominant source of noise, we use the amplitude damping channel to model this effect which asymptotically takes a
qubit to its ‘ground state’ |0〉.

To demonstrate the effect of this amplitude damping channel by means of the FEYNMAN program, we may start with specifying
the initial two-qubit ‘excited’ state and the two local amplitude damping channels by typing

assume(p>=0 and p<=1);
initial_state := Feynman_set_qregister("11"):
damping1 := qoperation(2, "amplitude damping", p, [1]):
damping2 := qoperation(2, "amplitude damping", p, [2]):

and where each channel acts on just one of the two qubits. In these input lines, moreover, we have assumed that the damping
parameter (probability) is restricted to the range p = 0..1, which is made explicit by the trailing tildes also in the output below.
Here, the syntax qoperation(n, "...", [k]) means that we wish to ‘distribute’ the pre-defined (single-qubit) amplitude
damping channel over an n-qubit space but where it should act only upon qubit no. k.
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Having defined the initial state and the amplitude damping model, we may convince ourselves quite easily that these local
channels really affect only one of the qubits, while the other one remains untouched. This is achieved by applying each of these
channels to the initial state:

final_state1 := Feynman_apply(damping1, initial_state):
final_state2 := Feynman_apply(damping2, initial_state):

Instead of showing the internal MAPLE output of these commands, however, its more convenient to use the short printout as provided
by the command Feynman_print():

Feynman_print(final_state1);
Feynman_print(final_state2);

p~|01><01| + (1 - p~) |11><11|
p~|10><10| + (1 - p~) |11><11|

As one can see from the first output line, with probability p the initial state |11〉 decays to |01〉 and is left unchanged with probability
1 − p. In other words, the channel acts only on the first qubit. Of course, a similar statement can be made for the second output
line and the second qubit. In order to allow this ‘noise model’ also for both qubits simultaneously, we may combine the action of
both channels by either composing the local two-qubit channels from above, i.e. E12 = E2 ◦ E1, or by computing the tensor product
E12 = E1 ⊗ E2 of the corresponding single-qubit channels:

combined_damping1 := Feynman_qoperation_compose(damping2, damping1):
single_qubit := qoperation("amplitude damping", p):
combined_damping2 := Feynman_product("Kronecker", single_qubit, single_qubit):

Following similar lines as above, we can show now that the decay of the system affects both qubits

final_state3 := Feynman_apply(combined_damping1, initial_state):
final_state4 := Feynman_apply(combined_damping2, initial_state):
Feynman_print(final_state3);
Feynman_print(final_state4);

2 2
p~ |00><00| - p~ (-1 + p~) |01><01| - p~(-1 + p~) |10><10| + (-1 + p~) |11><11|

2 2
p~ |00><00| - p~ (-1 + p~) |01><01| - p~(-1 + p~) |10><10| + (-1 + p~) |11><11|

and that the result is the same, independent of the mathematical construction of these two-qubit channels. Of course, this is no
surprise since both channels are equivalent (which is seen quite easily by looking at the corresponding operation elements). More
formally, the equivalence of the two-qubit channels combined_damping1 and combined_damping2 can be checked by
calculating the distance (measure) between these quantum operations. For the generalization of the trace-distance [cf. Section 2.4],
for instance, this is obtained by the command:

Feynman_measures("J distance", combined_damping1, combined_damping2);
0.

4.2. Entanglement-breaking channel

In our second example, we compare the effect of two quantum operations on the entanglement of some input state. If some
quantum operation E turns any arbitrary input state into a separable output state then E is said to be entanglement-breaking. In this
case the quantum operation’s dual state must be separable, too. Therefore, it is sufficient to investigate the separability of the dual
states.

We begin by defining the depolarization and phase-damping channels, together with their corresponding dual states.
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channel1 := qoperation("depolarize", p):
channel2 := qoperation("phase damping", p):
dual_state1 := Feynman_qoperation_representation("dual state", channel1):
dual_state2 := Feynman_qoperation_representation("dual state", channel2):

If we assume here that the decoherence strength of the channels increases monotonically with the decay parameter p, where
p ≈ 1 − e−Γ t is often taken in order to denote an exponential decay of the (sub-)system, we may ask of whether a channel becomes
entanglement-breaking for p → 1, i.e. for t → ∞. For this limit, let us test the separability of the dual states by means of the
command Feynman_is_separable(). In particular, let us choose the positive partial transpose (PPT) criterion as a necessary (but not
sufficient!) test for separability:

Feynman_is_separable("PPT", eval(dual_state1, p=1), [[1],[2]]);

true

Feynman_is_separable("PPT", eval(dual_state2, p=1), [[1],[2]]);

true

As seen from this output, both dual states are separable for p → 1 and, hence, both channels will eventually destroy all entan-
glement, independent from the input state. Again, this result might not be surprising since we expect that the interaction with the
environment will asymptotically wash out the internal correlations of a quantum system. However, a more detailed analysis using
e.g. the concurrence measure reveals the qualitative difference between the two noise models. This is seen from the concurrence of
the two dual states as displayed in Fig. 2.

temp1 := Feynman_measures("concurrence", dual_state1):
temp2 := Feynman_measures("concurrence", dual_state2):
plot([temp1, temp2], p=0..1);

While, for the phase damping channel, the entanglement of the dual state is destroyed only asymptotically in time, it vanishes for
a depolarization channel for p ≈ 2/3. That is, the depolarization channel becomes entanglement-breaking already at some finite
time t . This behavior is sometimes also called ‘sudden death of entanglement’.

Fig. 2. Concurrence of the dual states as function of the decoherence parameter p. Results are shown for the depolarizing channel (solid) and the phase damping
channel (dashed). While both channels are entanglement-breaking for p → 1, the depolarizing channel becomes entanglement-breaking already at finite times, i.e.
for p < 1.
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4.3. Entanglement vs. purity: Characterization of single-qubit channels

In our third example, we attempt to characterize several single-qubit channels with regard to their entanglement and purity
properties. Using the duality between channels and the (dual) states in Eq. (13), this task is closely related to the investigation of
how local (single-qubit) channels affect a two-qubit Bell state, a case study that was done similarly by Ziman and Bužek [37].

To create an ‘entanglement-vs.-purity’ phase diagram for a few selected channels, let us investigate the entanglement and purity
of the corresponding dual states. Beside of some known channels [cf. Table 3], here we shall consider especially the class of
(single-qubit) unital channels, i.e. channels that obey the condition E(1) = 1. Of course, most of the popular single-qubit channels
are unital, since they are special cases of the implemented Pauli channel, E(ρ) = ∑

i σiρσ
†
i , i = 0..3, which provides a suitable

basis for this class. A well-known exception is the amplitude damping channel which describes a dissipative, nonunital process. In
general, the nonunitality of a quantum operation can be measured by means of the ‘phase-space contraction’ (measure) [38], which
has been implemented also in the FEYNMAN program (see Table 4).

We begin by defining the channels and their dual states

channel1 := qoperation("phase damping", p):
channel2 := qoperation("amplitude damping", p):
channel3 := qoperation("depolarize", p):
channel4 := qoperation("Pauli", a,b,c,d):

dual_state1 := Feynman_qoperation_representation("dual state", channel1):
dual_state2 := Feynman_qoperation_representation("dual state", channel2):
dual_state3 := Feynman_qoperation_representation("dual state", channel3):
dual_state4 := Feynman_qoperation_representation("dual state", channel4):

For the first three channels, which just depend on the single parameter p = 0..1, we can evaluate both, the concurrence as a measure
for entanglement and the purity of the dual states. The purity is defined as the trace of the squared density matrix, Tr(ρ2), which,
in turn, is equivalent to the reciprocal of the so-called ‘participation ratio’ within the FEYNMAN program. For these channels,
therefore, the entanglement-vs.-purity graphs can be generated as parametric plots

plot1 := plot([1/Feynman_measures("participation ratio", dual_state1),
Feynman_measures("concurrence", dual_state1), p=0..1],
Purity=0..1, Concurrence=0..1):

plot2 := plot([1/Feynman_measures("participation ratio", dual_state2),
Feynman_measures("concurrence", dual_state2), p=0..1]):

plot3 := plot([1/Feynman_measures("participation ratio", dual_state3),
Feynman_measures("concurrence", dual_state3), p=0..1]):

The (fourth) Pauli channel, in contrast, depends on the four parameters a, b, c, d which should be ‘normalized’ to a +b+c+d = 1.
In the entanglement-vs.-purity diagram, this parameter space corresponds to some area which we can visualize most easily by
(randomly) generating a number of such Pauli channels. However, no attempt is made to obtain a truly uniform distribution of these
‘random’ unital channels.

data4 := table():
for i from 1 to 1000 do

a := RandomTools[Generate](float(range=0..1, method=uniform));
b := RandomTools[Generate](float(range=0..1, method=uniform));
c := RandomTools[Generate](float(range=0..1, method=uniform));
d := RandomTools[Generate](float(range=0..1, method=uniform));
temp := a+b+c+d;
a := a/temp;
b := b/temp;
c := c/temp;
d := d/temp;
data4[i] := [1/Feynman_measures("participation ratio", eval(dual_state4,

