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0. Preliminary remarks

0.1. Schedule and agreements

Lecture period: 13. 4. – 17. 7. 2015

Lecture: We 12 – 14, Max-Wien-Platz (Physik, SR 1)

Tutorial: Thu 10 – 12, every 2nd week, to be agreed

Language: German / English ??

ECTS points: 4 (inclusive the tasks and exam).

Exam: Tasks (40 %), oral or written exam.

Requirements for exam: Modulanmeldung within the first 6 weeks;

at least 50 % of the points from tutorials.

Home work: Some discussion/collaboration on homework problems is
encouraged; however, everyone should be able and turn in
his/her written programs independently.

A few questions ahead: How much have you heart about atomic theory so far ??

Who makes regularly use of Maple oder Mathematica ??

...

0.2. Further reading

➣ K. Blum: Density Matrix Theory and Applications: Physics of Atoms and Molecules

(Plenum Press, New York, 1981, 1996).

➣ B. H. Brandsen and C. J. Joachain: Physics of Atoms and Molecules

(Benjamin Cummings, 2nd Edition, 2003).

➣ R. D. Cowan: Theory of Atomic Struture and Spectra

(Los Alamos Series, 1983).

➣ W. R. Johnson: Atomic Structure Theory: Lectures on Atomic Physics

(Springer, Berlin, 2007).

➣ J. Foot: Atomic Physics (Oxford Master Series, Oxford University Press, 2005).

➣ H. Friedrich: Theoretical Atomic Physics (Springer, 3rd edition, 2003).

➣ M. Metcalf, J. Reid and M. Cohen: Fortran 95/2003 Explained: Numerical Mathematics and

Scientific Computation (Oxford University Press, Oxford, 2007).

➣ G. K. Woodgate: Elementary Atomic Structure

(Oxford University Press, 2nd Edition, 1983).
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0. Preliminary remarks

➣ Controlling the Quantum World: The Science of Atoms, Molecules and Photons

(The National Academy Press, Washington, 2007).

Additional texts: ... (Blackboard)
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1. Atomic theory: A short overview

1.1. Atomic spectroscopy: Structure & collisions

Atomic processes & interactions:

➣ Spontaneous emission/fluorescence: occurs without an ambient electromagnetic field;
related also to absorption, and it shows the deep quantum nature of atoms and light.

➣ Stimulated emission: from excited atoms leads to photons with basically the same
phase, frequency, polarization, and direction of propagation as the incident photons.

➣ Photoionization: results in free electrons.

➣ Rayleigh and Compton scattering: Elastic and inelastic scattering of X-rays and gamma
rays by atoms and molecules. Compton scattering often leads to an decrease in the
photon energy but a energy transfer from matter to the photon can also be observed
under certain circumstances (inverse Compton scattering).

➣ Thomson scattering: elastic scattering of electromagnetic radiation by a free charged
particle (electrons, muons, ions); low-energy limit of Compton scattering.

➣ Multi-photon excitation, ionization and decay: shows the non-linear electron-photon
interaction and is presently a very active field of research.

➣ Autoionization: Nonradiative electron emission from (inner-shell) excited atoms.

➣ Electron-impact excitation & ionization: results in excited and ionized atoms and oc-
curs frequently in astro-physical and laboratory plasmas.

➣ Elastic & inelastic electron scattering: reveals the electronic structure of atoms and
ions; it is important for plasma physics.

➣ Pair production: creation of an elementary particle and its antiparticle from light
(electron-positron pairs); pairs from the vacuum.

➣ Delbrück scattering: the deflection of high-energy photons in the Coulomb field of
atomic nuclei as a consequence of vacuum polarization.

➣ ...

➣ In practice, the distinction and discussion of different atomic and electron-photon
interaction processes also depends on the particular community/spectroscopy.
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1. Atomic theory: A short overview

1.2. Atomic theory

Covers a very wide range of many-body methods and techniques, from the simple shell model
of the atom to various semi-empirical method to mean-field approaches ... and up to ab-initio
and quantum-field theories. The aim of ab-initio atomic structure and collision theory is to
describe the (electronic) level structure, properties and dynamical behaviour on the basis of
the (many-electron) Schrödinger equation or by applying even field-theoretical techniques.
— In short, the knowledge of the fundamental constants of Nature, the basic equations,
and a bundle of proper approximation techniques will be enough to predict the energies and
properties of ions, atoms and molecules with spectroscopic accuracy or even better.

Well, ... this is quite an ambitious task with a lot of surprises when it comes to details.

Atomic theory is a great playground, indeed.

Requires good physical intuition, or this is often at least benefitial.

Figure 1.1.: Atomic interactions that need to be considered for a quantitative description/prediction of

atoms.
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1.2. Atomic theory

Figure 1.2.: Characteristic time scales of atomic and molecular motions; taken from: Controlling the Quan-

tum World, page 99.

Theoretical models:

➣ Electronic structure of atoms and ions: is described quantum mechanically in terms
of wave functions, energy levels, ground-state densities, etc., and is usually based on
some atomic (many-electron) Hamiltonian.

➣ Interaction of atoms with the radiation field: While the matter is treated quantum-
mechanically, the radiation is — more often than not (> 99 % of all case studies) —
described as a classical field (upon which the quantum system does not couple back).

➣ This semi-classical treatment is suitable for a very large class of problems, sometimes
by including quantum effects of the field in some ‘ad-hoc’ manner (for instance,
spontaneous emission).

➣ Full quantum treatment: of the radiation field is very rare in atomic and plasma physics
and requires to use quantum-field theoretical techniques; for example, atomic quantum
electrodynamics (QED). QED is important for problems with definite photon statistics
or in cavities in order to describe single-photon-single-atom interactions.

11



1. Atomic theory: A short overview

Combination of different (theoretical) techniques:

➣ Special functions from mathematical physics (spherical harmonics, Gaussian, Legendre-
and Laguerre polynomials, Whittacker functions, etc.).

➣ Racah’s algebra: Quantum theory of angular momentum.

➣ Group theory and spherical tensors.

➣ Many-body perturbation theory (MBPT, coupled-cluster theory, all-order methods).

➣ Multiconfigurational expansions (CI, MCDF).

➣ Density matrix theory.

➣ Green’s functions.

➣ Advanced computational techniques (object-oriented; computer algebra;
high-performance computing).

1.3. Applications of atomic theory

1.3.a. Need of (accurate) atomic theory and data

➣ Astro physics: Analysis and interpretation of optical and x-ray spectra.

➣ Plasma physics: Diagnostics and dynamics of plasma; astro-physical, fusion or labora-
tory plasma.

➣ EUV lithography: Development of UV/EUV light sources and lithograhpic techniques
(13.5 nm).

➣ Atomic clocks: design of new frequency standards; requires very accurate data on
hyperfine structures, atomic polarizibilities, light shift, blackbody radiation, etc.

➣ Search for super-heavy elements: beyond fermium (Z = 100); ‘island of stability’; better
understanding of nuclear structures and stabilities.

➣ Nuclear physics: Accurate hyperfine structures and isotope shifts to determine nuclear
parameters; formation of the medium and heavy elements.

➣ Surface & environmental physics: Attenuation, autoionization and light scattering.

➣ X-ray science: Ion recombination and photon emission; multi-photon processes; devel-
opment of x-ray lasers; high-harmonic generation (HHG).

➣ Fundamental physics: Study of parity-nonconserving interactions; electric-dipole mo-
ments of neutrons, electrons and atoms; ‘new physics’ that goes beyond the standard
model.

➣ Quantum theory: ‘complete’ experiments; understanding the frame and boundaries of
quantum mechanics ?

➣ ...

12



1.3. Applications of atomic theory

1.3.b. Laser-particle acceleration: An alternative route

➣ High power short-pulse lasers with peak powers at the Terawatt or even Petawatt
level enables one to reach focal intensities of 1018 − 1023 W/cm2. These lasers are
able also to produce a variety of secondary radiation, from relativistic electrons and
multi-MeV/nucleon ions to high energetic x-rays and gamma-rays.

➣ Applications: The development of this novel tool of particle acceleration is presently
explored in many different labs, and includes studies in fundamental and high-field
physics as well as on medical technologies for diagnostics and tumor therapy.

➣ Extreme Light Infrastructure (ELI): a new EU-funded large-scale research infrastruc-
ture in which one (out of four) pillar is exclusively devoted to nuclear physics based
on high intensity lasers. The aim is to push the limits of laser intensity three orders
towards 1024 W/cm2.

➣ This ELI project, a collaboration of 13 European countries, comprises three branches:

• Ultra High Field Science to explore laser-matter interactions in an energy range where relativistic

laws could stop to be valid;

• Attosecond Laser Science to conduct temporal investigations of the electron dynamics in atoms,

molecules, plasmas and solids at the attosecond scale;

• High Energy Beam Science.

Figure 1.3.: Status of the ELI project 2014 (from: http://www.nature.com).
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2. Review of one-electron atoms (hydrogen-like)

2.1. Hydrogen: The ’key model’ of atomic and molecular theory

➣ One of the simplest quantum systems that can be solved analytically, both for the
(non-relativistic) Schrödinger as well as the (relativistic) Dirac equation.

➣ Basis of the atomic shell model: Electronic wave functions are constructed as ‘products’
of some radial function times spherical harmonics, or linear combination of that.

➣ The shell model has large impact for the understanding of most atomic processes: the
motion of electrons in all atoms basically follows those in hydrogen, although for some
modified (screened) potential. The shell model is closely related also to the Hartree-
Fock theory of atoms and molecules.

➣ In the framework of quantum electrodynamics, the treatment of hydrogen (and hydro-
genic ions) provides the most accurate test of quantum mechanics, up to the relative
level 10−11...10−13.

2.2. Separation of the center-of-mass motion

Atomic hydrogen is already a system of two interacting particles where the inter-
action (potential) only depends on the distance between them.

For every closed system of interacting particles, one can de-couple the center-of-mass motion
from the relative motion (see classical mechanics); the total energy of the system is then just
the sum of energies associated with these two — independent — motions.

While this separation is conceptually rather difficult within the relativistic theory, we can
typically use a nonrelativistic treatment owing to the (large) mass ratio mp/me ≈ 1836.

Hamiltonian functions of ‘nucleus + electron’:

H = K + V =
p2
1

2m1

+
p2
2

2m2

+ V (r1, r2)

=
P2

2M
+

p2
r

2µ
+ V (xr) if V = V (x1 − x2)
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2. Review of one-electron atoms (hydrogen-like)

The last line is obtained by using the relative coordinates with M = m1 +m2:

x1, x2

p1, p2

=⇒
rr = r2 − r1; pr = µ ṙr; µ = m1·m2

m1+m2

R = m1r1+m2r2
m1+m2

; P = M Ṙ

This results in a separation of the Hamilton function into two parts:

(i) a trivial part P2

2M
and (ii) the Hamiltonian function for the relative coordinates.

Separation ansatz:
Ψ(R, rr) = S(R) ψ(rr)

and a symmetric potential: V = V (r) = − Ze2

4πǫ0r
= −α~cZ

r

gives rise to (see tutorial):

∂2 S

∂X2
+
∂2 S

∂Y 2
+
∂2 S

∂Z2
+

2M

~2
W S = 0

[
1

r2
∂

∂r

(

r2
∂

∂r

)

+
1

r2 sinϑ

∂

∂ϑ

(

sinϑ
∂

∂ϑ

)

+
1

r2 sin2 ϑ

∂2

∂ϕ2

]

ψ(rr) +
2µ

~2

(

E +
αZ~c

r

)

ψ = 0

(2.1)

with E = E total −W , R = (X, Y, Z) and rr = (r, ϑ, ϕ), respectively.

The second equation is the Schrödinger equation (SE) for the relative motion of the electron
and nucleus with regard to the center of mass. The center-of-mass of the atom moves like a
free particle of mass M = m1 +m2 and total (kinetic) energy W (first equation).

Owing to the large mass ratio mp/me ≈ 1836, one often simply says that Eq. (2.1) describes
the motion of the electron; this corresponds to an nucleus of infinite mass.

Agreement: We usually assume µ ≈ m electron and rr ≈ r electron ≡ r, and simply call
Eq. (2.1) the SE of the electron with ψ = ψ(r).

2.3. Nonrelativistic theory: A short reminder

2.3.a. Atomic units

The use of SI units can be rather tedious in writing down the equations, cf. Eq. (2.1). In
atomic theory, therefore, one defines (quite arbitrarely):

~ = m electron =
e2

4πǫ0
≡ 1 .
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2.3. Nonrelativistic theory: A short reminder

This re-definition simplifies (almost) all equations considerably and defines the atomic units
(.a.u.) in which all other quantities then appear. For example

Atomic units: ... (Blackboard)

2.3.b. Schrödinger equation for hydrogenic atoms

hyperphysics.phy-astr.gsu.edu

Correspondence principle:

Classical mechanics =⇒

r −→ r̂

pr −→ −i~ ∂
∂ r

E −→ i~ ∂
∂ t

=⇒ Quantum mechanics

Steps of the separation:

➣ Separation of center-of-mass motion (see above).

➣ Separation of relative motion with

ψ = ψ(r, ϑ, ϕ) = R(r) Y (ϑ, ϕ) = R(r) Θ(ϑ) Φ(ϕ)

Ylm(ϑ, ϕ) = Θ(ϑ) Φ(ϕ) = AlmAm Pl |m|(cosϑ) e
imϕ

➣ A subsequent separation procedure results in three independent ODE’s and two sepa-
ration constants:

d

dr

(

r2 +
dR

dr

)

+

[
2µ r2

~2

(

E +
α~cZ

r

)

− λ

]

R(r) = 0

1

sinϑ

d

dϑ

(

sinϑ
dΘ

dϑ

)

+

(

λ − β2

sin2 ϑ

)

Θ(ϑ) = 0

d2 Φ

dϕ2
+ β2 Φ(ϕ) = 0 ,

and where the latter two equations can be written also:

l2 Y (ϑ, ϕ) = λ ~2 Y (ϑ, ϕ) .
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2. Review of one-electron atoms (hydrogen-like)

In atomic units, Eq. (2.1) then simplifies to: ... (Blackboard)

Problem (Angular momentum operator):

l = r × p = −i~ (r × ∇∇∇)

a) Prove that the Cartesian components of this operators reads as:

lx = i~

(

sinφ
∂

∂ϑ
+ cotϑ cosϕ

∂

∂ϕ

)

ly = i~

(

− cosϕ
∂

∂ϑ
+ cotϑ sinϕ

∂

∂ϕ

)

lz = −i~ ∂

∂ϕ

b) Show that l2 = l2x + l2y + l2z coincides with the expression for l2 in Eq. (??).

Problem (Commutation relations of l): Prove the two commutation relations

a) [H, l2] = 0, [H, lz] = 0,

b) [lx, ly] = i~lz, [ly, lz] = i~lx, [lz, lx] = i~ly

2.3.c. Spherical harmomics: A short account

➣ The spherical harmomics Ylm(ϑ, ϕ) are very important for atomic physics owing to their
properties.

➣ Eigenfunctions of l2 and lz.

➣ Explicit representation in coordinate space:

Y00(ϑ, ϕ) =
1√
4π

Y10(ϑ, ϕ) =

√

3

4π
cosϑ, Y1,±1(ϑ, ϕ) = ∓

√

3

8π
sinϑ e±iϕ

Y20(ϑ, ϕ) =
1

4

√

5

π

(
3 cos2 ϑ − 1

)
, Y2,±1(ϑ, ϕ) = ∓1

2

√

15

2π
sinϑ cosϑ e±iϕ

Y2,±2(ϑ, ϕ) =
1

2

√

15

2π
sin2 ϑ e±2iϕ
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2.3. Nonrelativistic theory: A short reminder

Figure 2.1.: There are many different representations of the spherical harmonics to display the modulus,

real or imaginary parts of these functions, or changes in the (complex) phase; spherical plot of

the function Y21 using Mathematica (rhs). From: mathworld.wolfram.com

19



2. Review of one-electron atoms (hydrogen-like)

Figure 2.2.: Spherical harmonics of different orders. Order 0 is a constant value. Order 1 contains simple

linear harmonics, here principally directed and labeled in the Cartesian coordinate system as

Z, Y , and X respectively. The 2nd Order has five harmonics, called Z2, ZX, X2 − Y 2, ZY ,

and XY ; from http://mri-q.com/uploads.

➣ If possible, however, one should always make use of the properties of these functions
(instead of any explicit representation)

〈Ylm | Yl′m′〉 = δll′ δmm′

Y ∗lm(ϑ, ϕ) = (−1)m Yl,−m(ϑ, ϕ)

Ylm(π − ϑ, π + ϕ) = (−1)l Ylm(ϑ, ϕ)

➣ Nowadays, the (properties of the) spherical harmonics can be easily utilized and eval-
uated by means of computer algebra tools; cf. Mathematica, Maple.

➣ The spherical harmomics are closely related to many other functions from mathematical
physics, such as the Legendre polynomials, Gegenbauer polynomials, vector and spinor
spherical harmonics, Wigner rotation matrices, and several others.

➣ A few more (exotic) relations: ...

Ylm(ϑ, ϕ) =

√

2l + 1

4π

(l −m) !

l +m) !
Pm
l (cosϑ) eimϕ

〈Yl1m1
|Yl2m2

|Yl3m3
〉 =

√

(2l1 + 1) (2l2 + 1) (2l3 + 1)

4π

(
l1 l2 l3
0 0 0

) (
l1 l2 l3
m1 m2 m3

)
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2.3. Nonrelativistic theory: A short reminder

Wigner 3-j symbols

➣ Addition theorem: For two unit vectors x = x(ϑ, ϕ) and y = y(ϑ′, ϕ′), the spherical
harmonics fulfill the relation

Pl(x · y) =
4π

2l + 1

l∑

m=−l

Y ∗lm(ϑ
′, ϕ′)Ylm(ϑ, ϕ) .

where Pl denotes the Legendre polynomial of order l, and which gives for x = y rise
to Unsöld’s theorem (see below).

➣ See Wikipedia for a larger number of additional relations and the use of sphercial
harmomnics in many different fields of physics.

2.3.d. Note: Complete set of commutable operators

A set of operators Ai (i = 1, ..., n) is called complete, if no additional (linear-independent)
operator exist which commutes with the Ai.

A complete set of operators has a simultaneous set of eigenfunctions which is not degener-
ate.

Example (H-atom): H, l2 and lz are a complete set:

[H, l2] = [H, lz] = [l2, lz] = 0 .

2.3.e. Energies and quantum numbers

From: sciwebhop.net

Solutions ψ(r) = Rnl(r) Ylm(ϑ, ϕ): ... (Blackboard)
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2. Review of one-electron atoms (hydrogen-like)

2.3.f. Radial equation

We saw that the Schrödinger equation (2.1) can be solved by separating the variables using
ansatz ψ(r, θ, φ) = R(r)Y (θ, φ) . This leads to the (so-called) radial equation

1

R(r)

d

dr

(

r2
dR(r)

dr

)

+ 2r2
(

E +
Z

r

)

= − 1

Y
l2 Y (θ, φ) = λ

d

dr

(

r2
dR(r)

dr

)

+

[

2r2
(

E +
Z

r

)

− λ
]

= 0 (2.2)

Instead of the radial function R(r), one often works with P (r) = r R(r) which help simplify
the radial equation. The functions P (r) are often called the radial orbital functions or briefly
the radial orbitals.

How to find solutions for R(r) in Eq. (2.2) ?? ... (Blackboard)

2.3.g. Numerical vs. algebraic solutions to the radial equation

Numerical solutions

Direct integration: see the Runge-Kutta method or various improved integration schemes,
so-called preditor-corrector methods (from the mathematical approximation theory).

d2 P (r)

dr2
= F (r, E)

• Boundary behaviour: P (r → 0) = Arl+1; P (r →∞) = B e−αr

• Choose a proper (numerical) grid: {r1, r2, ..., rN ; ri ≤ ri+1}.
• Take initial values P (r1), P (r2) due to the near-zero behavior P (r → 0) ∼ rl+1.

Algebraic solutions

P (r) =
N∑

i

Xi gi(r)

For a given set of linear-independent and for N → ∞ complete set of basis functions
{gi(r), i = 1, ..., N}, the radial Schrödinger equation can be transformed into an equiv-
alent algebraic eigenvalue problem

∑

i

∫

dr gk(r)

{

− ~
2

2µ

[
d2

dr2
− l(l + 1)

r2
+ V (r)

]}

gi(r)Xi

= E
∑

i

∫

dr gk(r) gi(r)
︸ ︷︷ ︸

Ski ... overlapmatrix

for all k = 1, ..., N.
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2.3. Nonrelativistic theory: A short reminder

Choice of basis functions: ... (Blackboard)

Normalization and expectation values: Ā = 〈A〉 = 〈ψ |A|ψ〉

〈ψnℓm | ψn′ℓ′m′〉 ≡ 〈nℓm | n′ℓ′m′〉 =

∫

d3r ψ∗nℓm ψn′ℓ′m′ = δnn′ δℓℓ′δmm′

=

∫ ∞

0

dr r2R∗nl(r)Rn′l′(r)

∫ π

0

dϑ sinϑ Θ∗lmΘl′m′

∫ 2π

0

dϕ Φ∗mΦm′

〈rk〉 =

∫ ∞

0

dr r2R∗nl(r) r
k Rn′l′(r)

〈r〉l=n−1 = n2

(

1 +
1

2n

)
a0
Z

〈r−1〉 =
1

n2

(
Z

a0

)

Figure 2.3.: From: http://pages.physics.cornell.edu/

2.3.h. Pauli’s wave mechanics: Fine structure

While all solutions ψ(r) = Rnl(r) Ylm(θ, φ) with given n are degenerate within the non-
relativistic theory, more detailed observations show a line and level splitting which cannot
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2. Review of one-electron atoms (hydrogen-like)

Figure 2.4.: Normal Zeeman effect: splitting of a spectral line into several components in the presence of

a static magnetic field. However, there are a lot of observations that cannot be explained

alone in terms of the magnetic and angular momentum quantum numbers and are called the

‘Anamalous’ Zeeman effect. From: http://pages.physics.cornell.edu/

be explained without the spin of the electron(s).

These observations suggested to postulate a further quantum number, the electron spin, with
just two space projections (Uhlenbeck and Goudsmit, 1925). This is called the magnetic spin
quantum number ms.

Observations that suggest an electron spin, s = 1/2: ... (Blackboard)

Spin & spin operators: ... (Blackboard)

Spin is a pure quantum concept:

➣ Without classical counterpart; especially, there is no ‘classical limit’ s → ∞. Within
Pauli’s wave mechanics, all operators are 2× 2 matrices.

➣ There is a magnetic moment associated to the spin which gives rise to the interaction
of (free) electrons with the magnetic field; cf. gyromagnetic factor of the electron
g = 2.002... ≈ 2 (Dirac theory).

➣ For the hydrogen atom and without spin-orbit interactions (i.e. in the pure non-
relativistic limit), the SE has some trivial, two-compoment solutions

ψ(x) ≡ ψ(r, σ) = ψnlm(r) χms

which factorize into a spatial and spin part.
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2.3. Nonrelativistic theory: A short reminder

Blackboard example (Matrix elements and variance of spin operator):

Problem (Eigen states of electron along x-axis): Find the eigen states of a (spin-1/2)
electron along the x-axis !

2.3.i. Vector model: Constants of motion in a central field

If we accept the spin as an additional degree of freedom, we need 4 quantum numbers in
total to classify the motion of an electron in a central-field potential.

The vector model provides a (simple) geometrical picture, without two much importance
however, which displays the precession of the total angular momentum around the quanti-
zation axis:

|j1 − j2| ≤ j ≤ |j1 + j2|

Complete set of quantum numbers: ... (Blackboard)

2.3.j. Fine structure: Relativistic interaction terms

The correct behaviour of the hydrogen atom follows from the solution of the Dirac equa-
tion (see below) and leads to a partial splitting of the degenerate levels; the rather weak
splitting for light and medium elements can be described however in good approximation
perturbatively by expanding the Dirac operator in v/c and by including only terms up to
(v/c)2.

Three (widely-known) terms ... (Blackboard)

Total level shift and splitting

➣ Fine structure splitting:

∆E = ∆E ′ + ∆E ′′ + ∆E ′′′

∆Enj = − α
2 Z2

n2
En

(
3

4
− n

j + 1/2

)

= α2 m

2~2
e2

(4πǫo)2
Z4

n4

(
3

4
− n

j + 1/2

)

∆Enj ∼ Z4; ∆Enj − ∆Enj′ ∼ n−3

➣ En(j = ℓ + 1/2) = En(j = ℓ′ − 1/2)

➣ Fine structure shifts are independent of orbital angular momentum quantum number
ℓ (although the individual terms do depend).
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2. Review of one-electron atoms (hydrogen-like)

➣ Fine structure constant (α2 ≃ 5 · 10−5) determines the relative splitting with regard
to En.

➣ While all three terms are comparable for hydrogenic ions, the spin-orbit term clearly
dominates in many-electron atoms and ions. The relativistic mass correction and the
Darwin term are often negligible.

➣ Selection rule for electric-dipole transitions: ∆ j = 0, ±1.

2.4. Relativistic theory: Dirac’s equation

2.4.a. Relativistic Hamiltonians and wave equations

Hamiltonian function of a relativistic electron in an electro-magnetic field

H = c
√

m2c2 + (p+ eA) (p+ eA)
︸ ︷︷ ︸

rest and kinetic energy

− e φ =
︸︷︷︸

A 6=A(t), φ 6=φ(t)

E.

Question: How can we transform this expression by the correspondence principle
p→ −i~ ∂

∂r
into a useful Hamiltonian ?

Different approaches: ... (Blackboard)

Figure 2.5.: The subtle Lamb shift of the n = 2 levels in hydrogen according to Bohr’s and Dirac’s theory

and together with the QED predictions. In particular, the Lamb shift removes the degeneration

due to quantum number j; from: Haken and Wolf, Atomic Physics (Springer, 1996).

Dirac equation ... (Blackboard)
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2.4. Relativistic theory: Dirac’s equation

2.4.b. Dirac’s Hamiltonian

➣ Time-dependent (and relativistic covariant) Dirac equation for a free electron reads as:

i~
∂ ψ(r, t)

∂t
=
(
−i~c ααα · ∇∇∇ + mc2 α0

)
ψ(r, t) .

kinetic energy term rest mass term
p = −i~ ∂

∂r

➣ Fulfills relativistic energy-momentum relation only if ... ααα and α0 are 4× 4 matrices:

ααα = (αx, αy, αz) =

(

0 σσσ

σσσ 0

)

, α0 =

(

I 0

0 −I

)

➣ Wave functions are 4-spinors:

ψ(r, t) =







φ1(r, t)
φ2(r, t)
φ3(r, t)
φ4(r, t)







ψ∗(r, t) = (φ∗1(r, t), ...)

Properties of Dirac spinors and operators: ... (Blackboard)

2.4.c. Plane-wave solutions to the time-independent Dirac equation for free particles

➣ Separation of time gives rise to the time-independent Dirac equation for a free particle:

(
−i~c ααα · ∇∇∇ + mc2 α0

)
ψ(r) = E ψ(r) .

➣ First-order differential equation (in contrast to the Schrödinger equation).

➣ Ansatz for plane waves (solutions) for the motion along the z−axis (quantization axis):

ψp(r) = w(p) exp(ipz/~)

transforms the time-independent Dirac equation into a standard eigenvalue problem:







mc2 0 pc 0

0 mc2 0 −pc
pc 0 −mc2 0

0 −pc 0 −mc2








w(p) = E w(p) .

➣ Two solutions can be found from the characteristic polynomial:

E+(p) =
√

(mc2)2 + (pc)2 ; E−(p) = −
√

(mc2)2 + (pc)2

Solutions with negative energy — h’m ??
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2. Review of one-electron atoms (hydrogen-like)

➣ For each energy, there are two (degenerate) wave functions according to the two spin
directions, in parallel and anti-parallel to the z−axis.

w+1/2 = N







1
0
cp

E+ +mc2

0






, w−1/2 = N







0
1
0
−cp

E+ +mc2







wms
= N

(
χms

cp σz
E+ +mc2

χms

)

Free-electron wavefunction (plane wave solution) can be written as bi-spinor.

Helicity +1; w+1/2. Helicity –1; w−1/2.

2.4.d. Dirac spectrum: Antiparticles

Energy of free particles E(p) = ±
√

(mc2)2 + (pc)2 :

➣ Particles with positive energy: E+(p) ≥ mc2

➣ Particles with negative energy: E−(p) ≤ −mc2

.

.
➥ The ground state of atoms becomes unstable.

Concept of the “Dirac sea” ... (Blackboard)

28



2.4. Relativistic theory: Dirac’s equation

Figure 2.6.: Dirac sea: A ‘filled’ sea forbids that electrons with positive energy can decay into the ‘sea’,

while ‘holes’ in the sea have opposite charge and represent the anti-particles.

Problem (Creation of holes in the Dirac sea): How much energy is required to
create an electron-positron pair in the field of an calcium nucleus (Z=20) if the electron is
captured into the 1s ground state of the ion. (Hint: Use the non-relativistic formula for the
bound-state energies, En = −Z2/2n2 [a.u.].)

2.4.e. Constants of motion in a central field

Time-independent Dirac equation for a particle in a central field:

(
−i~c ααα · ∇∇∇ + mc2 α0 + V (r)

)
ψ(r) = E ψ(r) .

Remember: In the non-relativistic theory, we can use either {H, l2, lz, sz} or
{H, l2, j2, jz} as complete set of commutable operators in order to classify the solutions of
the SE.

Commutable operators for the Dirac Hamiltonian

➣ Analogue to the Pauli theory, we find [HD, j
2] = [HD, jz] = [j2, jz] = 0

with

j2 = j2x + j2y + j2z =

(

l +
~

2
σσσD

)

·
(

l +
~

2
σσσD

)

, jz =

(

lz +
~

2
σD,z

)

➣ However, [HD, l
2] 6= 0; only the Dirac operator k = α0 (l · σσσD + ~) commutes:

[HD, k] = [j2, k] = [jz, k] = 0
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2. Review of one-electron atoms (hydrogen-like)

➣ For a central field V (r): Complete set of commutable operators {HD, k, j
2, jz}

with eigenvalue equations:

j2 ψ(r) = ~
2 j(j + 1)ψ(r) half integer

jz ψ(r) = ~mj ψ(r)

k ψ(r) = ~κψ(r) κ = ±(j + 1/2) = ±1, ±2, ... integer

κ is called the relativistic angular momentum quantum number, and it defines the
quantum number j uniquely. Therefore, the two quantum numbers (κ,mj) are suitable
to classify the spin-angular dependence of the solutions in every central field.