{’a’=a, ’b’=b, ’c’=c, ’d’=d})), Feynman_measures("concurrence",
eval(dual_state4, {’a’=a, ’b’=b, ’c’=c, ’d’=d}))];

end do:
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Fig. 3. Concurrence-vs.-purity phase diagram for a few selected single-qubit channels. The depolarization and phase damping channels mark the border of the area
that is filled by the set of all unital channels. The amplitude damping is an example of a nonunital channel.

data4 := convert(data4, list):

plot4 := plot(data4, style=point):

Finally, we can display the four generated plot structures within a single figure

plots[display]([plot1, plot2, plot3, plot4]);

which is displayed below. As seen from Fig. 3, the entanglement and the amount of mixing in a quantum state tend to exclude each
other, i.e. maximal entanglement is observed only for pure states [39]. In addition, we find that the depolarizing and phase damping
channel coincide just with the borders of the area that is spanned by the class of all unital channels. As expected for a nonunital
channel, the curve of the amplitude damping channel clearly leaves the ‘unital area’. In order to make this more explicit, we can
use the above-mentioned phase-space contraction as a quantitative measure of a channel’s nonunitality.

Feynman_measures("phase-space contraction", qoperation("depolarize", p));
0.

Feynman_measures("phase-space contraction", qoperation("amplitude damping", p));

2
p~

4.4. Grover’s algorithm with noise

Our last example demonstrates the impact of different noise types on the result of a simple quantum algorithm. As an example
we take Grover’s quantum algorithm for searching an unstructured database [5,6]. For the sake of simplicity, we consider the simple
case of a four-element database which is represented by two-qubit quantum register. In our example, the desired search result will
be given by the |01〉 basis state (which is just an arbitrary choice).

The circuit implementing the search algorithm is shown in Fig. 4. At the beginning, the two qubits representing the database are
initialized in the |00〉 state and then brought into an equal superposition 1

2 (|00〉 + |01〉 + |10〉 + |11〉) of all four basis states. This
is achieved by applying a Hadamard gate to both of the qubits. Then the first essential step is carried out by applying the so-called
‘oracle’ which marks the searched state (in our example |01〉) by changing the sign of its coefficient so that the register is now in
the state 1

2 (|00〉 − |01〉 + |10〉 + |11〉). This oracle operator corresponds to I − |01〉〈01| and is implemented by the gate sequence
1–3. However, after the oracle query, a measurement would still not distinguish the searched state from the other states since the
absolute values and hence the measuring probabilities are the same. Therefore, the second essential step in Grover’s algorithm is
to transform the phase difference of the searched state into an amplitude difference. This is achieved by an ‘inversion about the
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Fig. 4. Grover search algorithm for two qubits. See the main text for an explanation of the individual steps.

mean’ operation which is implemented by the steps 5–9 in Fig. 4 (see, e.g., [6]). The key idea is that this step amplifies the searched
state while suppressing the unwanted states. This is repeated a certain number of times so that, finally, only the correct result of
the search problem is measured with a probability close to unity. In the general n-qubit case (corresponding to a search space with
N = 2n database elements), the steps 1–10 have to be repeated ≈ π

4

√
N times (for n � 1). In our (ideal) example case, a single

application of this procedure is already enough to transform the register to the state |01〉, i.e. a measurement will yield the correct
search result with certainty.

Using the FEYNMAN program, we want to explore how imperfections and noise may effect the search algorithm and lead to
deviations from the ideal result. To that aim, we will assume that between the idealized quantum gates a given quantum operation
with noise strength p acts on the quantum register. For our demonstration, we simply use three of the predefined noise models:
the ‘fully correlated phase flip’, the ‘individual phase flip’ and the ‘fully correlated amplitude damping’ model (see Table 3). In
principle, any other (user-defined) model can be applied, but we note that with increasing number of qubits and increased complexity
of the noise model the algebraic calculations become very slow. In these cases, it is helpful to restrict oneself to purely numerical
calculations.

To model the noisy quantum search algorithm as described above, we begin by defining the initial state |00〉 and directly create
the superposition of the basis states by applying two Hadamard gates.

> initial_state := Feynman_apply(qoperator("HH"), Feynman_set_qregister("00"));

[1/2]
[ ]
[1/2]

initial_state := qregister("00", 2, [ ])
[1/2]
[ ]
[1/2]

Now we define the steps 1–10 as given in Fig. 4.