➣ Simultaneous eigenfunctions for k, j2, jz:

ψκ=j+1/2,mj
(r) =










√

κ+mj − 1/2 Pκ(r) Yκ−1,mj−1/2(θ, φ)
√

κ−mj − 1/2 Pκ(r) Yκ−1,mj+1/2(θ, φ)
√

κ−mj + 1/2 Qκ(r) Yκ,mj−1/2(θ, φ)

−
√

κ+mj + 1/2 Qκ(r) Yκ,mj+1/2(θ, φ)










and similar for ψκ=−(j+1/2),mj
(r).

The radial functions Pκ(r) and Qκ(r) are in general different and depend on the shape
of the (radial) potential V (r).

Problem (Dirac operator): Evaluate the (4× 4) representation of the Dirac operator

k = α0 (l · σσσD + ~) with σD,i =

(

σi 0

0 σi

)

.

2.4.f. Solutions of the Dirac equation for a Coulomb potential V (r) ≃ −Z/r

Time-independent Dirac equation for an electron in the Coulomb field (hydrogen-like ions)
reads as:

HD ψ(r) =

(

−i~c ααα · ∇∇∇ + mc2 α0 +
α~cZ

r

)

ψ(r) = E ψ(r) .

➣ Results in a coupled system of four (first-order) equations for the (four) components of

ψ(r) = ψκ=±(j+1/2),mj
=








ψ1

ψ2

ψ3

ψ4








or
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2.4. Relativistic theory: Dirac’s equation

➣ two coupled first-order odg for the radial functions Pκ(r) and Qκ(r):

ψ(r) = ψκ=±(j+1/2),mj
=

(

PκΩκm

iQκΩ−κm

)

where the Ωκm(ϑ, ϕ) are the so-called (spherical) Dirac spinors. In this representation,
the radial equations are given by:

(

B +
γ

r

) Pκ(r)√
2κ+ 1

− i

(
d

dr
+

κ+ 1

r

)
Qκ(r)√
2κ− 1

= 0

i
(

A − γ

r

) Qκ(r)√
2κ− 1

−
(
d

dr
− κ− 1

r

)
Qκ(r)√
2κ+ 1

= 0

A =
mc2 − E

~c
; B =

mc2 + E

~c
; γ = αZ

They are the same for using ψκ=+(j+1/2),mj
and ψκ=−(j+1/2),mj

above.

➣ The bound solutions to these coupled equations for E < mc2 are linear combinations
of the confluent hypergeometric function. — H’m, ... these functions are rather un-
pleasant to deal with but have been discussed extensively in the literature; cf. below

➣ The corresponding eigenvalues are:

E − mc2 = −mc2





1 −

[

1 +
α2Z2

(
nr +

√
κ2 − α2Z2

)

]−1/2






Sommerfeld’s fine-structure formula.

This formula describes the spectrum completely for all hydrogen-like ions apart from
the Lamb shift (QED corrections).

2.4.g. Bound-state solutions in a central field

Discrete spectrum: The radial functions Pnκ(r) and Qnκ(r) from above are often called
the large and small components and can be expressed in a Coulomb potential by the confluent
hypergeometric function F (α, β; x) as (cf. Eichler & Meyerhof 1995, Eq. 4.98–4.99)

Pnκ(r) = N L
nκ r (2qr)

s−1 e−qr
[
−n′ F (−n′ + 1, 2s+ 1; 2qr) −
(

κ − αZ

qλc

)

F (−n′, 2s+ 1; 2qr)

]

Qnκ(r) = N S
nκ r (2qr)

s−1 e−qr
[
n′ F (−n′ + 1, 2s+ 1; 2qr) −
(

κ − αZ

qλc

)

F (−n′, 2s+ 1; 2qr)

]
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2. Review of one-electron atoms (hydrogen-like)

with

n′ = n − |κ|, s =
√

κ2 − (αZ)2

q =

√

1 − W 2
nκ

λc
=

αZ

λc [(αZ)2 + (n′ + s)2]1/2

N L
nκ =

√
2q5/2λc

Γ(2s+ 1)

[
Γ(2s+ n′ + 1) (1 +Wnκ)

n′! (αZ) (αZ − κqλc)

]1/2

N S
nκ = −N L

nκ

(
1−Wnκ

1 +Wnκ

)1/2

Especially, the
∣
∣1s1/2,±1/2

〉
ground-state of hydrogen:

ψ(1s,1/2,+1/2) (r, ϑ, ϕ) =
1√
4π r










P1s(r)

0

−iQ1s(r) cosϑ

−iQ1s(r) sinϑ e
iϕ










ψ(1s,1/2,−1/2) (r, ϑ, ϕ) =
1√
4π r










0

P1s(r)

−iQ1s(r) sinϑ e
−iϕ

−iQ1s(r) cosϑ










with

P1s(r) =
(2Z)s̄+1/2

[2Γ (2s̄+ 1)]
1/2

(1 + s̄)1/2 rs̄−1 e−Zr

P1s(r) = −1− s̄
1 + s̄

1/2 (2Z)s̄+1/2

[2Γ (2s̄+ 1)]
1/2

(1 + s̄)1/2 rs̄−1 e−Zr

and s̄ =
√

1 − (αZ)2. Since for |κ| = 1 one has s̄ < 1, a mild singularity appears at the origin

in the wavefunctions for s1/2 and p1/2 states. For the radial components of the lowest few states, i.e.

1s1/2, 2s1/2, 2p1/2, 2p3/2, Eichler & Meyerhof (1995, Eq. 4.103 and Table 4.4) give also their form explic-

itly.

In some cases it is more suitable to use the representation of the bound electron wavefunctions as proposed

by Rose (1961). According to his text, the wave function with quantum numbers n, κ is given by

Pnbκb
(r) = r Nb e

−qr (qr)s−1
n′

∑

k=0

cb, k+ (qr)k

Qnbκb
(r) = r Nb e

−qr (qr)s−1
n′

∑

k=0

cb, k− (qr)k
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2.5. Beyond Dirac’s theory

where

Nb =
2s q2

Γ (2s+ 1)

(
Γ (2s+ n′ + 1)

qn′! [(αZ/q − κ)2 + n′(2s+ n′)]

)1/2

cb, k± =
(

1±
√

1− q2
)1/2 (−n′)k 2k

k! (2s+ 1)k
[(k − n′)± (αZ/q − κ)]

Such an representation is very useful for the calculation of different matrix elements that includes the

functions from the contineous spectrum .

Well, some people can and enjoy handle such functions for evaluating matrix elements, etc.

2.5. Beyond Dirac’s theory

Figure 2.7.: Relativistic level shifts for hydrogen-like ions; from: http://en.wikipedia.org/wiki/ .

2.5.a. Fine-structure of hydrogenic ions: From Schrödinger’s equation towards QED

2.5.b. QED: Interactions with a quantized photon field

Dominant QED corrections:
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2. Review of one-electron atoms (hydrogen-like)

Figure 2.8.: Feynman diagrams of the bound electron in first order of the fine structure constant α.

(a) Self energy, (b) vacuum polarization. The double line represents the bound state electron

propagator and contains the interaction between electron and the binding field to all orders of

α; from http://iopscience.iop.org/1402-4896/89/9/098004.

➣ Vacuum polarization (VP): virtual electron-positron pairs are produced that modify
the nuclear potential.

• The quantum vacuum between interacting particles is not simply empty space but
contains virtual particle-antiparticle pairs (leptons or quarks and gluons).

• These pairs are created out of the vacuum due to the energy constrained in time
by the energy-time version of the Heisenberg uncertainty principle.

• The VP typically lowers the binding of the electrons.

➣ Self energy: represents the contribution to the particle’s energy or effective mass due
to interactions between the particle and the system it is part of.

• In electrostatics, the self-energy of a given charge distribution refers to the en-
ergy required to bring the individual charges together from infinity (initially non-
interacting constituents).

• Frankly speaking, the self-energy is the energy of a particular due to the changes
that itself causes in its environment.

• Mathematically, this energy is equal to the so-called on-the-mass-shell value of the
proper self-energy operator (or proper mass operator) in the momentum-energy
representation.

➣ Feynman diagrams: graphical representation of the interaction; each Feynman diagram
can be readily expressed in its algebraic form by applying more or less simple rules.
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2.6. Hydrogenic atoms in constant external fields

Figure 2.9.: Accurate Lamb-shift calculations for atomic hydrogen.

2.6. Hydrogenic atoms in constant external fields

In constant external fields, the observed atomic spectra often depend quite sensitively on
the interplay of the level splittings that arises due to the field strength and (inner-atomic)
spin-orbit interactions. This interplay gives rise to a number of (well-explored) effects.

Usually, the level splitting in external fields is treated perturbatively by studying the

Hamiltonian: H = Ho + H ′.

(Normal) Zeeman effect: ... (Blackboard)

Stark effect: ... (Blackboard)

Anomalous Zeeman & Paschen-Back effect: ... (Blackboard)

2.7. Exotic ‘hydrogenic’ atoms

Instead of electron, an atomic nucleus (charge) can capture also negatively charged particles,
at least for some time.

Pionic atoms:
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2. Review of one-electron atoms (hydrogen-like)

➣ Pions (π+, π−) are spin-0 mesons that obey to the electromagnetic and strong interac-
tions and which follow the Klein-Gordan equation.

➣ Produced by inelastic proton scattering:

p + p =⇒ p + p + π+ + π−

can be captured by nuclei/atoms under the emission of Auger electrons.

After the production, the pions are decellerated and deflected upon some atomic target.

➣ Strong interaction with the nucleus can lead to the capture by the nucleus:

π− + p −→ n; π+ + n −→ p

Therefore, the strong-interaction potential has imaginary part, V = Vreal + Vimag, and
this leads to a broadening of all lines.

➣ Short lifetimes, τ(π−) ∼ 10−8 s ←→ large level widths (due to strong interactions).

➣ No spin-orbit splitting but standard nl classification similar to the non-relativistic
H-atom.

Muonic atoms:

➣ Spin-1/2 particles like electrons but with mass, mµ ≈ 207me ;

they are also described by the Dirac equation.

➣ p + p −→ p + p + π+ + π− and π− −→ µ− + νµ

➣ Muons are typically captured into some high excited level. The muonic atoms decay
then radiatively (via characteristic x-ray emission) or non-radiatively in several steps
towards the ground state.

➣ Relativistic solutions only apply for (very) heavy nuclei; the reduced mass of the muons
lead to recoil effects which can be analysed experimentally.

➣ Strongly enhanced QED effects because of the small radii of the muonic orbits.
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3. AMO Science in the 21st century

Potential and grand challenges for AMO Science (from ‘Controlling the Quantum World’):

➣ Quantum metrology: New methods to measure the nature of space and time with ex-
tremely high precision; this field has emerged within the last decade from a convergence
of technologies in the control of the coherence of ultrafast lasers and ultracold atoms.
Promises new research opportunities.

➣ Ultracold AMO physics is a spectacular new (AMO) research area of the past (two)
decades which led to the development of coherent quantum gases. This new field
promises to resolve important fundamental problems in condensed matter science and
plasma physics, with many interdisciplinary relations.

➣ High-intensity and short-wavelength sources such as new x-ray free-electron lasers
promise significant advances in AMO science, condensed matter physics and materials
research, chemistry, medicine, and others.

➣ Ultrafast quantum control will unveil the internal motion of atoms within molecules,
and of electrons within atoms, to a degree thought impossible only a decade ago. This
field gives rise to a sparking revolution in the imaging and coherent control of quantum
processes; is expected to become to one of the most fruitful new areas of AMO science
in the next 10 years or so.

➣ Quantum engineering on the nanoscale of tens to hundreds of atomic diameters has
led to new opportunities for atom-by-atom control of quantum structures using the
techniques of AMO science.

➣ Quantum information is a rapidly growing research area in AMO science with great
potential applications in data security and encryption. Multiple approaches to quantum
computing and communication are likely to be fruitful in the coming decade. Current
topics include: Realization of quantum information processing; models of quantum
computations and simulations; ect.

Web link (ultra-cold physics):

➣ ‘As cold as it gets’; www.youtube.com/watch?v=fnqAwtorUTE

➣ ‘Light Stopper’; www.youtube.com/watch?v=F5uF1qx7mT0&NR=1

➣ www.youtube.com/watch?v=Mgyp94TZdqQ

➣ www.youtube.com/watch?v=iDBZ3bwGseE

37



3. AMO Science in the 21st century

Present questions to AMO science:

➣ What are the undiscovered laws of physics that lie beyond our current understanding
of the physical world ? What is the nature of space, time, matter, and energy ?
Is there an atomic dipole moment ? ➥ Help explore the physics beyond the
standard model by using techniques from AMO physics.

➣ How can one improve the measurement precision to become sensitive to very weak
magnetic fields, such as of the brain or heart ? ➥ New diagnostic tools for various
diseases.

➣ How can one detect gravitational waves and anomalies, such as hostile underground
structures and tunnels ? ➥ Matter-wave interferometers.

➣ Can ultra-cold gases be used to mimic and explore the interactions in periodic structures
of solid crystals. Do they provide us with some useful quantum simulators ?

➣ Biological imaging ? Can free-electron lasers help us to explore the structure and
dynamics of proteins and biomolecules ? ➥ Freezing the motion of electrons as
they move about the molecule requires subfemtosecond, or attosecond, laser pulses.

➣ How can intense laser be utilized to create directed beams of electrons, positrons, or
neutrons for medical and material diagnostics ?

➣ Is it possible to use laser-induced fusion in large-scale power plants ?

➣ Can we use lasers to control the outcome of selected chemical reactions ?
➥ Such control technologies may ultimately lead to powerful tools for creating new
molecules and materials tailored for applications in health care, nanoscience, environ-
mental science, and energy.

➣ What comes beyond Moore’s law ? ➥ Should quantum computers be realized at all
in the future, they would be more different from today’s high-speed digital computers
than those machines are from the ancient abacus.

3.1. AMO Science and the basic laws of Nature

Search for atomic EDM’s:

➣ For example, AMO scientists aim at measuring subtle new effects due to a possible
permanent electric dipole moment (EDM) of an electron or an atom, which — if it really
exists — would require a dramatic extension of our theory of elementary particles.

➣ The theory of supersymmetry predicts that electrons and nuclei in atoms should possess
a tiny offset between their mass and electric charge centers along the spin axis of these
particles, the EDM. If it really exist, it would mean the violation of time reversal (t)
invariance.

➣ Time-reversal violating forces also appear in the (conventional) Standard Model of
elementary particle interactions but cause an EDM far too small to be observable by
any presently envisioned experiment; therefore, any measurement of an electron/atomic
EDM would mean new physics beyond the standard model.
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3.1. AMO Science and the basic laws of Nature

Figure 3.1.: Formation of an optical lattice; from I. Bloch, Nature 453, 1016 (2008).

➣ New ‘interactions’ are required to overcome several ‘gaps’ of the standard model, for
example, the preponderance of matter over antimatter.

➣ Figure 3.3 shows the ranges of some of the current predictions for EDMs which arise
from various dynamical models that extend the Standard Model of particle physics.

➣ Atomic physics can measure very tiny frequency shifts of smaller than a nanohertz,
i.e. less than one complete spin precession in 30 years. This may help to unveil such
interactions.

➣ Supersymmetric particles are hoped to be found eventually in high-energy experiments,
such as the Large Hadron Collider (LHC). But atomic EDM experiments are also well
positioned to discover supersymmetric particles if they do indeed exist.

Test of CPT theorem:

➣ Atomic physics experiments can also search for violations of the so-called charge, parity,
and time reversal (CPT) symmetry. Together, these symmetries state that matter
and antimatter particles should have exactly the same mass and the same magnetism.
These symmetries are fundamental pillars of modern physics and, hence, must be tested
precisely.

➣ The study of atoms can tell us about forces that are normally explored at high-energy
accelerators or large underground labs. Close to an electron, namely, the electron
envelops itself in a tiny cloud of emitted and reabsorbed virtual particles ... not only
photons but also heavier particles studied at high-energy accelerators. The existence of
these tiny clouds shows up in highly sensitive measurements of energy levels and other
atomic properties.

➣ In fact, atomic experiments have already shown how the small virtual clouds around
each electron may yield valuable information for particle physics. For example, the
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3. AMO Science in the 21st century

Figure 3.2.: An electric dipole moment (EDM) of an atom (left) is a permanent separation between the

centers of positive and negative charge along the axis of spin. Under time reversal (right), the

spin direction is reversed but the charge separation is not. An observed EDM would have to

be caused by forces that violate time reversal symmetry; taken from: Controlling the Quantum

World, page 32.

90 GeV Z0 boson which distinguishes left from right (and violates parity) causes an
isolated atom to absorb right-handed, circularly polarized photons at a slightly different
rate than left-handed photons. — Present measurements in the cesium atom are so
precise and agree so well with the Standard Model that any proposed heavier version
of this Z0 gauge boson must be at least eight times heavier, if such particles exists at
all.

➣ One of the most exact CPT tests is expected from the creation of antihydrogen in the
laboratory. By comparing the spectral energies of antihydrogen atoms and ordinary
hydrogen atoms, one can search for effects due to possible CPT violations.

Time variations of α:

➣ The fine-structure constant α = e2/~c is a dimensionless constants of three fundamen-
tal constants. Indeed, recent ‘unifying’ theories suggest the possibility of spatial and
temporal variations of α and other physical ‘constants’.

➣ Atomic physics may help to explore such variations because different atomic transitions
depend differently on α ➥ One need therefore to compare the rates of different atomic
clocks over long periods of time to place bounds on local change of α with time.

➣ Spectroscopic data presently provide so far no evidence that the value of α has changed
as the universe expanded (at least, with an averate rate > 10−16/a; if such changes
would be confirmed, our understanding of QED and its relation to the structure of
spacetime would need to be revised.

AMO physics & astronomy:

➣ Light from distant stars and galaxies exhibits characteristic spectral features as pre-
dicted accurately by atomic theory. This provides evidence that the laws of physics
apply across very large distances of the universe and from the earliest moments on.
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3.1. AMO Science and the basic laws of Nature

Figure 3.3.: Scientific impact of current and next-generation electron EDM measurements. It is anticipated

that next-generation measurements will reach the 10−31 e-cm level, equivalent to a dipole

consisting of a positive and negative electronic charge separated by only 10−31 cm, which will

test large classes of supersymmetric (SUSY) theories. Ongoing measurements of an atomic

EDM due to nuclear spin and the EDM of the neutron have similar sensitivity to different

SUSY parameters. Thus, atomic EDM experiments will be probing SUSY and other theories

on a broad front. SOURCE: D. DeMille, Yale University; taken from: Controlling the Quantum

World, page 33.

➣ To address and interprete many astrophysical observation, AMO spectroscopy and
collision studies in the lab need to be carried out, involving atoms, ions, molecules, and
electrons. Moreover, theoretical calculations provide essential input to the models used
in the interpretation of astronomical observations.

➣ Precision spectroscopy played an important role in the recent discovery that the expan-
sion of the universe is accelerating rather than decelerating, as it was expected for a
long time; this lead to the notion of dark energy whose nature is not at all understood.
➥ Existence of dark energy poses a challenge to the Standard Model of particle physics.

➣ Molecules can efficiently lose energy and allow a gas to cool under gravitational collapse,
the first step in star formation; the study of molecular hydrogen formation in the early
universe is an active area of study in AMO physics.

➣ Spectroscopy is the tool to search for life in other planetary systems; AMO physics
provides the necessary backbone to this work.

➣ Atomic and molecular theorists have developed powerful numerical methods and ex-
tensive computer codes to calculate energy levels, wavefunctions, and spectral line
strengths.
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3. AMO Science in the 21st century

3.2. Extreme light sources: Development and applications

Figure 3.4.: Brightness comparison between current and future sources of x rays generated in laboratory

x-ray lasers or at accelerators; taken from: Controlling the Quantum World, page 76.

New advances in AMO physics are creating brilliant bursts of x-ray beams:

➣ Laser-like bright, directed x-ray beams that can be focused to the size of a virus;

➣ fast and bright enough to capture the fleeting motion of electrons within atoms and
molecules;

➣ ‘extreme strobes’ that may provide a direct view on the electronic and structural
changes that govern biology and nanoscience at the molecular level.

Table-top x-ray sources:

➣ Use of ionized atomic plasmas as the lasing medium to generate highly monochromatic
and directed laser beams at wavelengths from 11 to 47 nm.

➣ These light sources may be used for next-generation micro-lithography, where the en-
ergy needs to be absorbed in a very precise nanopattern or in a very thin layer; good
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3.2. Extreme light sources: Development and applications

Figure 3.5.: Simple and quantum pictures of high-harmonic generation. Top: An electron is stripped from

an atom, gains energy, and releases this energy as a soft x-ray photon when it recombines

with an ion. Bottom: Two-dimensional quantum wave of an electron is gradually stripped

from an atom by an intense laser. Fast changes in this quantum wave lead to the generation

of high harmonics of the laser. Reprinted with permission from H.C. Kapteyn, M.M. Murnane,

and I.P. Christov, 2005, Extreme nonlinear optics: Coherent x-rays from lasers, Physics Today 58.

Copyright 2005, American Institute of Physics.; taken from: Controlling the Quantum World, page 79.

for industrial applications because of their relatively low cost.

➣ High-harmonics generation: Focusing an intense femtosecond laser into a gas, the elec-
trons in the gas atoms are driven so nonlinearly that high harmonics of the fundamental
laser are emitted as coherent, laser-like beams at short wavelengths. Photon energies
from the ultraviolet to keV.

➣ Instead of two or three laser photons that are added together in traditional nonlinear
optics, high-harmonic generation combines tens to hundreds of visible laser photons
together, to generate laserlike beams with photon energies up to the keV regime.

➣ HHG can be used also to create x-ray beams with ultrashort, sub-femtosecond (or
attosecond) durations.

➣ Although high-harmonic generation is often explained as an extreme version of non-
linear optics, this process of stripping away electrons from an atom is a real quantum
phenomenon and is deeply affected by the quantum wave nature of the electrons as
they move under the influence of the laser.

➣ Table-top extreme x-ray sources bring the source to the application, i.e. they enable
the widespread use of next-generation microscopes and spectroscopy to probe materials
with unprecedented spatial and temporal resolution.
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3. AMO Science in the 21st century

Free-electron lasers (FEL):

➣ XFEL sources use linear electron accelerators in order to produce much shorter and
more brilliant x-ray pulses than all other x-ray sources. These extreme x-ray laser
sources take advantage of true laser amplification to generate coherent beams that are
exquisitely directed and focusable.

➣ Their promise is to open up a completely new realm of x-ray science, enabling a new
era of single biomolecular and nanostructure determination as well as the ability to
study structural dynamics in materials and chemical/biological systems.

➣ The present-day synchrotrons, in contrast, have relatively long pulse durations, ranging
from tens to hundreds of picoseconds. Moreover, there are a relatively small number
of coherent photons in the hard x-ray regime.

➣ The LCLS x-ray laser (Stanford) beam is the first x-ray source that generates a similar
extreme focused powers as they can be accessed by current generation of high-powered
lasers; unusual physical phenomena are expected that have not previously been studied
or even observed.

➣ Three remarkable properties of x-ray lasers: Short wavelength, short pulses, and high
pulse intensity. This allows to remove the inner shell electrons rather than the valence
electrons.

➣ Creation of ‘hollow atoms and ions’ (species with two or more electrons from inner
shells); such atoms store enormous amounts of potential energy and represent extreme
matter in a truly exotic form.

➣ Similarly, two-photon ionization in the x-ray domain will be a major milestone in this
field.

Web link (high-intense lasers):

➣ ‘Laser fusion gets HiPERactive’ (interview with M. Dunne)
physicsworld.com/cws/article/multimedia/41169

➣ ‘Taking the pulse of the Vulcan laser’
physicsworld.com/cws/article/multimedia/41170

Imaging of biomolecules:

➣ Since XFEL produce very short bursts (tens to hundreds of femtoseconds of brilliant
x-ray light, they might be used to explore the movement of the atoms making up
the biomolecule and eventually to capture perhaps the molecular structure before the
molecule explodes as a result of the bright x-ray flash.

➣ For extremely short x-ray laser pulses (tens of femtoseconds or less) with sufficient
brilliance per pulse ( 1012 photons) are used, then an individual x-ray diffraction pattern
could be recorded from the macromolecule in the gas phase before radiation damage
manifests itself and ultimately destroys the molecule by literally blowing it apart.
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3.2. Extreme light sources: Development and applications

Figure 3.6.: Single-molecule diffraction by an x-ray laser. Individual biological molecules fall through the

x-ray beam, one at a time, and are imaged by x-ray diffraction. So far the previous and current

dream ! An example of the image is shown in the inset. H. Chapman, Lawrence Livermore

National Laboratory.; taken from: Controlling the Quantum World, page 82.

➣ Such studies might include biomolecules that are difficult or impossible to crystallize,
for example, membrane-bound proteins or even larger molecular machines responsible
for many aspects of cellular function.

➣ In practice, however, even the fundamental mechanisms of damage at such high inten-
sities are not well understood and are related to basic questions in AMO physics: Are
there important new nonlinear damage mechanisms ?

➣ Requires input from theory: Molecular dynamics simulations are needed to study how
the biomolecules behave under these high-vacuum conditions and how the water struc-
ture on their surfaces or other structural elements are affected.

Extreme states of matter:

➣ For high enough laser pulse energies, the electrons and ions are accelerate to relativistic
velocities close to the speed of light;

➣ Can one design tabletop particle accelerators that can accelerate electrons to GeV
energies within a few cm ? (Compare with the 28 km size of the LHC.)

➣ Lasers with a peak power of larger than 1 PW = 1015 W are currently constructed in
the US, Japan, Britain, France, and Germany. Lasers with 100 times larger peak power
(1017 W) might be possible in the coming decade. These high-power lasers open up
new scientific opportunities to understand, control, and use high-energy-density states
of matter.

➣ Laser-induced fusion: Ignition of an imploded fusion pellet by externally heating the
fusion fuel.
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3. AMO Science in the 21st century

Figure 3.7.: X-ray free-electron lasers may enable atomic resolution imaging of biological macromolecules;

from Henry Chapman, talk (2007).

➣ High energy density (HeD) plasmas: exist in nuclear explosions, neutron stars, white
dwarfs, or in plasmas that might be controlled to produce energy from nuclear fusion;
challenge to develope proper conceptual models in theory.

➣ Schwinger (critical field) limit at 3 × 1018 V/m: At this field strength, the vacuum
becomes unstable and QED predicts that electron-positron pairs can be spontaneously
generated from the vacuum. The laser intensity required to reach the Schwinger critical
field is around 1029 W/cm2. Such high laser intensities are several orders of magnitude
beyond the current state of the art.

Web link (total internal reflection):

➣ www.youtube.com/watch?v=5BPC9fWqkDw

3.3. Quantum information with light and atoms

Quantum information science may have profound and far-reaching relevance to economic
growth, secure communication as well as number-crunching in the 21st century. The quantum
hardware now found in atomic, molecular, and optical (AMO) systems is seen as a key for
realizing future quantum devices.
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3.3. Quantum information with light and atoms

Figure 3.8.: Coherent diffractive imaging is lensless; from Henry Chapman, talk (2007).

What to do with (potential) ‘quantum processors ?

➣ Quantum parallelism: N quantum bits cannot only store a superposition of all 2N

binary numbers but also process them simultaneously. One can benefit from this be-
haviour by designing proper quantum algorithms.

➣ Shor’s quantum algorithm for factoring (prime numbers) would factor large numbers
exponentially faster than any known classical algorithm. Indeed, factoring a number
with 300 digits would require near-perfect control of at least 109 near-perfect quantum
logic gates, the analog of classical Boolean operations.

➣ Quantum simulations are computations using (many) qubits of one system type that
can be initialized and controlled in the laboratory in order to simulate an equal number
of qubits of another type that cannot be easily controlled.
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3. AMO Science in the 21st century

Figure 3.9.: Diffraction images from single particles will be very weak; from Henry Chapman, talk (2007).
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4. Atomic many-electron systems

4.1. Two-electron atoms and ions (helium-like)

4.1.a. Coulomb vs. exchange interaction

H ψ = (H1 + H2 + H ′) ψ = E ψ

=

(

−∇∇∇
2
1

2
+ Vnuc(r1) −

∇∇∇2
2

2
+ Vnuc(r2) +

1

r12

)

ψ

Hamiltonian is invariant with regard to exchange r1 ↔ r2

Since there occurs no spin in the Hamiltonian, it can be omitted also in the wave functions.

Suppose H ′ ≪ (H1 + H2) , and with

⇐=







(H1 + H2) ψo = Eo ψo

ψo = un1ℓ1mℓ1
(r1) un2ℓ2mℓ2

(r2) = ua(1) ub(2) = uab

Eo = Eu1 + Eu2 = Ea + Eb a 6= b

Indistinguishability: Helium atoms are degenerate with regard to an exchange of the elec-
tron coordinates (exchange degeneracy); therefore, a better representation for overlapping
charge clouds is

ψo = c1 uab + c2 uba

ψ′o = c3 uab + c4 uba

Application of time-independent perturbation theory for H ′ in this two-dimensional basis
gives the matrix

(

H ′11 H ′12

H ′21 H ′22

)

=

(

J K

K J

)

J =

∫

dτ1 dτ2
ρa(1) ρb(2)

r12
=

∫

dτ1 dτ2
ρa(2) ρb(1)

r12
direct term

K =

∫

dτ1 dτ2
uab(1, 2) uba(1, 2)

r12
exchange term
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4. Atomic many-electron systems

The two functions ψo, ψ
′
o are always degenerate with regard to (H1 + H2) .

Which linear combinations (c1, ..., c4) make also H ′ diagonal ??

(

J K

K J

) (

c1

c2

)

= ∆E

(

1 0

0 1

) (

c1

c2

)

a) Trivial solution: c1 = c2 = 0 .

b) Solution of the secular equation

∣
∣
∣
∣
∣

J − ∆E K

K J − ∆E

∣
∣
∣
∣
∣
= 0 ⇐⇒ ∆E = J ± K .

∆E is the energy shift which need to be added to Eo = Ea + Eb , and which removes the
degeneracy: E = Eo ± ∆E . The corresponding eigenfunctions are

ψs =
1√
2
(uab + uba) , ψs =

1√
2
(uab − uba) .

For these functions, we have (prove it !)

∫

dτ ψ∗s(1, 2)
1

r12
ψ∗a(1, 2) = 0 .

(Symmetry-) classification of many-particle states: In general, the degeneracy of
the wave functions with regard to the exchange of electron coordinates follows directly from
the permutation symmetry of the wave functions.

Permutation operator:

Pij ψ(r1, ..., ri, rj , ...) = ±ψ(r1, ..., rj , ri, ...)