> step[1] := qoperator("XH"):
> step[2] := qoperator("cnot"):
> step[3] := qoperator("XH"):
> step[4] := qoperator("HH"):
> step[5] := qoperator("XX"):
> step[6] := qoperator("IH"):
> step[7] := qoperator("cnot"):
> step[8] := qoperator("IH"):
> step[9] := qoperator("XX"):
> step[10] := qoperator("HH"):

The next commands define the three different (two-qubit) noise models A, B , C that will be applied between the quantum gates.
Each of the models uses some symbolic parameter 0 � p � 1 to control the decoherence strength.

> assume(p>=0 and p<=1):
> noise_A := qoperation("fully correlated phase flip", p, 2):
> noise_B := qoperation("individual phase flip", p, 2):
> noise_C := qoperation("fully correlated amplitude damping", p, 2):

Finally, we use a simple loop construction in order to successively apply the steps 1–10 and apply one of the three noise models A,
B , C before each step, respectively. This results in three different final states, one for each noise model.
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Fig. 5. Visualization of the final-state density matrix resulting from the noisy search algorithm where noise model C was applied with a strength parameter p = 0.05
after each quantum gate.

> temp_A := initial_state:
> temp_B := initial_state:
> temp_C := initial_state:
> for i from 1 to 10 do

temp_A := Feynman_apply(noise_A, temp_A);
temp_A := simplify(Feynman_apply(step[i], temp_A));
temp_B := Feynman_apply(noise_B, temp_B);
temp_B := simplify(Feynman_apply(step[i], temp_B));
temp_C := Feynman_apply(noise_C, temp_C);
temp_C := simplify(Feynman_apply(step[i], temp_C));

end do:
> final_state_A := temp_A:
> final_state_B := temp_B:
> final_state_C := temp_C:

To get an impression of the different noise models’ effects on the final state, one can plot the absolute values of the density matrix
entries as shown in Fig. 5.

Feynman_plot_probability(eval(final_state_C, p=0.05));

For example, from Fig. 5 one can see that the fully correlated amplitude damping (model C with p = 0.05) generally leads to
nonzero matrix elements although the second diagonal element (which corresponds to the correct final state |01〉) still clearly
dominates. Additionally, one can recognize the tendency to populate the ‘ground state’ |00〉 which is just the asymptotic state of the
applied dissipative noise model C.

Finally, in order to compare the different noise models, we might be interested, for example, in the fidelity between the real
(noisy) final state and the ideal result. This is achieved by the following commands and the resulting curves are shown in Fig. 6.

> ideal_result := eval(final_state_A, p=0):
data_A := []:
data_B := []:
data_C := []:
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Fig. 6. Fidelity between the ideal final state of the quantum search algorithm and the noisy final states due to the models A, B , C with the noise parameter p as
described in the text.

for i from 0 to 1 by 0.02 do
data_A := [op(data_A), [i, Feynman_measures("fidelity", ideal_result,

eval(final_state_A, p=i))]]:
data_B := [op(data_B), [i, Feynman_measures("fidelity", ideal_result,

eval(final_state_B, p=i))]]:
data_C := [op(data_C), [i, Feynman_measures("fidelity", ideal_result,

eval(final_state_C, p=i))]]:
end do:

> plot([data_A, data_B, data_C], ’p’=0..1, fidelity=0..1, legend=["noise model A",
"noise model B", "noise model C"]);

5. Summary and outlook

Following our previous intention to provide a simple and flexible tool for dealing with n-qubit quantum systems, the current
extension of the code now enables the user to manipulate quantum operations and, hence, to model the interaction of such systems
with their environment. In particular, the command Feynman_quantum_operation() provides a very convenient access to a number
of frequently applied ‘decoherence models’. Moreover, to support a quantitative analysis of the properties of the various channels,
several measures for quantum operations and their dual states have been implemented by the procedure Feynman_measures(). The
implementation of the Jamiołkowski dual states (via Feynman_qoperation_representation()) connects the data structure qoperation()
for quantum operations to the qregister() structure for quantum registers, for which several tools were developed already in a
previous version of the FEYNMAN program.

With the present extension, therefore, we made FEYNMAN ready for the simulation of decoherence in quantum registers, which is
known today as one of the main obstacles in realizing various quantum information protocols. Apart from studying such ‘noise mod-
els’, however, an interesting further development concerns the implementation of active and/or passive error correction schemes.
Using the command Feynman_qoperation_invariants(), already the current version can assist in finding the fixed points of a quantum
operation, i.e. those matrix operators that are invariant under the action of the given channel. But further work is certainly needed
and desirable in order to apply the FEYNMAN program in other fields of quantum information, such as error correction or use it
for studying the entanglement in physical systems, e.g., the transfer of entanglement in atomic (photo-)ionization [40,41] or decay
processes [42,43].
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