P 2
ij ψ = ψ for all functions

with eigenvalue ±1 ; the permutation operator commutes with all (internal) interactions of
H

[H, Pij] = 0 ∀ i 6= j

The {Pij} are constants of the motion, and all eigenfunctions to H must be either symmetric
or antisymmetric with regard to the exchange of electron coordinates.
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4.1. Two-electron atoms and ions (helium-like)

4.1.b. Ground and (low-lying) excited states of helium

Ground state a = b = (nℓmℓ) = (1 s 0)

ψa ≡ 0

ψs = u1s(1) u1s(2)

E(1s2) = 2E(1s) = −2 Z
2

n2
= −4 Hartree = −108 eV

∆E(1s2) =

〈
1

r12

〉

=
5

8
Z ≈ 34 eV

Total binding energy for (removing one) 1s electron:

Eb = E(1s) + ∆E(1s2) ≈ −20.4 eV perturbative

= −24.580 eV variational

Excited states a 6= b

E = Ea + Eb + J ± K

J =

〈

1s, nl

∣
∣
∣
∣

1

r12

∣
∣
∣
∣
1s, nl

〉

, K =

〈

1s, nl

∣
∣
∣
∣

1

r12

∣
∣
∣
∣
nl, 1s

〉

Large n and ℓ: Exchange integral K becomes negligible

H ≈ −∇∇∇
2
1

2
− ∇∇∇

2
2

2
− Z

r1
− (Z − 1)

r2

Constants of motion ... if we neglect the spin-orbit interaction

L = l1 + l2 , Lz = l1z + l2z

S = s1 + s2 , Sz = s1z + s2z
{
H, P12, L

2, Lz, S
2, Sz

}

... commute pairwise and form a complete set of operators
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4. Atomic many-electron systems

Figure 4.1.: Left: Schematic energy levels for the excited states of helium, showing the effect of the direct

and exchange term. Right: Energy levels of helium relative to the singly and doubly-charged

ion.

4.1.c. Spin functions and Pauli principle

Without spin-orbit interactions, all one-electron wave functions are separable

φ(1) = unℓmℓ
(1)χms

(1) =
1

r
Pnℓ(r)Yℓmℓ

(ϑ, ϕ)χms
(σ)

Two-electron spin functions: χms1
(1)χms2

(2)

Function S MS

χ+(1)χ+(2) +1

χs:
1√
2
(χ+(1)χ−(2) + χ−(1)χ+(2)) 1 0 symmetric

χ−(1)χ−(2) +1

χa:
1√
2
(χ+(1)χ−(2) − χ−(1)χ+(2)) 0 0 antisymmetric

Total wave functions:

ψs χs, ψa χa
︸ ︷︷ ︸

totally symmetric ... not possible

, ψs χa, ψa χs
︸ ︷︷ ︸

totally antisymmetric ... possible

Pauli principle: Fermionic (electronic) wave functions are totally antisymmetric with re-
gard to an exchange of particle coordinates. OR:

Two one-electron wave functions cannot agree in all quantum numbers (for their space and
spin motion).

• ψs χa singulet ... para helium

• ψa χs triplet ... ortho helium
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4.2. Interaction and couplings in many-electron atoms

Figure 4.2.: Left: LS terms for para and ortho helium; from: http://www.ipf.uni-stuttgart.de/lehre/.

Right: Energy levels in helium.

4.2. Interaction and couplings in many-electron atoms

4.2.a. Hierarchy of atomic interactions

4.2.b. Nuclear potential

➣ Point nucleus: Vnuc (r) = −Z
r
.

In general:

Vnuc (r) = e

∫

d3r′
ρ(r′)

|r − r′| .

➣ Homogeneously extended nucleus:

Vnuc(r) =







− Ze2

2R

(

3 − r2

R2

)

r ≤ R

−Z
r

r > R

• Light atoms: R ≈ 1.2 · A1/3 fm.

• Heavy elements: Radii are taken from electron-nucleus scattering experiments.

➣ Fermi distribution of the nuclear charge:

ρ(r) =
ρo

1 + exp
(
r −R
d

) , d = 1.039 · 105

Potential cannot be represented in a simple closed form; numerical solutions or ex-
pressed as superposition of Gaussian-type functions.
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4. Atomic many-electron systems

Figure 4.3.: Atomic interactions that need to be considered for a quantitative description/prediction of

atoms.

4.2.c. Coulomb interaction between pairs of electrons

For light and medium-heavy elements, there occurs an instantaneous (Coulomb) repulsion
between each pair of electrons

v Coulombij =
e2

4π ǫo rij
; rij = |ri − rj|

• This e-e interaction is ’origin’ of the eletronic correlations.

• In addition, there occurs a (so-called) Breit interaction in the relativistic description of
the electronic structure of atoms and ions; see below.

4.2.d. Spin-orbit interaction

A spin-orbit coupling term

Hso ∼
1

r

dV

dr
l · s −→

∑

i

1

ri

dV

dri
li · si

need to be treated for each electron i separately; computational simpler than e-e interaction
since each term only depends on a single electron coordinate.
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4.2. Interaction and couplings in many-electron atoms

4.2.e. Relativistic corrections to the e-e interaction

➣ Current-current interactions (magnetic interactions) and retardation effects give rise to
the (so-called) ’Breit interactions’

vBreitij = − 1

2rij

[

αααi ·αααj +
(αααi · rij) (αααj · rij)

r2ij

]

Breit interaction in the long-wavelength approximation

➣ Retardation of the interaction because the ’action’ travels only with the speed of light.

➣ Expansion of the Breit interaction in v2/c2 gives rise to several terms in the non-
relativistic limit; interaction of different magnetic moments as associated with the
electronic motion:

• orbit-orbit interaction Hoo

• spin-spin interaction Hss

• spin-other-orbit interaction Hsoo

➣ Total e-e interaction: vij = v Coulombij + vBreitij

4.2.f. Hyperfine interaction

Interaction of the magnetic moments of the electron(s) with the magnetic moment of the
nucleus:

µµµe =
e

2m
(l + g s) µB =

e~

2me

... Bohr magneton

µµµ nuc = gI µN I nuc µN =
e~

2mp

... nuclear magnet

Rather weak interaction; in light elements, HFS is typically so small that the individual
hyperfine lines overlap with each other. A separate HFS line structure typically appears
only in medium and heavy elements.

4.2.g. Atomic units

As for the hydrogenic systems, the theoretical treatment is often considerably simplified if
we set (see above)

me = ~ =
e2

4π ǫo
≡ 1
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4. Atomic many-electron systems

4.3. Interaction-induced shifts in atoms and ions

4.3.a. Isotopic effects

➣ Isotopic volume effect: rN ∼ A1/3
➥ change in the nuclear potential.

➣ Reduced mass: µ = mM
m+M

➥ change in atomic units.

➣ Different charge and magnetization distribution inside the nucleus (nuclear structure)
➥ ’nuclear picture’ of the nucleus.

Figure 4.4.: High-precision measurements of the D1 and D2 transition lines of two stable isotopes of

lithium allow a separation of individual hyperfine components and small isotope shifts; from

http://www.nist.gov/.

Mathematical treatment: ... (Blackboard)

4.3.b. Natural line widths

Excited atomic states are generally not stable because of the

• spontaneous emission

• collisional de-excitation

• electron-electron interaction, if the state is embedded into the continuum of the next
higher charge state of the atom.

➥ finite lifetime τ of all excited states, often pressure-dependent.

Heisenberg’s principle: ∆E ≃ ~

τ

optical transitions : τ ∼ 10−8 s −→ ∆E ∼ 5 · 10−4 cm−1 .
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4.4. Atomic many-body hamiltonians

Figure 4.5.: Comparison of Gaussian (red) and Lorentzian (blue) standardized line shapes. The HWHM

(w/2) is 1.; from http://en.wikipedia.org/wiki/ .

Intensity distribution (Lorentz profile):

I(σ) =
Γ/π

(σ − σo)2 + Γ2

• σ ... wave number (transition energy)

• Γ ... line widths

4.4. Atomic many-body hamiltonians

HC =
∑

one− particle operators +
electrostatic

Coulomb repulsion
+ ...

= H kin + Hnuc + H e−e +

= −
∑

i

∇∇∇2
i

2
−
∑

i

Z

ri
+
∑

i<j

1

rij
rij = |ri − rj|

... sum over all pairs of electrons

➣ Relativistic corrections in the e-e interaction and HFS splitting are typically rather
small and can be treated perturbatively.

➣ Quite sizeable corrections arises from the spin-orbit interaction

HC−so = HC +
∑

i

ξi(ri) (li · si)

The spin-orbit interaction must usually be included into the self-consistent treatment
and may change the calculated level structure and spectra qualitatively.
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4. Atomic many-electron systems

Atomic structure theory: Find approximate soluations to the many-electron
Schrödinger equation

HC ψ(r1, r2, ..., rN , σ1, σ2, ..., σN ) = E ψ(...)

4.5. Central-field approximations

4.5.a. The central-field model

The (so-called) Coulomb Hamiltonian can be written in different forms:

HC =
∑

i

(

−∇∇∇
2
i

2
− Z

ri

)

+
∑

i<j

1

rij

HC = Ho + H ′

=
∑

i

(

−∇∇∇
2
i

2
− Z

ri
+ u(ri)

)

+
∑

i<j

1

rij
−
∑

i

u(ri) ,

and choose u(ri) such that the repulsion with the N − 1 other electrons, when averaged over
time, is well described.

Independent-particle model (IPM): Each electron moves independent of all other
electrons in the central field of the nucleus and the N − 1 remaining electrons.

Hope: Ho ≫ H ′, i.e. H ′ can be treated later by perturbation theory.

Solutions to Ho are product functions of the one-electron orbital functions

φk(r, σ) =
1

r
Pnkℓk(r) Yℓkmk

(ϑ, ϕ) χmsk
(σ)

= |nk ℓkmℓk ,msk〉

spin-orbitals; one-electron functions

〈φk | φp〉 =
〈
nk ℓkmℓk ,msk | np ℓpmℓp ,msp

〉
= δkp = δnknp

δℓkℓp δmℓk
mℓp

δmsk
msp
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4.5. Central-field approximations

4.5.b. Product functions and Slater determinants

Since Ho has one-particle character, each product function

ψ = φ1(x1)φ2(x2) ... φN (xN) x = (r, σ)

is solution for Ho. In addition, however, we need to consider:

• Pauli principle: No two electrons may agree in all quantum numbers, n l,ml,ms

• [H, Pij] = 0 for all i 6= j. Solutions must be totally antisymmetric.

Simplest form of antisymmetric solutions are Slater determinants:

ψ =
1√
N !

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

φ1(1) φ1(2) ... φ1(N)

φ2(1) φ2(2) ... φ2(N)

...

φN(1) φN(2) ... φN(N)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=
1√
N !

∑

P

(−1)P φ1(k1)φ2(k2) ...φN (kN)

N ! terms; this form is nevertheless quite simple for practical computations.

Remark: There are (much) more complicated functions ψ possible which fulfill the two
requirements from above since Ho and {Pij , i 6= j} do NOT describe a complete set of
operators.

Norm:

〈ψ | ψ′〉 =
1

N !

∑

PP ′

(−1)P 〈φ1(k1)φ2(k2) ...φN(kN) | φ′1(k′1)φ′2(k′2) ...φ′N(k′N)〉

=
1

N !

∑

P

(−1)2P δψψ′ = δψψ′

For free atoms, however, also

[H, J2] = [H, Jz] = 0 ; J =
N∑

i=1

(li + si)

i.e. solutions to H (or Ho) can be classified due to J, M quantum numbers, while determi-
nants are in general NO eigenfunctions for J2 , only to Jz with eigenwertM =

∑

i (mℓi+msi).

The complete classification of the many-electron quantum states require further quantum
numbers; usually 4N quantum numbers.
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4. Atomic many-electron systems

4.5.c. Equivalent electrons. Electron configurations and the PSE

Electron orbitals: φk(r, σ) ; k = (n ℓmℓ,ms)

➥ all functions with equal quantum numbers (nℓ) but different (mℓ,ms) are degenerate
in any central-field potential. They are called equivalent electron orbitals or short
equivalent electrons.

Set of (maximal) q = 2 (2ℓ + 1) equivalent electrons form a subshell: (nℓ)w

Electron configuration:

(n1ℓ1)
q1 (n2ℓ2)

q2 ... (nrℓr)
qr 0 ≤ qi ≤ 2(2ℓi + 1)

r∑

i=1

qi = N

does not describe a particular quantum state but rather a set of determinants which only
differ in the magnetic quantum numbers and which are degenerate with respect to Ho. An
electron configuration also represents some particular sub-space of the many-electron Hilbert
space.

Shell notations in spectroscopy:

K-shell: n = 1 (1s)

L n = 2 (2s + 2p)

M n = 3 (3s + 3p + 3d)

N n = 4 (4s + 4p + 4d + 4f)

O n = 5 (5s + 5p + 5d + 5f + 5g)

Atomic shell model:

Total charge density of a filled subshell is spherical symmetric since

ρ subshell = e
1

r2
|Pnℓ|2

ℓ∑

m=−ℓ

∑

ms

|Yℓm|2 |χms
|2 =

2 (2ℓ + 1)

4π r2
|Pnℓ|2

i.e. the equivalent electrons of a filled subshell form indeed a spherical symmetric shell
(Unsöld’s theorem).

Central-field model (approximation) is the theoretical basis for the periodic table of elements

Blackboard example (Low-lying electron configurations of light elements):

Rydberg series (of configurations): 2p53p, 2p54p, 2p55p, ...
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4.5. Central-field approximations

The fully occupied core is typically omitted from the notation.

Aufbau principle: Electron shells (nℓ) are filled successively due to their energy, from
shells with large binding energies to those with lower energy. In practice, deviation from

this principle occur already for Z & 18 (argon)
• (n+ 1)s and (n+ 1)p are often filled before the nd shell  transition metals.

3d ... iron group Z = 21, ..., 28

4d ... paladium group Z = 39, ..., 46

5d ... platinum group Z = 71, ..., 78

• nf -shells are filled ’afterwards’ (4f ... lanthanides, 5f ... actinides);
• filled and half-filled shells are particular stable.

Blackboard example (Alkali atoms):

Figure 4.6.: For alkali atoms, a rather strong orbital angular momentum dependence if found for the low-

lying energy levels; from http://hyperphysics.phy-astr.gsu.edu.

4.5.d. Thomas-Fermi potential

Thomas-Fermi model: Electrons form a Fermi gas (Fermi-Dirac statistic)

electron density −→ electrostatic potential

Thomas-Fermi equation: ... (Blackboard)

Gives rise to Thomas-Fermi equation

d2χ

dx2
= x−1/2 χ3/2
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4. Atomic many-electron systems

Figure 4.7.: Comparison between the Thomas-Fermi electron densities (from which the potential can be de-

rived) and more accurate quantum-mechanical Hartree densities, obtained in the independent-

electron approximation.; from http://www.virginia.edu/ep/Interactions/.

Universal equation for all atoms (within the TF model) which can be solved numerically;
χ(r) describes the screening of the nuclear charge and b a weak Z-dependent scaling factor.

• For r ∼ ao , we have −Z
r
< V TF(r) < −1

r
.

• Correct for r → 0 : V (r)→ −Z
r
.

• Incorrect for r →∞ : V (r) goes to quickly to zero since it includes all the electrons
in the consideration; improvements of this behaviour is possible.

• Although the TF model is a statistical one, it also describes small atoms surprising
well; it is often used to start an SCF iteration.

4.6. Coupling schemes

4.6.a. Term splitting in electron configurations

Rest interaction:

H ′ =
∑

i<j

1

rij
−
∑

i

u(ri)

H ′′ =
∑

i

ξi(ri) (l · s) spin− orbit interaction

... removes the de-generacy of the central-field solutions.

Two approaches to obtain the level splitting:
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4.6. Coupling schemes

• Calculation and diagonalization of the submatrices to Ho + H ′ + H ′′.

• Form linear combinations of the determinants (of a given configuration) for which H ′

and/or H ′′ are diagonal; use of the known constants of motion.

Constants of motion: ... (Blackboard)

4.6.b. LS-coupling (Russel-Saunders)

LS-coupling approach: For light atoms (Z . 20), the spin-orbit interaction is usually
negligible when compared with the remaining electron-electron interaction, i.e.

H ≈ Ho +
∑

i<j

1

rij
−
∑

i

u(ri) .

In this approximation, H is diagonal with regard to coupled states of the kind:

• (...) LSMLMS or

• (..) LS JMJ ,

• while states with different ML and MS are obviously degenerate.

LS term: Set of all (2L+ 1) (2S + 1) =
∑L+S
|L−S| (2J + 1) states; their energy only depends

on L and S.

Level: is specified by LSJ and parity

Blackboard example (p2 configuration):

LS terms of equivalent electrons: ... (Blackboard)

4.6.c. LS-coupling of open shells

For two or several open shells, we must couple the total orbital and spin momenta of the
individual shells:

L = [(L1 + L2) + L3] + ...

S = [(S1 + S2) + S3] + ...

..., i.e. apply the vector model to determine all possible L and S .

Coupling sequence:

{[((L1, L2) L12, L3) L123 ...] Lq, [((S1, S2) S12, S3) S123 ...] Sq} JM

Compact notation:

{[((ℓw1

1 α1 L1S1, ℓ
w2

2 α2 L2S2) L12 S12, (...)) ...]Lq Sq} JM

63



4. Atomic many-electron systems

Figure 4.8.: Possible LS terms for sw, pw, dw, fw, configurations; the subscripts to the total L values here

refer to the number of different LS that need be distinguished by some additional quantum

number(s). See table for references.

There are no further restrictions due to the Pauli principle. The number of LS terms is of
course independent of the coupling sequence.

Blackboard example (d2 p2 configuration):

4.6.d. jj-coupling

jj-coupling approach: Applies approximately for the heavy elements (Z & 90), for
which we have HSO ≫ Hrest(e− e) .

J =
∑

i

ji =
∑

i

(li + si)

The set of all (2J + 1) degenerate states is equivalent here to a Level (as specified by LSJ
and parity).

2S+1LJ −→ (j1, j2, ...)J

A number of further coupling schemes have been discussed in the literature but are less
important in practice.

.
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4.6. Coupling schemes

Figure 4.9.: The observed energy level structure for the four lowest 3pns comfigurations of Si I and together

with the Si II configuration, relative to the respective centers of gravity. The figure shows a

rapid change from LS to pair-coupling conditions.

Allowed jj-terms for equivalent electrons can be derived quite similarly to the LS case.

ℓ j w J

s, p 1/2 0, 2 0

1 1/2

p, d 3/2 0, 4 0

1, 3 3/2

2 0, 2

d, f 5/2 0, 6 0

1, 5 5/2

2, 4 0, 2, 4

3 3/2, 5/2, 9/2

f, g 7/2 0, 8 0

1, 7 7/2

2, 6 0, 2, 4, 6

3, 5 3/2, 5/2, 7/2, 9/2, 11/2, 15/2

4 0, 2, 2, 4, 4, 5, 6, 8

4.6.e. Intermediate coupling. The matrix method

The total rest interaction H ′+H ′′ = Hrest(e−e)+HSO is not diagonal in any (geometrically
fixed) coupling scheme. In general, we only have

[H, J2] = [H, Jz] = [H, P ] = 0 ,
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4. Atomic many-electron systems

Figure 4.10.: Left: Energy level structure of a pd configuration under LS coupling conditions; it starts from

the central-field averaged energy and takes different contributions into account. Right: The

same but under jj coupling conditions; the two quite strong spin-orbit interactions result into

four different energies due to the pairs (j1, j2) of the two electrons.

Figure 4.11.: Possible LS terms of the d2 p2 configuration.

i.e., only the total angular momentum J2 and Jz as well as the total parity are (strictly)
conserved in free atoms.

4.7. Hartree-Fock theory: Electronic motion in a self-consistent field

4.7.a. Matrix elements of symmetric operators with Slater determinants

HC =
∑

i

(

−∇∇∇
2
i

2
− Z

ri

)

+
∑

i<j

1

rij

Most operators in atomic theory consist of:

➣ One-particle operators: F =
∑N

i f(xi) ➥ symmetric in (ri, σi).
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4.7. Hartree-Fock theory: Electronic motion in a self-consistent field

Figure 4.12.: Energies for the np2 configuration and change in the coupling scheme for various elements

homolog to atomic silicon.

➣ Two-particle operators: G =
∑N

i<j g(xi,xj)

➥ symmetric in all pairs of electron coordinates.

Matrix elements of one-particle operators F =
∑N

i f(ri)

Owing to the symmetry 〈ψ′ |f(ri)|ψ〉 = 〈ψ′ |f(rj)|ψ〉 , we find:

〈ψ′ |F |ψ〉 = N 〈ψ′ |f(r1)|ψ〉

=
N

N !

∑

PP ′

(−1)P+P ′
〈
φk1(1)φk2(2) ... |f(r1)|φk′1(1)φk′2(2) ...

〉

=







∑

i 〈i |f(r)| i〉 if ψ′ = ψ and ψ = {a, b, c, ...}

± 〈a′ |f(r)| a〉 if ψ′ = {a′, b, c, ...} and ψ = {a, b, c, ...}

0 else; i.e. if two or more orbitals differ
ψ′ = {a′, b′, c, ...} and ψ = {a, b, c, ...}

That is

〈ψ′ |F |ψ〉 =







∑

i 〈i |f | i〉 all diagonal ME

〈a′ |f(r)| a〉 ME which differ in just one orbital a′ 6= a

0 else

67



4. Atomic many-electron systems

Figure 4.13.: Block diagram of the lowest configurations of Ne I. For each configuration, the levels lay within

a limited range of energies as it is shwon by the shadowed blocks. There is one level for 2p6,

4 levels of ps configurations, 10 levels for p5p′ configurations and 12 levels for p5d and p5f

configurations, respectively.

Matrix elements of symmetric two-particle operators

Similar discussion lead to

〈ψ′ |G|ψ〉 =







∑

i<j (〈ij | g | ij〉 − 〈ji | g | ij〉) all diagonal ME
∑

i (〈ia′ | g | ia〉 − 〈a′i | g | ia〉) ME which just differ in
one orbital a′ 6= a

(〈a′b′ | g | ab〉 − 〈a′b′ | g | ab〉) ME which differ in
two orbitals a′ 6= a, b′ 6= b

0 else, i.e. for more than
two differences

Simplified notation

|α〉 ... Slater determinant |{a, b, ..., n}〉

ordered set of one-particle functions, i.e. quantum numbers

Moreover, we need to distinguish in |α〉
• occupied orbitals (one-particle functions): a, b, ...

• virtual orbitals (which do not occur in |α〉): r, s, ...

Then, |αra〉 refers to a Slater determinant where the occupied orbital a → r is replaced by
a virtual orbital (r); analogue for |αrsab〉 .
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4.7. Hartree-Fock theory: Electronic motion in a self-consistent field

Simplified notations for matrix elements

➣ Diagonal ME

〈α |F |α〉 =
occ∑

a

〈a | f | a〉

〈α |G|α〉 =
occ∑

a<b

(〈ab | g | ab〉 − 〈ba | g | ab〉)

=
1

2

occ∑

ab

(〈ab | g | ab〉 − 〈ba | g | ab〉)

➣ ME between determinant which differ by one (1-particle) orbital

〈αra |F |α〉 = 〈r | f | a〉

〈αra |G|α〉 =
occ∑

b

(〈rb | g | ab〉 − 〈br | g | ab〉)

➣ ME between determinant which differ by two orbitals

〈αrsab |F |α〉 = 0

〈αrsab |G|α〉 = 〈rs | g | ab〉 − 〈sr | g | ab〉

➣ All other ME vanish identically.

Feynman-Goldstone diagrams

Matrix elements can be represented also in terms of diagrams; such graphical methods are
very important for studying complex atoms and molecules. ➥ MBPT ... many-body
perturbation theory.

Figure 4.14.: Selected Feynman-Goldstone diagrams to represent matrix elements and wave operators.

Blackboard example (Feynman-Goldstone diagrams):
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4. Atomic many-electron systems

4.7.b. Self-consistent-field (SCF) calculations

Central-field model:
∑

i u(ri)

Question: Is there an optimal choice of u(ri) or u(ri) ?

Self-consistent field (SCF-field):

Starting potential −→ Calculate 1− p functions −→ Calculate new potential
︸ ︷︷ ︸

←− perform iteration

Mathematical formulation of this SCF scheme, and which takes into account also the Pauli
principle, leads us to the Hartree-Fock equations.

4.7.c. Abstract Hartree-Fock equations

Expectation value of the total energy with respect to a single Slater determinant |α〉 :

〈E〉 = 〈α |H|α〉 =

〈

α

∣
∣
∣
∣
∣

N∑

i=1

(

−∇∇∇
2
i

2
− Z

ri

)

+
∑

i<j

1

rij

∣
∣
∣
∣
∣
α

〉

The optimal approximation for the (ground state) |α〉 is obtained from the (variational)
minimization of the expectation value with regard to variations of the orbital functions, i.e.:

〈E〉 ... stationary with respect to small changes in the orbitals

|a〉 −→ |a〉 + η |r〉 η ... real

|α〉 −→ |α〉 + η |αra〉

〈E〉 −→ 〈E〉 + η (〈αra |H|α〉 + 〈α |H|αra〉) + O(η2)
〈αra |H|α〉 = 0 for all pairs a, r Hartree− Fock condition

Brillouin’s theorem: In the Hartree-Fock approximation, the non-diagonal matrix el-
ements must vanish for all those determinants which just differ by a single one-electron
orbital.

Or shorter: One-particle excitations do not contribute to the Hartree-Fock energy.

Hartree-Fock method in more detail ... (Blackboard)

Koopman’s theorem: In the HF approximation, the ionization energy for releasing an
electron a is equivalent to the (negative) one-electron HF energy of the electron a. In this
approximation, no relaxation of the N − 1 other electrons is taken into account.
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4.7. Hartree-Fock theory: Electronic motion in a self-consistent field

4.7.d. Restricted Hartree-Fock method: SCF equations for central-field potentials

Central-field model: Ho =
∑n

i ho(i)

ho φk =

(

−∇∇∇
2

2
− Z

r
+ u(r)

)

= ǫk φk

φk =
Pk(r)

r
Yℓkmℓk

(ϑ, ϕ) χsk(σ)

I.e. only the radial functions are NOT YET fixed and are allowed to vary.

Orbital functions must be solutions of the radial equation
[

−1

2

d 2

dr2
+

ℓ(ℓ+ 1)

2 r2
− Z

r
+ u(r)

]

P (r) = ǫ P (r)

with the boundary conditions:

P (r → 0) = 0 ⇐⇒ P (r)

r
−→ r→0 finite

∫

dV |φ|2 =

∫ ∞

0

dr P 2(r) ... must be normalizable

Classification of Pnl(r) by n and l is still possible:

n = ν + ℓ + 1 ν ... number of knots

ǫ = ǫ(n, ℓ) = ǫnℓ

Form of the restricted Hartree-Fock equations: ... (Blackboard)

(Restricted) Hartree-Fock method: Ritz variational principle of the total energy

δ 〈E〉 = δ Eav = 0

with additional condition

Nnℓ,n′ℓ =

∫ ∞

0

dr P ∗nℓ(r) Pn′ℓ(r) = δnn′

or equivalent:

δ{Pa}

[

Eav −
∑

a

qa λaaNaa −
∑

a 6=b

δℓa,ℓb qa qb λabNab

]

= 0

for all variations δPa(r) with the given boundary conditions from above, and where Eav

refers to the expression for the configuration-averaged energy.
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4. Atomic many-electron systems

Figure 4.15.: (Radial Hartree-Fock functions for carbon (left) as well as for the 2p electrons of boron and

fluorine (right).

Then, the restricted HF equations read as:

[

−1

2

d2

dr2
+

ℓa(ℓa + 1)

2 r2
− Z

r

]

Pa(r)

+
∑

b,k

qb

[

c(abk)
Y k(bb; r)

r
Pa(r) + d(abk)

Y k(ab; r)

r
Pb(r)

]

= ǫa Pa(r) +
∑

b 6=a

qb ǫab Pb(r)

where

ǫa = λaa one− electron eigenvalues

ǫab =
1

2
δ(ℓa, ℓb) (λab + λba)

Y k(ab, r) = r

∫ ∞

0

ds
rk<
rk+1
>

Pa(s)Pb(s)

Set of linear and coupled integro-differential equations which have to be solved iteratively.

4.8. Beyond Hartree-Fock theory: Electron-electron correlations

4.8.a. Configuration interaction theory (matrix method)

(Fourier) expansion of the unknown solution Ψ with regard to a (complete) set of basis
functions {Φi} :

|Ψk〉 =
∑

i

cik |Φi〉 , 〈Φi | Φj〉 = δij .
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4.8. Beyond Hartree-Fock theory: Electron-electron correlations

Figure 4.16.: Total energies, orbital eigenvalues and expectation values of r from Hartree-Fock calculations

for the 1s22s22p2 configuration of carbon (taken from Lindgren and Morrison, 1986).

Figure 4.17.: Expectation values of r from Hartree-Fock calculations for noble gas atoms (taken from Lind-

gren and Morrison, 1986).

In practice, the infinitely large basis must always be truncated, i = 1, ...,M :
Substitution into the Schrödinger H Ψk = EkΨk equation gives rise to:

M∑

i

H cik |Φi〉 = Ek

M∑

i

cik |Φi〉 | · 〈Φj| j = 1, ...,M

M∑

i

Hji cik = Ek cjk ∀j

Hji = 〈Φj |H|Φi〉 ... matrix elements of H.

The matrix method result into a homogenous equation with hermitian matrix (Hik = H∗ki)
and, in atomic structure theory, into a real-symmetric matrix with non-trivial solutions for

|H − E I| = 0 ,

the so-called secular equation.

Solutions are the zeros of the characteristic polynomial and are obtained by diagonalization
of the Hamiltonian matrix.
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4. Atomic many-electron systems

4.8.b. Multiconfiguration Hartree-Fock (MCHF) theory

Hartree-Fock method MCDF method

|α〉 −→ |α(k)〉 =
∑

i cik |αi〉

* single determinant * superposition of determinants

* variation of (radial) orbital functions * variation of (radial) orbital and

the expansion coefficients {cik} .

Steps in deriving the MCDF equations ... (Blackboard)

Hylleras-Undheim theorem: The eigenvalues E
(n+1)
k ≤ E

(n)
k of the Hamiltonian

matrix converge monotonically from above to the exact energies of the Schödinger equation
as the number of basis functions is increased.

Figure 4.18.: From Jönsson and Froese Fischer, Phys. Rev. A48 (1993).

4.8.c. Elements of many-body perturbation theory (MBPT)

Standard perturbation theory starts from a suitable decomposition of the Hamiltonian op-
erator

H = Ho + V

Ho φ
(0)
n = E(0)

o φ(0)
n , Vmn =

〈
φ(0)
m |V |φ(0)

n

〉
,

and where solutions to Ho are supposed to be known.
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4.8. Beyond Hartree-Fock theory: Electron-electron correlations

Ansatz:

En = E(0)
n + E(1)

n + E(2)
n +

φn = φ(0)
n + φ(1)

n +

for which we find easily:

E (1)
n = Vmn

E (2)
n =

∑

m

Vnm Vmn

E
(0)
n − E

(0)
m

φ (1)
n =

∑

m

∣
∣
∣φ

(0)
m

〉

Vmn

E
(0)
n − E

(0)
m

m ... sum over a complete set of many-particle states.

Not so easy applicable to many-electron system because of complications with book-keeping
and the degeneracy of the zero-order solutions.

Basic steps of MBPT

➣ We assume the decomposition

H = Ho + V , Ho =
∑

i

ho(ri)

HoΦ
a = Ha

o Φ
a ,

〈
Φa | Φb

〉
= δab

➣ with Slater determinants Φa built from one-electron functions φk : ho φk = ǫ φk .

➣ Goal: Solutions of the SE H Ψa = EaΨa for a finite number a = 1, ..., d of atomic
states.

➣ Model space: M = span{Φa, a = 1, ..., d}

All other solutions Φr of Ho with Φr /∈ M lay in the (complementary) space
orthogonal to M .

➣ Projection operator:

P =
∑

a∈M

|Φa〉 〈Φa|

Q = 1 − P =
∑

r /∈M

|Φa〉 〈Φa|

P = P+ = P 2, PQ = QP = 0
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4. Atomic many-electron systems

[P, Ho] = [Q, Ho] = 0

Φa
o = P Φa

Projection operators commute with Ho.

If Φa is known, Φa
o is just the projection of the exact solution upon the model space.

➣ Wave operator: (Möller, 1945)

Φa = Ω Φa
o

Note: Ω and P are not inverse operators.

➣ Intermediate normalization:

〈Φa | Φa
o〉 = 〈Φa

o | Φa
o〉 = 1 ⇐⇒ P = PΩP .

·ΩP | ΩP HoΨ
a + ΩP V Ψa = EaΩP Ψa

− HoΩP Ψa + V ΩP Ψa = EaΩP Ψa

(ΩHo − HoΩ) P Ψa + (ΩP V ΩP − V ΩP ) Ψa = 0 ∀a = 1, ..., d

[Ω, Ho] P = (V Ω − ΩP V Ω) P

Generalized Bloch equation.

For the states of interest {Φa, a = 1, ..., d } , this equation is completely equivalent
to Schrödinger’s equation. Instead an equation for the wave function, we now have an
(operator) equation for the wave operator Ω.

Figure 4.19.: Simplified representation of the operators P and Ω in IN. The projector P transforms a d-

dimensional space {Φa, a = 1, ..., d} of the Hilbert space into the model space M of the

same dimension. The wave operator Ω reverses this transformation. Note, however, that P

and Ω are not inverse operators.

Order-by-order perturbation expansions: ... (Blackboard)
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4.8. Beyond Hartree-Fock theory: Electron-electron correlations

Figure 4.20.: Grafical representation of the unperturbed Hamiltonian operator Ho and the perturbation V ,

written in normal form [cf. Eqs. (4.31-4.35) in Lindgren (1978).

4.8.d. Relativistic corrections to the HF method

The most simple and straightforward extension starts from the replacements

h = −∇∇∇
2

2
− Z

r
−→ hD = cααα · p + (β − 1) c2 − Z

r

φ −→ ψD =








ψ1

ψ2

ψ3

ψ4








,

i.e., the use of one-particle Dirac Hamiltonian, Dirac matrices and Dirac spinors.

Therefore, we need to construct the determinants, the solutions to the central-field Hamilto-
nian, from four-component Dirac spinors. This is known as Dirac-Fock method; it contains
the same abstract (HF) equations as above and also incorporates completely the spin-orbit
interaction due to the one-particle Dirac Hamiltonian.

Relativistic Hamilton operator: ... (Blackboard)
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5. Angular momentum (AM) in quantum physics

5.1. Angular momentum operators

Commutation relation & eigenfunctions:

[li, lj] = i~ ǫijk lk

l2 Ylm = ~
2 ℓ(ℓ+ 1) Ylm ℓ = 0, 1, 2, ... orbital angular momentum QN

lz Ylm = m ~ Ylm m = −ℓ,−ℓ+ 1, ..., ℓ magnetic QN

The eigenfunctions Ylm are called the spherical harmonics, and ~ is often omitted (if all
angular momenta are taken in units of ~).

5.1.a. Algebraic definition of angular momentum

Definition by commutator:

➣ In the algebraic method of angular momentum (AM) theory, one defines the commu-
tators of the cartesian components by:

[ji, jj] = i~ ǫijk jk ,

with the consequence that the eigenvalues include all (non-negative) integer and half-
integer values, such as the spin-1/2 systems.

➣ From this definition, one then obtains:

[ji, j
2] = 0 (i = 1, 2, 3)

[j+, j−] = 2 ~ jz

[jz, j±] = ± ~ j±

[j±, j
2] = 0

with j2 = j2x + j2y + j2z and j± = jx ± i jy .

➣ Since jx, jy, jz are observables and hermitian, also the operators j2, j± are hermitian
and related to each other by: j+ = j†− .

➣ j+ is called the raising operator and j− is the lowering operator, and together briefly
the ladder operators.
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5. Angular momentum (AM) in quantum physics

➣ The algebraic method considers the eigenvalue equations

j2 uλm = ~
2 λ uλm

jz uλm = ~m uλm

and determines conditions for λ and m by using the ladder operators, commutation
relations and orthogonality of the eigenfunctions.

For example, one obtains with

j± uλm = N±(λ,m) uλ,m±1

N+(λ,m) = N∗−(λ,m+ 1) ≡ N(λm)

|N(λ,m)|2 = ~
2 [j(j + 1) − m(m+ 1)]

➣ Condon-Shortley phase convention: N(λ,m) = ~
√

j(j + 1) − m(m+ 1) .

➣ The possible values of m are m = j, j−1, j−2, ...,−j , and with j >= 0, this means

j = 0,
1

2
, 1,

3

2
, 2, ...

λ = j (j + 1)

➣ Eigenvalue equations:

j2 ujm = ~
2 j(j + 1) ujm

jz ujm = ~mujm

Problem (Commutation relations of AM operators): Derive the commutation rela-
tions

[ji, j
2] = 0 (i = 1, 2, 3), [j+, j−] = 2 ~ jz,

[jz, j±] = ± ~ j±, [j±, j
2] = 0

from

[ji, jj] = i~ ǫijk jk ,

5.1.b. Matrix representation of angular momentum operators

We wish to construct a matrix representation of the cartesian components jx, jy and jz of
the angular momentum operator j = jx ex + jy ey + jz ez.
We can form the matrix elements:

〈
ujm | j2 ujm′

〉
= ~

2 j(j + 1) δmm′

〈ujm | jz ujm′〉 = ~ δmm′

〈ujm | j± ujm′〉 = ~

√

j(j + 1) − m(m± 1) δm,m′±1
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5.1. Angular momentum operators

and with j± = jx ± i jy

〈ujm | jx ujm′〉 =
~

2

[√

j(j + 1) − m(m− 1) δm,m′+1 +
√

j(j + 1) − m(m+ 1) δm,m′−1

]

〈ujm | jy ujm′〉 =
~

2i

[√

j(j + 1) − m(m− 1) δm,m′+1 −
√

j(j + 1) − m(m+ 1) δm,m′−1

]

.

Example (Spin-1/2 systems): For spin-1/2 systems, we have m = ±1/2 and this gives

rise to the matrix representations

jx =
~

2

(

0 1

1 0

)

, jy =
~

2

(

0 −i
i 0

)

, jz =
~

2

(

1 0

0 −1

)

.

j+ = ~

(

0 1

0 0

)

, j− = ~

(

0 0

1 0

)

, j2 = ~
2 3

4

(

1 0

0 1

)

Blackboard example (Spin-1 systems):

5.1.c. Algebra of Pauli matrices

Because of the significance of spin-1/2 particles and systems, the matrix representation of the
angular momentum operators (apart from the factor ~/2) are known also as Pauli matrices,
and together with σo :

σx =

(

0 1

1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0

0 −1

)

, σo =

(

1 0

0 1

)

,

These Pauli matrices obey several important relations:

σ2
x = σ2

y = σ2
z = σo

[σi, σj ] = 2i ǫijk σk

{σi, σj} = 2δij σo

σiσj = δij σo + i ǫijk σk

Linear independence of the Pauli matrices:

ao σo + a1 σ1 + a2 σ2 + a3 σ3 = 0
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5. Angular momentum (AM) in quantum physics

only holds iff ao = a1 = a2 = a3 = 0 . This completeness of the Pauli matrices means
that they form a basis for arbitrary 2× 2 matrices:

A =

(

a11 a12

a21 a22

)

= ao σo + a1 σ1 + a2 σ2 + a3 σ3 =
∑

i

ai σi

a0 =
1

2
(a11 + a22) , a1 =

1

2
Tr (σxA) , a2 =

1

2
Tr (σy A) , a3 =

1

2
Tr (σz A)

ai =
1

2
Tr (σiA)

(a · σσσ) (b · σσσ) = a · b + iσσσ · (a× b) , (a · σσσ)2 = a2 .

5.2. Coupling of angular momenta

5.2.a. Example: Angular momentum of electrons (spin-1/2 particles)

Let us consider an electron (spin-1/2 particle) with spatial coordinate r and spin projection
ms = ±1/2 .

Hilbert space: Product of the position space r and the spin space

|r, ±〉 = |r〉 ⊗ |↑, ↓〉 ; H = {|r, ±〉} = Hp ⊗ H2

Rotation operator: still given by exp
(
−i j·nϑ

~

)
with

j = l⊗ 1 + 1⊗ s = l + s and

[li, lj] = i~ ǫijk lk , [si, sj] = i~ ǫijk sk , [li, sj] = 0 ,

and where n is a unit vector along the rotation axis. This gives rise to the rotation operator
in the product space

UR(n, ϑ) = exp

(−i l · nϑ
~

)

exp

(−i s · nϑ
~

)

.

Wave functions in product space: Superposition of two spin components

ψ(r, σ) =

(

ψ↑(r)

ψ↓(r)

)

= ψ↑(r) |↑〉 + ψ↓(r) |↓〉 .
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5.2. Coupling of angular momenta

Operators and product states of composite system: {l2, lz, s2, sz}

|ℓ, s,mℓ,ms〉 = |ℓ,mℓ〉 |s,ms〉

l2 |ℓ,mℓ〉 = ℓ(ℓ+ 1) ~2 |ℓ,mℓ〉

lz |ℓ,mℓ〉 = mℓ ~ |ℓ,mℓ〉

s2 |s,ms〉 = s(s+ 1) ~2 |s,ms〉

sz |s,ms〉 = ms ~ |s,ms〉

5.2.b. Coupling of two angular momenta (AM)

Spin-orbital motion of electrons can be described by different sets of commuting operators
{l2, lz, s2, sz} and {l2, s2, j2, jz} and with the well-known commutators from above.

Useful bases:

➣ Coupled basis: |ℓ, s, j,mj〉 with eigenvalue equations from above.

l2 |ℓ, s, j,mj〉 = l(l + 1) ~2 |ℓ, s,mℓ,ms〉

lz |ℓ, s, j,mj〉 = mℓ ~ |ℓ, s,mℓ,ms〉

More general: {j21, j1z, j22, j2z} and |j1,m1, j2,m2〉 with analogue commutation and
eigenvalue equations

j21 |j1,m1, j2,m2〉 = j1(j1 + 1) ~2 |j1,m1, j2,m2〉

j1z |j1,m1, j2,m2〉 = m1 ~ |j1,m1, j2,m2〉

and similar for j2, j2z; these eigenvectors form a complete set

j1∑

m1 =−j1

j2∑

m2 =−j2

|j1,m1, j2,m2〉 〈j1,m1, j2,m2| = 1

〈j1,m1, j2,m2 | j′1,m′1, j′2,m′2〉 = δj1,j′1 δj2,j′2 δm1,m′

1
δm2,m′

2

The product space of operators j1, j2 has dimension: (2j1 + 1) (2j2 + 1)

➣ Coupled basis: |j1, j2, j,mj〉 with the same eigenvalue equations for j1, j2 and

j2 |j1, j2, j,mj〉 = j(j + 1) ~2 |j1, j2, j,mj〉

jz |j1, j2, j,mj〉 = mj ~ |j1, j2, j,mj〉
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5. Angular momentum (AM) in quantum physics

These functions are also complete:
j1+j2∑

j= |j1−j2|

j
∑

mj =−j

|j1, j2, j,mj〉 〈j1, j2, j,mj| = 1

〈
j1, j2, j,mj | j′1, j′2, j′,m′j

〉
= δj1,j′1 δj2,j′2 δj,j′ δmj ,m′

j
.

Clebsch-Gordan expansion: The functions of the uncoupled and coupled bases can be
easily transformed into each other:

|j1, j2, j,mj〉 =

j1∑

m1=−j1

j2∑

m2=−j2

|j1,m1, j2,m2〉 〈j1,m1, j2,m2 | j1, j2, j,mj〉

|j1,m1, j2,m2〉 =

j1+j2∑

j=|j1−j2|

j
∑

mj=−j

|j1, j2, j,mj〉 〈j1, j2, j,mj | j1,m1, j2,m2〉

These expansions coefficients are called the Clebsch-Gordan coefficients

〈j1,m1, j2,m2 | j1, j2, j,mj〉 ≡ 〈j1,m1, j2,m2 | j,mj〉 ;

these coefficients freqently appear in the description of multi-qubit and quantum many-
particle systems and elsewhere.

5.2.c. Properties of Clebsch-Gordan (CG) coefficients

Although the Clebsch-Gordan coefficients need to be calculated in many cases, one often
wishes to just use their properties in order to understand the behaviour of physical systems,
at least qualitatively.

➣ The CG coefficients 〈j1,m1, j2,m2 | j,mj〉 = 0 , unless mj = m1 + m2 .

➣ By convention, the CG coefficients are taken to be real:

〈j1,m1, j2,m2 | j,mj〉 = 〈j,mj | j1,m1, j2,m2〉 .

➣ The CG coefficients vanish unless |j1 − j2| ≤ j ≤ j1 + j2 (triangular rule)

Indeed, one can show:
j1 + j2∑

j=|j1− j2|

= (2j1 + 1) (2j2 + 1)

for all integer and half-integer values of j1, j2.

➣ For each j, the values of mj are: −j ≤ mj ≤ j .
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➣ The CG coefficients obey a large number of sum rules; for example:
∑

m1,m2

〈j1,m1, j2,m2 | j,mj〉2 = 1

∑

j,m

〈j1,m1, j2,m2 | j,mj〉2 = 1

j1+j2∑

j= |j1−j2|

j
∑

mj =−j

〈j1,m1, j2,m2 | j,mj〉 〈j1,m′1, j2,m′2 | j,mj〉 = δm1,m′

1
δm2,m′

2

➣ The CG coefficients are closely related to the (so-called) Wigner 3–j symbols which
obey higher symmetries:

〈j1,m1, j2,m2 | j,mj〉 = (−1)j1−j2+m
√

2j + 1

(
j1 j2 j
m1 m2 m

)

.

Problem (Clebsch-Gordan coefficients): Show the that Clebsch-Gordan coefficients are
zero unless m = m1 + m2 .

5.2.d. Calculation of Clebsch-Gordan coefficients

➣ Recursion relations: The CG coefficients are 1 for m1 = j1, m2 = j2, mj = j1+j2
and m1 = −j1, m2 = −j2, mj = −j1 − j2 ; this can be used together with the
properties of the j± operators

j± |j1, j2, j,mj〉 = (j1,± + j2,±) |j1, j2, j,mj〉

=
∑

m′

1,m
′

2

〈
j1,m

′
1, j2,m

′
2 | j1, j2, j,mj

〉
(j1,± + j2,±)

∣
∣j1,m

′
1, j2, j

′
2

〉

to find the recursion relations
√

(j −m)(j +m+ 1) 〈j1,m1, j2,m2 | j,m+ 1〉

=
√

(j1 −m1 + 1)(j1 +m1) 〈j1,m1 − 1, j2,m2 | j,m〉

+
√

(j2 −m2 + 1)(j2 +m2) 〈j1,m1, j2,m2 − 1 | j,m〉
√

(j +m)(j −m+ 1) 〈j1,m1, j2,m2 | j,m− 1〉

=
√

(j1 +m1 + 1)(j1 −m1) 〈j1,m1 + 1, j2,m2 | j,m〉

+
√

(j2 +m2 + 1)(j2 −m2) 〈j1,m1, j2,m2 + 1 | j,m〉 .

➣ Use of Racah’s formula.

➣ Use computer-algebra or program libraries.

➣ Look up tables and books; there are extensive tabulations available from the past.
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5.3. Wigner n–j symbols

5.3.a. Wigner 3–j symbols

Instead of the Clebsch-Gordan coefficients, one often uses the (so-called) Wigner n–j symbols
which obey a higher symmetry. To this end, let us introduce the ∆ symbol by

∆(a, b, c) =

[
(a+ b− c)! (a− b+ c)! (−a+ b+ c)!

(a+ b+ c+ 1)!

]1/2

.

Then, the numerical value of a Wigner 3–j symbol is calculated by the expression due to

Racah from 1942:

(
j1 j2 j3
m1 m2 m3

)

= δm1+m2+m3,0 (−1)j1−j2−m3 ∆(j1, j2, j3)

× [(j1 −m1)! (j1 +m1)! (j2 −m2)! (j2 +m2)! (j3 −m3)! (j3 +m3)!]
1/2

×
∑

l

[
(−1)l

l! (j1 + j2 − j3 − l)! (j1 −m1 − l)! (j2 +m2 − l)!

× 1

(j3 − j2 +m1 + l)! (j3 − j1 −m2 + l)!

]

.

This expression has a non-zero value only if the arguments of all factorials are non-negative

integers.

Symmetries of the Wigner 3–j symbols: under the exchange of two (columns of)
angular momenta

(
j1 j2 j3
m1 m2 m3

)

=

(
j2 j3 j1
m2 m3 m1

)

=

(
j3 j1 j2
m3 m1 m2

)

= (−1)j1+j2+j3
(
j1 j3 j2
m1 m3 m2

)

= (−1)j1+j2+j3
(
j3 j2 j1
m3 m2 m1

)

Moreover, an analogue phase factor occurs for

(
j1 j2 j3
−m1 −m2 −m3

)

= (−1)j1+j2+j3
(
j1 j2 j3
m1 m2 m3

)

Recursion relations for the Wigner3–j symbols: are listed by Rotenberg et al.

(1959), eqs. (1.45)–(1.48). If we assume J = j1 + j2 + j3 in this subsection, we find for
example:
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One recursion relation decreases two j-values by 1/2 [halfstep]-recursion:

[(J + 1)(J − 2j1)]
1/2

(
j1 j2 j3
m1 m2 m3

)

= [(j2 +m2)(j3 −m3)]
1/2

(
j1 j2 − 1/2 j3 − 1/2
m1 m2 − 1/2 m3 + 1/2

)

− [(j2 −m2)(j3 +m3)]
1/2

(
j1 j2 − 1/2 j3 − 1/2
m1 m2 + 1/2 m3 − 1/2

)

.

From Louck (1958) is the following 1/2-step recursion relation [Louck]-recursion:

(j2 +m2)
1/2 (2j3 + 1)

(
j1 j2 j3

m2 −m3 −m2 m3

)

= − [(J − 2j1)(J + 1)(j3 +m3)]
1/2

(
j1 j2 − 1/2 j3 − 1/2

m2 −m3 −m2 + 1/2 m3 − 1/2

)

− [(J − 2j3)(J − 2j2 + 1)(J + 1)(j3 −m3 + 1)]
1/2

(
j1 j2 − 1/2 j3 + 1/2

m2 −m3 −m2 + 1/2 m3 − 1/2

)

.

5.3.b. Wigner 6–j and 9–j symbols

Apart from the Wigner 3–j symbols, one can define Wigner 6–j and 9–j symbols, which also
obey high symmetries. For example, the 9–j symbols with given numeric arguments can be
calculated by means of a known sum rule over three Wigner 6–j symbols







j11 j12 j13
j21 j22 j23
j31 j32 j33






=

∑

j

(−1)2j
{
j11 j21 j31
j32 j33 j

}{
j12 j22 j32
j21 j j23

}{
j13 j23 j33
j j11 j12

}

.

From the symmetry properties of the Wigner 6–j symbols (not shown here), one would
see that the 9–j symbol is zero unless the arguments in each row and column satisfy the
triangular relation.

5.3.c. Sum rules of the Wigner n–j symbols

The Wigner n–j symbols obey a very large number of sum rules which can be utilized to
enourmoulsy simplify the spin-angular integration in the treatment of most quantum many-
particle systems with some kind of rotational symmetry. An extensive list of such sum rules
are provided in the monograph of Varshalovich et al. (1988) to which we here refer just for
a few examples.

Sum rules for one 3–j symbol

Varshalovich et al. (1988), eq. (12.1.2) give one sum rule with one 3–j symbol.

∑

m

(−1)j−m
(
j j j′

m −m m′

)

= [j]1/2 δm′0 δj′0

and with [a, b, ...] = (2a+ 1)(2b+ 1)... .
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Sum rules for one 6–j symbol

Rotenberg et al. (1959), eqs. (2.9–10) give sum rules with one 6–j symbol. A more general
form is given by Varshalovich et al. (1988), eqs. (12.2.3–4).

∑

X

[X]

{
a b X
a b c

}

= (−1)2c δ(a, b, c)

∑

X

(−1)a+b+X [X]

{
a b X
b a c

}

= [a, b]1/2 δc0

Sum rules for two 3–j symbols

Two orthogonality relations for 3–j symbols are given by Rotenberg et al. (1959), eqs.
(1.13–14). The same rules are given by Varshalovich et al. (1988), eqs. (12.1.3–4).

∑

j3m3

(2j3 + 1)

(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j3
m′1 m′2 m3

)

= δ(m1,m
′
1) δ(m2,m

′
2)

∑

m1m2

(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j′3
m1 m2 m′3

)

=
δ(j3, j

′
3) δ(m3,m

′
3)

(2j3 + 1)
δ(j1, j2, j3)

Sum rules for two 3–j symbols and one 6–j symbol

One such rule is given by Rotenberg et al. (1959), eq. (2.19). The same rule is shown by
Varshalovich et al. (1988), eq. (12.1.5).

∑

l3n3

(−1)j3+l3+m1+n1 [l3]

{
j1 j2 j3
l1 l2 l3

}(
l1 j2 l3
n1 m2 n3

)(
j1 l2 l3
m1 n2 −n3

)

=
∑

m3

(
j1 j2 j3
m1 m2 m3

)(
l1 l2 j3
n1 n2 −m3

)

Sum rules for three 6–j symbols

There is a sum rule for three 6–j symbols from Biedenharn and Elliot [see Rotenberg et al.

(1959), eq. (2.8)]. The same rule is given by Varshalovich et al. (1988), eq. (12.2.18).

∑

X

(−1)R+X [X]

{
a b X
c d p

}{
c d X
e f q

}{
e f X
b a r

}

=

{
p q r
e a d

}{
p q r
f b c

}

where R = a+ b+ c+ d+ e+ f + p+ q + r.
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Figure 5.1.: Structure of a Racah expression, i.e. typical expressions which appear in Racah’s

algebra.

Racahexpr :=
∑

j1, j2, l1, ...

(−1)2j1−j2+... j
3/2
1 [j2] . . .

(
. . j1
. . .

)(
j1 j2 .

. . .

)






. j3 .

j1 . .

J . j2






. . .

×
∫

dΩ1 Yl1m1
(Ω1)Yl2m2

(Ω2)

∫

dβ d j3
p3q3(β) d

j4
p4q4(β

′) . . .

Sum rules for one 6–j symbol and three 9–j symbols

Varshalovich et al. (1988), eq. (12.2.44) gives a sum rule for one 6–j symbol and three 9–j
symbols.

∑

XY Z

[X, Y, Z]







a b X
c d Y
t s r













a b X
h j q
e f Z













k l p
c d Y
e f Z







{
p q r
X Y Z

}

=







k l p
h j q
t s r







{
k h t
a c e

}{
l j s
b d f

}

5.4. The RACAH program in Maple

In atomic and nuclear structure theory, the evaluation and spin-angular integration of many-
particle matrix elements is typically based on standard quantities like the matrix elements of
the unit tensor, the (reduced) coefficients of fractional parentage as well as a number of other
reduced matrix elements concerning various products of creation and annihilation operators.
These quantities arise very frequently both in configuration interaction approaches and the
derivation of perturbation expansions for many-particle systems using symmetry-adapted
configuration state functions.

In the framework of the Racah program (Fritzsche 1997; Fritzsche et al. 1998), we provide a
set of procedures for the manipulation and computation of such standard quantities in atomic
theory. This (so-called) Racah program is designed for interactive work and appropriate
for almost any complexity of expressions from Racah algebra. In Figure 5.3.c, we display
the typical structure of such expressions to which we refer as Racah expressions.
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5.4.a. Presently supported symbols and functions in the RACAH program

The following symbols and quantities from the theories of angular momentum and irreducible
tensor operators are known to the Racah program.

Symbol Designation Racah program

(
a b c
ma mb mc

)

Wigner 3–j symbol Racah w3j()

{
a b c
d e f

}

Wigner 6–j symbol Racah w6j()







a b c
d e f
g h i






Wigner 9–j symbol Racah w9j()

〈a ma, b mb | c mc〉 Clebsch–Gordan coefficient Racah ClebschGordan()

W (abcd; ef) Racah’s W coefficient Racah Wcoefficient()

d jmm′(β) Wigner d jmm′(β) rotation matrix Racah dmatrix()

D j
mm′(α, β, γ) Wigner’s D−function Racah Dmatrix()

U j
mm′(ω; Θ,Φ) Rotation matrix U(ω) Racah Umatrix()

Ylm(ϑ, ϕ) Spherical harmonic Racah Ylm()

{Yl1(ϑ1, ϕ1) · ·Yl2(ϑ2, ϕ2)}LM
Bipolar spherical harmonic Racah bipolarY()

{
Yl1(ϑ1, ϕ1) · · {Yl2(ϑ2, ϕ2) · ·Yl3(ϑ3, ϕ3)}l23

}

LM

Tripolar spherical harmonic Racah tripolarY()

Y l
jm(ϑ, ϕ) Vector spherical harmonic Racah vectorY()

Ω l
jm(ϑ, ϕ) Spinor spherical harmonic Racah spinorY()

Y ls
jm(ϑ, ϕ) Tensor spherical harmonic Racah tensorY()

〈lama |lbmb| lcmc〉 Gaunt coefficient Racah Gaunt()

Ck(la,ma; lb,mb) Condon–Shortley coefficient Racah CondonShortley()

Hl,{µ} † Hyperspherical harmonic Racah hypersphericalY()

(
γ αQΓ ||| a(qγ) ||| γ α′Q′Γ′

)
Reduced coefficient of fractional
parentage

Racah cfp()

...
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Spherical harmonics: The Ylm(θ, φ) functions form a complete and orthonormal set on the
unit sphere, and are therefore widely used in classical and quantum physics; the spherical
harmonics frequently appear in the representation of wave functions for a wide range of
physical systems, in the evaluation of the corresponding (quantum) matrix elements, and at
many places elsewhere.

Bipolar and tripolar spherical harmonics: When defined as irreducible tensors, linear com-
binations of products of p spherical harmonics often form a convenient basis to represent
(distribution) functions in physics which depend on p vector directions. For this purpose,
for instance, the bipolar spherical harmonics are defined as the irreducible tensor product of
two spherical harmonics with different arguments (Varshalovich et al. 1988)

{Yl1(ϑ1, ϕ1)⊗Yl2(ϑ2, ϕ2)}LM =
∑

m1m2

〈l1m1, l2m2 | LM〉 Yl1m1
(ϑ1, ϕ1)Yl2m2

(ϑ2, ϕ2) .

For different l1, l2, L, and M , the bipolar harmonics form a complete and orthonormal set

∫ ∫

dΩ1dΩ2 {Yl1(Ω1)⊗Yl2(Ω2)}∗LM

{
Yl′

1
(Ω1) · ·Yl′

2
(Ω2)

}

L′M ′
= δl1l′1 δl2l′2 δLL′ δMM ′

of functions which depend on two unit vectors, say, n1 and n2, respectively. A similar
definition also applies for the tripolar spherical harmonic

{
Yl1(ϑ1, ϕ1)⊗ {Yl2(ϑ2, ϕ2)⊗Yl3(ϑ3, ϕ3)} l23

}

LM

=
∑

m1,m2,m3,m23

〈l1m1, l23m23 | LM〉 〈l2m2, l3m3 | l23m23〉

Yl1m1
(ϑ1, ϕ1)Yl2m2

(ϑ2, ϕ2)Yl2m2
(ϑ3, ϕ3) .

where, however, different coupling sequences are possible and have to be taken into account
in applications.

Tensor spherical harmonics: Following the standard coupling of two angular momenta,
the tensor spherical harmonics are constructed as the product of the spherical harmonics
Ylm(ϑ, ϕ) (eigenfunctions of l2 and lz) and the spin function χsm (eigenfunctions of s2 and
sz)

Y ls
jm(ϑ, ϕ) ≡ {Yl ⊗ χs}jm =

∑

ml,ms

Ylml
(ϑ, ϕ)χsms

〈lml, sms | jm〉

so that a irreducible tensor of rank j is obtained. While the l quantum number always occurs
as a (nonnegative) integer, the indices j and s are both either integers or half-integers. For
given j and s, the (orbital) angular momentum l can take the values |j−s|, |j−s|+1, ..., j+s;
the allowed values of m are −j, −j + 1, ..., j. Similar to the spherical harmonics, which
form a complete set of functions on the unit sphere, the tensor spherical harmonics Y ls

jm(ϑ, ϕ)
form a complete and orthonormal set of functions for the expansion of rank s spinors with
the domain of arguments 0 ≤ ϑ ≤ π, 0 ≤ ϕ ≤ 2π.
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According to different definitions of the spin functions such as in a cartesian, spherical, or
helicity basis representation, different components of the tensor spherical harmonics need to
be distinguished.

Spinor spherical harmonics: For the case s = 1/2, the tensor harmonics are also called
spinor spherical harmonics

Ω l
jm(ϑ, ϕ) ≡ Y

l 1
2

jm (ϑ, ϕ)

which are eigenfunctions of the operators j2, jz, l
2 and s2, where s is assumed to be the spin

operator for s = 1/2. As for the tensor spherical harmonics, a number of different compo-
nents need to be distinguished, including contravariant and covariant tensor components.

Vector spherical harmonics: The other special case of tensor spherical harmonics are those
for spin s = 1, i.e. the vector spherical harmonics

Y l
jm(ϑ, ϕ) ≡ Y l1

jm(ϑ, ϕ) .

A large deal of representations, integrals, and algebraic relations are known for the vector
sphercial harmonics which play an crucial role, for instance, in the quantum theory of light
and in the current (hop) topic of laser-matter interactions.
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